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We use semiconductor quantum dots, “artificial atoms,” to implement a scheme for deterministic genera-
tion of long strings of entangled photons in a cluster state, an important resource for quantum information
processing. We demonstrate a prototype device which produces strings of a few hundred photons in which
the entanglement persists over 5 sequential photons. The implementation follows a proposal by Lindner
and Rudolph (Phys. Rev. Lett. 2009) which suggested periodic timed excitation of a precessing electron
spin as a mechanism for entangling the electron spin with the polarization of the sequentially emitted pho-
tons. In our realization, the entangling qubit is a quantum dot confined dark exciton. By performing full
quantum process tomography, we obtain the process map which fully characterizes the evolution of the
system, containing the dark exciton and n photons after n applications of the periodic excitations. Our
implementation may greatly reduce the resources needed for quantum information processing.

The concept of entanglement is a fundamental property of quantum mechanics1 and an essential ingredient of proposals in
the emerging technologies of quantum information processing,2, 3 including quantum communication4, 5 and computation.6, 7

In many cases, these applications require multipartite entanglement, encompassing a large number of quantum bits (qubits).
Such entanglement is often very fragile and can be adversely affected, or even completely vanish, when one of the qubits
interacts with its environment or is lost from the system. A special class of quantum states exhibits a persistency of their
multipartite entanglement.8 The entanglement for this class of states is robust to adverse effects on a subset of the qubits. A
prominent example of such a quantum state is a cluster state8—a string of mutually entangled qubits. Cluster states serve as an
important resource for quantum computing, allowing its implementation solely via single qubit measurements.9 A photonic
implementation of cluster states enjoys many advantages, due to the non-interacting nature of photons which suppresses
decoherence effects, as well as the precise single qubit measurements provided by linear optics technology. Generating cluster
states is, however, a formidable task. Previously, cluster states of finite size have been demonstrated in trapped ions,10, 11 and
in continuous-variable modes of squeezed light.12 In addition, photonic cluster states have been obtained using frequency
downconversion techniques.13–16 Despite these demonstrations, the quest for obtaining a scalable, deterministic source of
cluster states is still underway. Here, we use quantum dots, “artificial atoms”, which are on-demand sources of both single
photons17 and entangled photon pairs18–20 to implement a scheme for deterministic generation of long strings of entangled
photons in a cluster state.21 We demonstrate a prototype device which produces strings of a few hundred photons in which the
entanglement persists over 5 sequential photons. Feasible improvements of the device provide a route for both determinism and
scalability. Our implementation thereby forms a building block for future quantum information processing developments such
as measurement-based quantum computation and quantum communication.

Our implementation is based on a proposal of Lindner and Rudolph.21 In their proposal, repeated timed optical excitations
of a confined electron in a single semiconductor quantum dot (QD) result in the formation of a cluster state composed of
the sequentially emitted single photons. The proposal utilizes the spin of the electron as a matter spin qubit, whose state is
entangled with the polarization of the emitted photon18, 22–25 resulting from the optical excitation. This excitation can, in
principle, be repeated indefinitely, while the precessing electron spin acts as an “entangler” and entangles the emitted photons
to produce a one dimensional cluster state.

We present a practical realization of this proposal, in which the QD-confined electron is replaced by a confined dark exciton
(DE).26–28 The DE is a semiconductor two level system, effectively forming a matter spin qubit (see the SM for more details).
The two ±2 DE spin projections on the QD symmetry axis ẑ form a basis, |±Z〉= |±2〉, for the DE space [Fig. 1(a) and (b)].
The DE’s energy eigenstates are |±X〉= (|+Z〉± |−Z〉)/

√
2, with an energy splitting ∆ε2 corresponding to a precession period

of TDE = h/∆ε2 ' 3 nsec.26, 27 In addition to the DE, our experiment utilizes two states of a biexciton (BiE)—a bound state of
two excitons—whose total spin projections on ẑ are either +3 or −3 with a precession period of TBiE = h/∆ε3 ' 5 nsec. We
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denote these states by |±3〉. The experimental protocol relies on the optical transition rules for the transitions |+2〉 ↔ |+3〉
and |−2〉 ↔ |−3〉, which proceed through right |R〉 and left |L〉 hand circularly polarized photons respectively,26, 27 in direct
analogy with the original proposal.21 The energy level diagram describing the DE, BiE, and the optical transition rules is
schematically summarized in Fig. 1(c).

We first present an idealized protocol for sequentially generating the cluster state. Before the protocol begins, the DE is
deterministically initialized in a spin eigenstate,

∣∣ψ init
DE
〉
= |−X〉, by a short π-area picosecond pulse.28 A π-area pulse transfers

the entire population from one quantum state to another. The protocol, which begins immediately after the initialization, consists
of repeated applications of a cycle. The cycle contains three elements: 1) a converting laser π-pulse, resonantly tuned to the
DE-BiE optical transition. The pulse is rectilinearly horizontally |H〉=

(
|R〉+ |L〉

)/√
2 polarized, and coherently converts

the DE population to a BiE population, 2) subsequent radiative recombination of this BiE, resulting in a DE in the QD and
emission of a photon, and 3) timed free precession of the DE spin. This cycle can be applied multiple times to generate an
entangled multiphoton cluster state. Fig. 1(d) and (e) illustrate the above procedure and its equivalent circuit diagram. One full
cycle of the protocol is indicated in the circuit diagram by a dashed rectangle.

