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Abstract
Adverse drug events remain a leading cause of morbidity and mortality around the world. Many
adverse events are not detected during clinical trials before a drug receives approval for use in the
clinic. Fortunately, as part of postmarketing surveillance, regulatory agencies and other
institutions maintain large collections of adverse event reports, and these databases present an
opportunity to study drug effects from patient population data. However, confounding factors such
as concomitant medications, patient demographics, patient medical histories, and reasons for
prescribing a drug often are uncharacterized in spontaneous reporting systems, and these
omissions can limit the use of quantitative signal detection methods used in the analysis of such
data. Here, we present an adaptive data-driven approach for correcting these factors in cases for
which the covariates are unknown or unmeasured and combine this approach with existing
methods to improve analyses of drug effects using three test data sets. We also present a
comprehensive database of drug effects (OFFSIDES) and a database of drug-drug interaction side
effects (TWOSIDES). To demonstrate the biological use of these new resources, we used them to
identify drug targets, predict drug indications, and discover drug class interactions. We then
corroborated 47 (P < 0.0001) of the drug class interactions using an independent analysis of
electronic medical records. Our analysis suggests that combined treatment with selective serotonin
reuptake inhibitors and thiazides is associated with significantly increased incidence of prolonged
QT intervals. We conclude that confounding effects from covariates in observational clinical data
can be controlled in data analyses and thus improve the detection and prediction of adverse drug
effects and interactions.

INTRODUCTION
Adverse drug events (ADEs) remain a significant source of mortality and morbidity around
the world with costs estimated at several billion dollars each year (1, 2). Many ADEs are
rare or occur only in a subset of the human population and not observed in relatively small
clinical trials. To address this issue, the U.S. Food and Drug Administration (FDA), World
Health Organization, and Health Canada (3) have created large adverse event reporting
systems (AERSs) that collect data from clinicians, patients, and pharmaceutical companies.
These resources present an opportunity to monitor drug safety in a large and diverse
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population of patients. Quantitative signal detection algorithms use these data to flag and
prioritize drug-event signals for follow-up analysis via formal pharmacoepidemiological
studies and to discover complex relationships that are difficult to identify manually [such as
drug-drug interactions (DDIs)] (4, 5). Despite their power, these methods suffer from well-
recognized limitations that result from sampling variance and reporting biases (4, 6).

Signal detection algorithms quantify the “unexpectedness” of an adverse event being
reported for a drug through disproportionality analysis; the goal is to identify drugs that have
a greater proportion of a particular event among their reported events compared to the
proportion seen for other drugs. Signals are detected by comparing the observed reporting
rates between a drug-event pair to an expected reporting rate derived from other drug-event
pairs. Under the null hypothesis that the event occurred by chance, the observed and
expected rates will be equivalent and their ratio equal to one. When this ratio is much larger
than one, the null hypothesis is rejected.

Unfortunately, there are a number of extraneous causes of differential reporting that fall into
two distinct classes: (i) sampling variance and (ii) selection biases. Sampling variance refers
to reporting rates that vary widely across drugs and time and depends on many factors. One
source of sampling variance comes from the underreporting of events by physicians, who
may report only ADEs that they deem to be important or that result from a new or untrusted
drug. On the other hand, some ADEs can be oversampled. For example, in 2006, more than
18,000 reports were submitted to the FDA that associated rofecoxib (Vioxx) and myocardial
infarction—likely a result of the intense media attention that occurred during that time.
Sampling variance has been effectively addressed in modern signal detection algorithms,
such as the gamma Poisson shrinker (GPS) or Information Component (IC) (6, 7). These
methods estimate confidence intervals (CIs) for the disproportionality statistics and then
dampen drug-event signals that have little evidence to support them. However, these
methods do not address the issue of reporting biases (6).

Selection biases result from the nonrandom selection of subjects exposed to the drug and
experiencing adverse events. This selection may be driven by causative covariates other than
the drug under analysis (for example, a patient’s disease state or other medications). This
faulty selection may cause the disproportionality analysis to associate the drug and the event
when a causative covariate is not accounted for; we refer to this as a synthetic association.
Indication bias is one of the most common examples of this and occurs when a drug is
synthetically associated with an event that is more appropriately attributed to the underlying
disease (4). For example, it is common for diabetes drugs to be reported with
hyperglycemia, a symptom of diabetes and usually not an effect of treatment. Similarly,
concomitant medications can also confound drug-effect associations. Drugs commonly co-
prescribed with rofecoxib (Vioxx) were more likely to be associated with heart attack simply
because these drugs were commonly taken together. These issues extend to other covariates
as well, both common and uncommon. Patients reported to be taking a cholesterol-lowering
agent are more likely to be older, and this may cause these drugs to be synthetically
associated with age-related effects, such as hypertension or myocardial infarction (age bias).
Patients who have recently had a renal transplant are often prescribed moxifloxacin, which
has resulted in synthetic associations of the drug with renal impairment (prescribing bias).

The sources of bias are myriad and have not been directly addressed in modern signal
detection algorithms. Indeed, stratification of the data on predefined covariates is the
primary technique for removing these biases. However, stratification requires enumeration
of all important covariates, which is computationally intractable to use for safety
surveillance. Identifying a fixed set of likely covariates for all drugs can help the analysis,
but reduces power when dividing the reports across strata that are not correlated with the
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outcome (4, 8). In addition, stratification is impossible when the reporting systems do not
contain reliable measures of the common covariates. These factors limit the benefit of
applying stratification routinely (8).

Our new method (i) accomplishes the goals of stratification, dampening or removing the
effect of covariates, without the need to divide drug-exposed reports into strata; (ii) is both
adaptive (it removes different covariates for different drugs) and appropriate for systematic
application and routine analysis; and (iii) is designed to complement modern signal
detection approaches and thus extends the applicability and power of existing methods. Our
model is inspired by the case-control approach to cohort selection in observational clinical
studies. Each drug-exposed patient is matched to one (or more) nonexposed patients
(controls). The nonexposed patients are selected on the basis of how well they match an
exposed patient on a set of predefined covariates. Propensity score matching (PSM)—a
statistical method designed to yield an unbiased estimate of treatment effects—has emerged
as the preferred method of matching exposed and nonexposed patients in observational
cohort studies and has yielded similar estimates of effects when compared to the results of
randomized control trials (9–11). However, like other confounder controlling methods, PSM
requires the covariates to be both known and measured; neither parameter is guaranteed to
be present in spontaneous reporting systems. Instead, to match patients, we adapted PSM to
use only the co-reported drugs and co-reported indications. We hypothesize that many
confounders correlate with these key variables and do not need to be modeled.

When we applied this data-driven approach to flag potentially significant drug-event
associations in the AERS, we successfully removed many synthetic associations from
indications, co-prescriptions, and hidden covariates. We call this new method the statistical
correction of uncharacterized bias (SCRUB) and use it to construct comprehensive databases
of off-label and DDI side effects (OFFSIDES and TWOSIDES, respectively). These databases contain
information that is independent from the Side Effect Resource (SIDER), a database of drug
effects mined from the package inserts (12). We demonstrate the biological use of these
databases by showing improved performance (compared to SIDER) at predicting drug
targets and drug indications (13, 14). Furthermore, we use the new methods to identify
adverse drug class interactions and then corroborate 47 of the 395 predicted interactions
with electronic medical records (EMRs) from Stanford University Hospital. Finally, we
conclude our analysis with an association between adverse cardiovascular events and co-
prescription of thiazides and selective serotonin reuptake inhibitors (SSRIs). Patients who
take these drugs in combination are significantly more likely to have prolonged QT intervals
than those who take thiazides or SSRIs alone.

RESULTS
Sources of synthetic associations: Disease indication, concomitant drug use, and
characteristic biases

Disease indication—We manually constructed a set of 543 adverse events strongly
associated with indications for which the indication and the adverse event have a known
causative relationship. We call a drug-event association synthetic if it has a tight reporting
correlation with the indication (ρ ≥ 0.1) and a high relative reporting (RR) association score
(RR ≥ 2). Drugs reported frequently with these indications were 80.0 (95% CI, 14.2 to
3132.8; P < 0.0001, Fisher’s exact test) times as likely to have synthetic associations with
indication events. We found a strong linear relationship between the correlation of reporting
between a drug and indication and the likelihood of a synthetic association (ρ = 0.63, P <
0.0001, Fig. 1A).