The state generated by the above protocol is revealed by following the evolution of the system during the first three steps
after the initialization. In step (1), the horizontally polarized π-area pulse “converts” the DE coherent state into a coherent
BiE state: |ψ〉BiE =

(
|+3〉− |−3〉

)/√
2. In step (2), radiative recombination of this BiE results in an entangled state of the

emitted photon polarization and the DE spin,27 |ψ〉DE−1 =
(
|+Z〉 |R1〉− |−Z〉 |L1〉

)/√
2, where |R1〉 (|L1〉) is the first photon

right (left) hand circular polarization state. The excitation and subsequent photon emission, are represented in Fig. 1(e) by a
ĈNOT gate between the DE and the emitted photon. In step (3), the DE precesses for 3/4 of a precession period. The precession
is represented by the single qubit gate Ĝ (see SM) in Fig. 1(e). The sequential application of the ĈNOT and Ĝ gates forms one
full cycle in our protocol. In the beginning of the next cycle, the DE-photon state is given by

|ψ〉DE−1 =
[(
|+Z〉+ i |−Z〉

)
|R1〉−

(
|−Z〉+ i |+Z〉

)
|L1〉

]/
2. (1)

The above cycle is now repeated: re-excitation26, 27 to the BiE state, recombination of the second BiE and timed precession
associated with the Ĝ gate. This results in a second photon, whose polarization state is entangled with that of the first photon
and the spin of the remaining DE, yielding the tri-partite state

|ψ〉DE−2−1 =
(
|+Z〉

[(
|R2〉− |L2〉

)
|R1〉− i

(
|R2〉+ |L2〉

)
|L1〉

]

+ |−Z〉
[
i
(
|R2〉+ |L2〉

)
|R1〉+

(
|R2〉− |L2〉

)
|L1〉

])/
2
√

2.
(2)

Repetition of the re-excitation–emission and subsequent precession cycle generates a one dimensional string of polarization-
entangled photons in a cluster state, as shown in the equivalent circuit diagram of Fig. 1(e). Here, we report on the successful
realization of the above protocol in which the cycles were implemented with fidelity of 0.81 to the ideal cycle described above
(see full details below).

The DE has many advantages as an entangler for sequential generation of entangled photons. It exhibits a long lifetime
∼ 1000 nsec and a long coherence time T ∗2 ∼ 100 nsec.27 In addition, the DE spin state can be deterministically written in
a coherent state using one single short optical pulse,27, 28 and can be reset (i.e., emptied from the QD) using fast all optical
means.29 Furthermore, the DE to BiE excitation resonance occurs at a higher energy than the BiE to DE main emission
resonance, thereby facilitating accurate background-free single photon detection (see Methods).

In practice, however, several types of imperfections must be considered.21 The dominant imperfection originates from
the finite BiE radiative lifetime, trad ' 0.33 nsec.27 Since the DE and BiE precess during the emission process, the purity of
the polarization state of the photons is reduced.21 Another type of imperfection is the decoherence of the DE spin during its
precession, resulting from the hyperfine interaction between the DE and nuclear spins in the semiconductor.21 Therefore, to
ensure generation of a high quality cluster state, three important parameters should be kept small: the ratio between the BiE
radiative time trad and the DE and BiE precession times TDE and TBiE, and the ratio between the DE precession time and its
decoherence time T ∗2 . In our system, trad/TDE ∼ trad/TBiE ∼ 0.1 and TDE/T ∗2 ∼ 0.04. Since all these parameters are much less
than unity, the implemented protocol has high fidelity to the ideal one, as we now show.