Tatonetti et al. Page 3

Sci Transl Med. Author manuscript; available in PMC 2013 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Concomitant drugs—We identified 1559 adverse events strongly associated with drugs
and listed on the drug’s package insert. These drug-event pairs represent a set of known
strong positive associations. We call a drug-event association synthetic if it has a tight
reporting correlation with the causative drug (ρ ≥ 0.1) and a high association score (RR ≥ 2).
Drugs co-reported with these drugs were 55.8 (95% CI, 29.3 to 122.1; P < 0.0001, Fisher’s
exact test) times as likely to have synthetic associations with the drug events. We found a
strong linear relationship between the correlation of co-reporting between drugs and the
likelihood of synthetic associations (ρ = 0.93, P < 0.0001, Fig. 1B).

Characteristic biases (sex and age)—We identified 33 adverse events that, for
physiological reasons, predominantly occur in males (for example, penile swelling and
azoospermia; full list shown in table S1). We found that drugs that are disproportionately
reported as causing adverse events in males were more likely to be synthetically associated
with these events (ρ = 0.57, P < 0.0001, Fig. 1C). Similarly, we identified 48 adverse events
that predominantly occur in either relatively young or relatively old patients (table S2). We
found that drugs that are disproportionately reported to cause adverse events in relatively
younger or relatively older patients (compared to the database average) were more likely to
be synthetically associated with these events (ρ = 0.60, P < 0.0001, Fig. 1D).

Correction of selection bias in adverse event report data
By identifying matched nonexposed reports to the exposed reports for each drug, SCRUB
reduced the rate of synthetic associations that resulted from indications and concomitant
drugs. We found that applying SCRUB removed 57% of the synthetic associations from
indications and 49% of those that resulted from concomitant drugs. Further, we found that
SCRUB preferentially dampened the signal of synthetic associations: odds ratio (OR) = 1.8
(95% CI, 1.4 to 2.4; P < 0.0001, Fisher’s exact test) for associations from concomitant drugs
and OR = 2.0 (95% CI, 1.8 to 2.3; P < 0.0001, Fisher’s exact test) for those resulting from
indications (Fig. 1, E and F). We evaluated the method against three independent silver
standards of ADEs: (i) side effects mined from the drug package inserts, (ii) adverse events
reported to the FDA after our data extraction, and (iii) adverse event reports from Canada.
We found that using SCRUB in combination with the GPS, a commonly used method for
correcting sampling variance, significantly increased the predictive power in all three cases.
We found that the area under the receiver operating characteristic curve (AUROC), a
common method for evaluating the performance of predictive algorithms, increased from
0.53 to 0.79 (χ2 = 19,130, P < 0.0001), 0.58 to 0.71 (χ2 = 13,963, P < 0.0001), and 0.59 to
0.77 (χ2 = 8598, P < 0.0001) for each of the silver standards, respectively (Fig. 2). This
finding is corroborated by several case studies reported in the Supplementary Materials
(figs. S1 to S7).

Correction of uncharacterized bias in adverse event report data
We hypothesized that the SCRUB algorithm would correct for synthetic associations caused
by hidden, or unmeasured, covariates as well as those from indication and concomitant drug
use. To test this notion, we hid age and sex data from the model and tested the ability of
SCRUB to remove synthetic associations that resulted from these covariates. We found that
the SCRUB-identified cohort matched more closely in age for 478 of 629 (76%) of drugs.
We highlight the 20 most age-biased drugs and their cohort age differences in Fig. 3A.
Similarly, we tested the ability of the algorithm to implicitly correct for sex differences.
SCRUB-identified cohorts matched more closely in sex differences for 467 of 629 (74%) of
drugs. Figure 3B highlights the top 20 drugs most biased in terms of sex of the patients and
our corrections.
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Off-label and polypharmacy side-effect databases
We use the term “off-label” to refer to any drug effect not already listed on the drug’s
package insert. We constructed a database of 438,801 off-label side effects for 1332 drugs
and 10,097 adverse events. The average drug label lists 69 “on-label” adverse events. We
list an average of 329 high-confidence off-label adverse events for each drug. For
comparison, the SIDER database, extracted from drug package inserts, lists 48,577 drug-
event associations for 620 drugs and 1092 adverse events that are also covered by the data
mining. OFFSIDES recovers 38.8% (18,842 drug-event associations) of SIDER associations
from the adverse event reports. Thus, OFFSIDES finds different associations from those reported
during clinical trials before drug approval. We found that the drug-event associations
reported in OFFSIDES were predictive of known class-wide drug effects, such as the adverse
events of the nervous systems associated with antiparasitics and insecticides (fig. S8).

In addition, we constructed a database of polypharmacy side effects for pairs of drugs
(TWOSIDES). This database contains 868,221 significant associations between 59,220 pairs of
drugs and 1301 adverse events. These associations are limited to only those that cannot be
clearly attributed to either drug alone (that is, those associations covered in OFFSIDES). The
database contains an additional 3,782,910 significant associations for which the drug pair
has a higher side-effect association score, determined using the proportional reporting ratio
(PRR), than those of the individual drugs alone. We found that the TWOSIDES database is
enriched for pairs of drugs with known interactions (t = 6.6, P = 4.9 × 10−11).

Use of drug-effect associations to predict protein targets and drug indications
Using a simplified version of the analysis by Campillos et al. (13), we computed pairwise
similarity metrics between all drugs in the OFFSIDES and SIDER databases. We found that side-
effect similarities derived from OFFSIDES were predictive of the proportion of shared targets
between drugs (Fig. 4A, ρ = 0.92, P < 0.0001). For example, diazepam (Valium) and
zolpidem (Ambien) share seven of the same protein targets, and although they have different
chemical structures and are used for different indications, the two drugs have similar side-
effect profiles. This similarity in side-effect profiles can be used to identify pairs of drugs
likely to share targets and, when those associations are not yet known, to find new targets
for existing drugs. Furthermore, similarities derived from OFFSIDES provided information that
was independent of similarities derived from SIDER (Fig. 4B) with respect to predicting
shared targets (χ2 = 177.2, P < 0.0001), as determined by an analysis of variance
(ANOVA). The model that was most predictive of shared targets was one that included
information from both databases (AUROC = 0.75), followed by SIDER alone (AUROC =
0.71), and then OFFSIDES alone (AUROC = 0.70) (Fig. 4C).

Similarly, we found a linear relationship between the proportion of shared indications
between a pair of drugs and the similarity of their side-effect profiles in OFFSIDES (Fig. 5A).
This opens up the possibility of using side-effect profiles to suggest new uses for old drugs.
Again, we found that OFFSIDES provided information independent of that provided by SIDER
(Fig. 5B) with respect to predicting shared indications (χ2 = 874.5, P < 0.0001), as
determined by an ANOVA. We found that a combination of the two databases performed
best in terms of predicting existing therapeutic indications of known drugs (AUROC =
0.83), followed by SIDER alone (AUROC = 0.78), and then OFFSIDES (AUROC = 0.75) (Fig.
5C).

Corroboration of class-wide interaction effects with EMRs
We used the TWOSIDES database to identify DDIs shared by an entire drug class (see Materials
and Methods). Our class-class interaction analysis produced 1732 putative drug class
interactions. We then identified laboratory reports commonly recorded in EMRs—for
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patients who visited Stanford University Hospital—that may be used as markers of these
class-specific DDIs. We tested 596 of these interactions and found significant changes in the
long-term (≥1 year) laboratory markers for 395 (66%; P < 0.0001, Fisher’s exact test) of the
interactions using a Cox proportional hazards model. Further, we found additional evidence
of drug effects for 47 of 395 interactions when looking for short-term (≤36 days) changes in
laboratory markers after the start of treatment (Table 1).

To test whether these discoveries were spurious fluctuations of the laboratory markers, we
constructed a random set of interaction predictions for comparison. We found that our class-
class interaction predictions were significantly enriched for interactions for which there was
evidence in the EMRs (OR, 36.8; 95% CI, 6.2 to 1481.9; P < 0.0001, Fisher’s exact test).
Figure 6 summarizes our drug effect and interaction findings for cardiovascular adverse
events.

Association of co-prescription of thiazides and SSRIs with a prolonged QT interval
The DDI with the largest effect size was an association between co-prescriptions of thiazides
and serotonin reuptake inhibitors (SSRIs) with prolonged QT intervals (QTc > 440 ms)
(Supplementary Materials). Prolonged QT intervals on an electrocardiogram have been
associated with increased risk of spontaneous arrhythmias and sudden death. For EMR
analysis, we removed patients who had a previous history of prolonged QT. Of 932 patients
who were co-prescribed a thiazide and an SSRI, 87 (9.3%) displayed prolonged QT,
whereas 588 of 9008 (6.5%) patients who were prescribed thiazides alone had prolonged
QT, and 684 of 14,218 (4.8%) patients who were prescribed SSRIs alone had prolonged QT.
Using Cox proportional hazards regression with covariates, we performed a time-to-event
analysis on the association between co-prescription of thiazides and SSRIs and the incidence
of prolonged QT. This analysis showed that patients who were co-prescribed a thiazide and
an SSRI were 1.5 (95% CI, 1.2 to 1.9) times as likely (P = 4.46 × 10−4) to record a
prolonged QT interval when compared to patients prescribed a thiazide alone and 1.4 (95%
CI, 1.2 to 1.8) times as likely (P = 0.0013) as those prescribed an SSRI alone (Fig. 7). We
ruled out the possibility that other co-prescribed medications may have been associated with
QT prolongation by testing 38 commonly co-prescribed drugs in independent regression
models and, in each case, found a significant effect from the combined use of thiazides and
SSRIs (table S3). We corrected for the effects of co-prescriptions, age, race, and sex (table
S4). Together, these results suggest that further study of the potential interaction between
thiazides and SSRIs may be warranted.

DISCUSSION
The methods we present here build upon the foundation of signal detection algorithms
developed for drug safety surveillance. The use of spontaneous reporting systems for
identifying ADEs faces challenges as a result of sampling variance and reporting biases (4,
6). Modern signal detection algorithms address the issue of sampling variance by using
shrinkage to down-weight drug-event associations with little evidence to support them (6,
7). Stratification is designed to address reporting biases by dividing the data across
covariate-defined strata. However, systematic application of stratification using a fixed set
of covariates reduces power by dividing up the available data across unimportant strata (4,
15). Our approach does not divide data across strata and can correct for the effects of
confounders even if those variables are unknown or unmeasured. The key insight is that, at
least for drugs, the indications of use and other drugs used capture most of many important
covariates. Although our approach is inspired by those used in observational cohort analysis,
it does not enable causative inference. Like other signal detection techniques, the goals are
to generate quality hypotheses for follow-up analysis. Our method has a comparable running
time to current techniques, making it suitable for systematic drug surveillance.
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The successful prediction of side effects before a drug enters clinical trials remains a
tantalizing goal. Chemical informatics techniques can predict drug side effects by comparing
the structural similarity of drugs (16, 17). In an analogous manner, protein structural
similarity can explain and predict drug side effects (18). More recently, network and
chemical properties have been combined together into predictive models of drug effects
(19); these approaches all rely on a comprehensive database of known drug effects. Package
inserts list drug side effects and could serve as a primary source of known side effects, but
these data are limited. First, because clinical trials are conducted on relatively small patient
populations, only common effects can be detected with sufficient confidence to be listed on
a drug’s package insert. Second, effects observed during the clinical trials may be incidental
and not actually caused by the drug. Nonetheless, recent work in chemical biology has used
the SIDER (a text-mined database of drug package inserts) to good effect (12, 13, 20). Our
OFFSIDES database contains information complementary to that found in SIDER and improves
the prediction of protein targets and drug indications. As a complement to OFFSIDES, our
TWOSIDES database of mined putative DDIs also lists predicted adverse events. These databases
will serve as valuable resources for chemical biology, drug discovery, and
pharmacoepidemiology studies. These databases are made available in the Supplementary
Materials and at the http://PharmGKB.org Web site.

Identification and prediction of DDIs is a critical activity for improved patient care (21–26).
Clinical trials do not routinely investigate DDIs because they are focused on establishing
safety and efficacy of single-agent therapeutics. A wide range of methods, from text mining
(27, 28) to network modeling (29, 30), can detect, explain, and predict DDIs. Recently, a
systems pharmacology approach was presented to identify genes associated with adverse
cardiovascular drug effects (31). Integration of these methods with TWOSIDES may lead to
further understanding of the molecular etiology of these effects (figs. S9 and S10). We
highlight one potentially clinically significant association between co-prescription of
thiazides and SSRIs and QT interval prolongation. Prolonged QT is not a known interaction
effect of thiazides and SSRIs. However, each drug class is individually implicated in causing
hyponatremia (32–34), and the mechanisms that cause this side effect may interact
synergistically. The EMR analyses we report are not full epidemiological studies. EMR
records are incomplete and may be missing data on medical history and prescription orders.
In addition, patients who take multiple drugs may have a higher rate of adverse events than
less-medicated patients. Further analysis is needed to evaluate these potentially important
drug interactions.

Evaluation of signal detection algorithms and side-effect prediction algorithms, in general, is
not straightforward; no gold standard of known ADEs exists. In lieu of a standard, we
evaluated our proposed methodology against three “silver” standards: (i) effects listed on the
drug’s package inserts, (ii) ADEs reported after the original download date of September
2009, and (iii) ADEs reported to the Canadian spontaneous reporting system. We found that
when used in combination with modern signal detection algorithms, our method
significantly improved performance. These standards, however, are biased toward more
common effects, and so the performance of our method with respect to detecting rare events
may be less reliable. A publicly available resource of drug effects would enhance the
evaluation of this and other predictive algorithms.

In summary, we present a new methodology for correcting for the effects of confounding
variables in large clinical observational databases when those variables are unknown,
unmeasured, or sparsely collected. The goals of this work parallel those of patient
stratification; however, our presented methodology adapts to specific drug-event pairs, does
not require data to be split across strata, and can implicitly correct for unmeasured
covariates. The key assumption of the method is that many patient covariates will be
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represented by the concomitant drugs the patient is taking and indications for which the
patient is being treated. The method improves the performance of modern signal detection
techniques and is suitable for systematic and routine drug safety surveillance. Finally, we
present two new resources of adverse drug effects and drug interactions for use in drug
discovery, repositioning, chemical biology, and pharmacoepidemiology studies.

MATERIALS AND METHODS
Data source

We downloaded the following: (i) 1,851,171 adverse event reports in the AERS from the
FDA’s Web site from the first quarter of 2004 to the first quarter of 2009; (ii) the SIDER, a
database of the drugs, adverse events, and indications mined from the FDA drug labels (12)
and Canada’s MedEffect resource, the sister database to the AERS containing about 300,000
adverse event reports (downloaded September 2009); (iii) the drug target information from
the DrugBank, Matador, and Psychoactive Drug Screening Program (PDSP) chemical
databases referenced by Campillos and colleagues for use in correlating side-effect
similarity to shared drug targets (13); and (iv) an independent database of the adverse event
reports in AERS for the third quarter of 2009 to the fourth quarter of 2010 for validation
purposes.

Statistical model and assumptions
Not all ADEs that occur are captured by spontaneous reporting systems. The drug effects
need to be observed, recognized, attributed to a drug, and then reported. Therefore,
differential reporting and covariate biases prohibit a straightforward interpretation of the
reports. Disproportionality analysis addresses some of these issues by looking for drugs that
are disproportionately reported with a particular event compared to that same proportion for
other drugs. They do so by comparing the observed number of reports to an expected
number estimated from the proportions of other drugs. In our model, under the null
hypothesis, we view the observed (Oxy) and expected (Exy) as biased estimators for the
incidence (Ixy), where the incidence is the rate at which the event would be reported absent
of any confounding variables. We can then write the observed-to-expected ratio as follows:

where β is the bias of Exy and ε is the bias in Oxy. It is clear that synthetic associations occur
when the bias in the observed is greater than the bias in the expected, and in general, any
time the biases are not equal, errors may occur. Because we do not have complete
knowledge of the patients who are prescribed any given drug and the events that occur, we
cannot compute the bias terms directly. Instead, we adapted the tools of cohort selection in
observational studies to match each exposed case report to a nonexposed control report.
PSM models the probability that a patient (also known as a report in our case) is selected
into the exposed group versus the nonexposed group as a function of the available covariates
using logistic regression (10). Each exposed patient (that is, report) is matched to a
nonexposed patient with a similar probability according to the PSM model, thereby
mitigating the effects of confounders. In general, AERSs do not collect data on all of the
covariates necessary to implement a PSM model. However, our hypothesis is that many of
the important covariates for a patient will be captured by the concomitant medications that
patient is taking and the indications they are being treated for. These are data that are
collected by spontaneous reporting systems, and these are the variates we use in our PSM
model.
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Identification of nonexposed control reports to estimate expected values
For each drug, x, we used PSM to model the probability that a given report lists x as a
concomitant medication. That is, the dependent variable for the logistic regression model
was an indicator variable for the listing of drug x on the adverse event report. The
independent variables were other drugs and indications. However, rather than using all drugs
and indications (which would lead to a model with thousands of features), we used only
drugs and indications found to be preferentially reported with the given drug, x. In addition,
we limited the total number of possible features to the top 200 covariates (sorted by their
Spearman correlation coefficient, ρ). Finally, we removed any reports that listed none of the
chosen features (that is, their feature vector would be all zeroes). In this way, we built a
PSM for each of the 632 drugs and used the model to score each report for each drug to
compute its PSM score. Now, for each drug, we have generated PSM scores for each of the
exposed reports and a subset of the nonexposed reports. We divide the exposed reports into
20 equally spaced bins on the basis of their PSM scores, and for each bin, we sample, with
replacement, nonexposed control reports with PSM scores within the bin range until we
have 10 times as many nonexposed reports as exposed reports. We discard any bins that
have no matching controls available. The result is two sets of reports for each drug (exposed
and nonexposed) from which we compute the observed and expected ratios and the resulting
disproportionality statistics. To identify DDIs, we used a slightly modified approach that
was computationally more efficient (table S5).

Construction of the silver standard sets of drug-event associations
To evaluate the presented method, we tested its predictive performance against three
standards of drug effects and compared this performance to the GPS. No unbiased gold
standard for ADEs exists. The drug-event associations from the FDA drug labels are the
most obvious option for comparison. However, it is important to note that the labels are
biased toward the more common adverse events that are observed and reported in
premarketing clinical trials. This bias will limit the applicability of the drug labels because
the goal of signal detection is to identify rare and unexpected side effects of drugs. An
independent adverse event database, such as Canada’s MedEffect database, can also be used
for evaluation. However, because such a database will suffer from the same types of errors,
it is necessary to take only a subset of high-confidence associations. We extracted only those
associations where there was only one drug listed on the report (according to the publicly
available structured data) under the assumption that if only one drug is listed, then it is the
causative agent. Similarly, to asses reproducibility, we used a subset of AERS (quarter 3 of
2009 to quarter 4 of 2010) that was not used in the original analysis as a third silver
standard. Again, to mitigate confounding effects, we use only those reports that list exactly
one drug and flag that drug as the primary suspect.

Using drug side-effect similarities to predict drug targets and indications
Previous work has shown that a drug’s side effects can be used to predict protein targets.
Specifically, Campillos and colleagues have shown that if two drugs are similar in the side
effects they elicit, then they are more likely to share a common drug target (13). As
validation of the biological relevance of the methods we present, we replicated this result in
our mined associations. We calculated the similarity between two drugs by computing the
Tanimoto coefficient between the drug’s adverse event bit vectors (in these adverse event bit
vectors, each bit represents one adverse event and is set if the drug has a significant
association with the adverse event). Some drugs have higher similarity scores on average
using this metric, so we perform a z-score normalization by drug. We calculated these “z
similarities” for both the SIDER data set (the side effects extracted from the drug’s package
inserts) and the OFFSIDES data set. We tested the similarity score’s ability to predict the number
of targets two drugs share using a multivariate linear regression (modeling proportion of
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shard targets) and logistic regression (modeling shared targets), and tested for independence
between SIDER and OFFSIDES using an ANOVA.

Recent studies have also shown that drug indications can be predicted using side-effect
similarities (14). We use the same side-effect similarity scores computed for target
identification to predict drug indications. We tested the similarity score’s ability to predict
the number of targets two drugs share using a multivariate linear regression (modeling
proportion of shard targets) and logistic regression (modeling shared targets), and tested for
independence between SIDER and OFFSIDES using an analysis of covariance (ANCOVA).

Construction of the off-label and polypharmacy side-effect databases
The side-effect resources we present and made publicly available are a subset of the
associations analyzed in the analysis. In the OFFSIDES database, we removed any associations
that are not nominally significant (uncorrected P > 0.05); the remaining associations were
included. In the TWOSIDES database, we also removed associations that were not significant. In
addition, we removed any associations where there is evidence, according to OFFSIDES, that
one drug of the pair is likely responsible for the adverse event. This step improves the
chances that the reported drug interaction effects are due to synergistic interactions and not
recapitulations of known effects.

Associating drug classes to adverse event categories from OFFSIDES

We associated Anatomic Therapeutic Chemical (ATC) drug classes (levels 1 and 4) with
adverse event categories by linear modeling. To facilitate the statistical modeling, we
constructed a table where the rows are all drug-event pairs determined to have significant
associations by SCRUB. The model contained two features: (i) indicator variable of the
membership of the drug in the ATC drug class and (ii) indicator variable of the membership
of the event in the category. The dependent variable is the reporting frequency for the drug-
event pair observed in the AERS. For each class-category pair, we then modeled the
reporting frequency between all drugs and adverse events as a function of the two indicator
variables and an interaction term between the two indicator variables. We filtered for those
class-category associations where the interaction term was significant, after multiple
hypothesis correction.

Methodological detail covering the statistical analysis of the drug and indication case
studies, computing the drug-effect association statistics, identifying DDI effects and the
analytical methods for validating acute, and long-term effects using EMR data can be found
in the Supplementary Materials and tables S4, S6, and S7. Institutional review board
approval was obtained for the EMR studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Synthetic associations in adverse event reports. (A) Disease indications are a significant
source of synthetic associations. The more disproportionately a drug is reported with an
indication (x axis), the more likely that drug will be synthetically associated with the
indication’s effects (y axis) (for example, it is common for hypoglycemic agents to be
synthetically associated with hyperglycemia). (B) Concomitantly taken drugs are another
significant source of synthetic associations. The more disproportionately two drugs are
reported together (x axis), the more likely they will be associated with the other drug’s
effects (y axis). (C) Drugs that are preferentially reported with males are more likely to be
synthetically associated with sex-related effects. (D) Similarly, drugs that are preferentially
reported with relatively young or relatively old patients are more likely to be synthetically
associated with age-related effects. (E to H) Application of SCRUB removes synthetic
associations that result from disproportionate reporting with (E) disease indications, (F)
concomitant drug use, (G) sex biases, and (H) age biases.
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Fig. 2.
Systematic evaluation against three independent silver standards of drug-effect associations.
(A) Side effects mined from the package inserts. (B) Drug-effect pairs reported to the AERS
after the original download date. (C) Drug-effect pairs reported to the Canadian system
MedEffect. ROC curves for the empirical Bayes geometric mean (EBGM) (black) and a
model combining EBGM and the correction factor derived from the SCRUB algorithm
(aqua). In each case, including the correction term substantially improves the predictive
power of the algorithm.
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Fig. 3.
Implicit matching of covariates. (A) Biases from age. Average age differences between
cohorts of reports for those patients exposed to the drug and those who were not exposed
(controls). The average difference for the uncorrected (solid squares) and corrected (open
circles) nonexposed control reports is shown. Ideally, the difference between the two cohorts
of reports is zero. (B) Biases from sex. Difference in the proportion of males reported to be
exposed to the query drug versus those who were not exposed (controls). The difference for
the uncorrected (solid squares) and corrected (open circles) nonexposed reports is shown.
Ideally, this difference is zero.
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Fig. 4.
Predicting shared protein targets using drug-effect similarities. (A) The side-effect similarity
score between two drugs is linearly related to the number of targets that those drugs share.
(B) A scatter plot showing the relationship between the side-effect similarity score and the
number of shared targets for side effects derived from OFFSIDES (blue), SIDER (red), and both
combined (black). (C) ROC curve representing the ability of the side-effect similarity scores
to predict which pairs of drugs share targets. The best performance is reached by combining
both data sets.
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Fig. 5.
Drug repurposing using drug-effect similarities in OFFSIDES. (A) The side-effect similarity
score between two drugs is linearly related to the number of indications those drugs share.
(B) Scatter plot showing the relationship between the side-effect similarity score and the
number of shared targets for side effects derived from OFFSIDES (blue), SIDER (red), and both
combined (black). (C) ROC curve representing the ability of the side-effect similarity scores
to predict which pairs of drugs share indications. The best performance is reached by
combining both data sets.
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Fig. 6.
Interaction diagram depicting single-drug effects, drug-class effects, DDIs, and class-class
interactions for cardiovascular adverse events. Drugs are sorted clockwise around the ring
by the physiological system they treat. Drugs labeled by name are members of data-mined
DDIs. Within each physiological system, drugs are grouped into lower-order drug classes
according to structural similarity or treatment indication. These lower-order classes are
colored by their class-wide association with adverse cardiovascular effects (red for most
severe to blue for least severe). Each arc across the center represents one DDI according to
the data mining. The arc is colored red if the drug interaction is corroborated with evidence
from the EMRs and brown if the drugs are members of class-class interactions. The heat
map around the interior of the ring indicates the individual drug effects with the top 10
cardiovascular adverse events (arteriosclerosis, decreased arteriole pressure, chest pain,
difficulty breathing, heart attack, apoplexy, high blood pressure, coronary heart disease,
edema in extremities, cardiac decompression) (dark red for strong associations to white for
weak or no association).
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Fig. 7.
Kaplan-Meier curves showing the proportion of patients that had prolonged QT corrected
values after the start of drug therapy. The solid line represents patients who received both
thiazides and SSRIs, the dashed line represents patients who received only thiazides, and the
dotted line represents patients who received only SSRIs.
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