The demonstration that our device generates an entangled multi-photon cluster state is done in two complementary steps.
First, we determine the non-unitary process map acting in each cycle of the protocol, which replaces the ĈNOT and Ĝ unitary
gates of Fig. 1(e). The process map is a linear map from the initial DE qubit’s space to the space of two qubits comprising of
the DE and the newly emitted photon. It fully characterizes the evolution of the system in each cycle of the protocol, thereby
completely determining the multi photon state after any given number of cycles. Then, we verify that the three qubit state,
consisting of the DE and two sequentially emitted photons, generated by applying two cycles of our protocol is a genuine three
qubit entangled state. We also quantify the degree of entanglement between each of the three pairs of qubits by a measure
called “localizable entanglement” (see Methods).
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Figure 1. Schematic description of the cluster state generator. a) The QD containing a DE in a microcavity. The optical axis
(indicated by a blue arrow for incoming laser light and a magenta arrow for outgoing emitted light) is parallel to the QD
symmetry axis. b) Bloch sphere representation of the DE spin and photon polarization qubits. The basis for the DE and photon
states used throughout this work are defined in red and blue, respectively. c) The DE states (|±2〉= |±Z〉), BiE states (|±3〉),
and optical transition rules between the states. Upwards arrows represent resonant excitation. Downwards arrows represent
photon emission. The gray circular arrows represent precession of the DE and BiE states with periods of TDE = h/∆ε2 ' 3 nsec
and TBiE = h/∆ε3 ' 5 nsec, respectively. d) The sequence of transitions required to generate a cluster state using the DE. The
green arrow represents the initialization pulse that generates a DE in spin eigenstate from an empty QD. Repeated timed
excitations of the DE to the BiE (blue arrows) result in repeated emission of single photons (magenta arrows). Emission of a
photon leaves a DE in the QD, which can then be re-excited. For the correct inter-pulse spacing, the photons and the DE form
an entangled cluster state. e) The corresponding schematic circuit representation of the resulting one-dimensional string of
polarization entangled photons (after Ref.21). Here, each horizontal line represents a qubit. The uppermost line represent the
DE and the lines below represent emitted photons ordered by their emission time. |0〉 and |1〉 represent DE spin and photons
polarization states (for the circuit diagram representation, the photons are initialized in the fiducial state |0〉). The initialization
of the DE is represented by the gate Û . The timed precession of the DE is represented by the single qubit gate Ĝ = exp(i π

4 σ̂x)

gate (σ̂x is the corresponding Pauli matrix), and excitation-emission is represented by a ĈNOT gate (vertical line) between the
DE and the emitted photon. The area enclosed in the dashed box represents one full unitary cycle in the ideal protocol. In the
experiment, this unitary cycle is replaced by the process map (see text).
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To measure the process map, we perform quantum process tomography using the following procedure. We first initialize the
DE in 4 different states,

∣∣ψ init
DE
〉
= |+X〉, |−X〉, |−Y 〉, and |+Z〉. The states are defined in Fig. 1(b). We note that in reality the

initialization is in a partially mixed state (see SM). For each DE initialization, we apply one cycle of the protocol, and perform
correlation measurements between the resulting emitted photon polarization and the DE spin. In these correlation measurements,
we project the emitted photon on the polarization states |H〉, |V 〉, |D〉, and |R〉, while making projective measurements of the
DE’s spin state. For the DE projective measurements, we apply either a right or a left hand circularly polarized π-area pulse at
the end of the cycle, which due to the optical selection rules (Fig. 1c) deterministically excites either the |+Z〉 or the |−Z〉 DE
to the BiE, respectively. Detection of an emitted photon following this excitation projects the DE spin on the states |+Z〉 or
|−Z〉 at the time of the pulse. To project the DE onto the spin states |−Y 〉 or |+Y 〉 at the end of the cycle, we rotate the DE
state by delaying the pulse by a quarter of a precession period. This method allows us to project the DE on the states: |±Z〉 and
|±Y 〉, but not on the |±X〉 states. Therefore, by the above two photon correlations, we directly measure only 48 out of the
required 64 process map matrix elements.

To complete the quantum process tomography we use three photon correlation measurements. For each of the 4 initializations
of the DE, we apply two cycles of the protocol. We then perform full polarization state tomography between the resulted two
emitted photons, while projecting the spin of the remaining DE on |±Z〉 and |∓Y 〉 as discussed above. The two and three
photon correlations, which together uniquely determine all the 64 matrix elements of the process map, are fully described in the
Methods section and SM.

Figure 2. The process map Φ which describes the evolution of the system in each cycle of the protocol. Φ is a completely
positive and trace preserving map from the DE one qubit space to the two qubit space comprised of the DE and the emitted
photon, while acting trivially on all other photons in the state. We use the convention Φ

(
ρ̂(DE)

)
= ∑αβγ Φγ

αβ ρ(DE)
γ σ̂α σ̂β , where

ρ̂(DE) = ∑γ ρ(DE)
γ σ̂γ is the density matrix which describes the DE state. The sums are taken over α,β ,γ = 0,x,y,z, where σ̂0 is

the identity matrix and σ̂x,y,z are the corresponding Pauli matrices. The 64 real parameters Φγ
αβ , thus fully specify Φ.

(a) The process map as measured by quantum process tomography. The values of Φγ
αβ , are presented such that the rows

correspond to the indices αβ , and the columns correspond to the index γ .
(b) The unitary process map corresponding to the ideal protocol as in Fig. 1(e).
(c) The process map as calculated from a theoretical model with independently measured parameters (see SM).

In Fig. 2(a) we present the measured process map, and in Fig. 2(b) we present the process map corresponding to the ideal
protocol. The fidelity (see method section for definition) between the measured and ideal process map is 0.81±0.1. Fig. 2(c)
gives the process map obtained by modeling the evolution of the system, using a master equation approach with independently
measured system parameters (see SM). The fidelity between the model and the measured process map is 0.92±0.1. These
fidelities indicate that our device is capable of generating photonic cluster states of high quality.
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Using the measured process map, we can now describe the state ρ̂N+1, consisting of DE and N photons, following successive
applications of N protocol cycles. An important method to quantify the multipartite entanglement in ρ̂N+1 is to consider the
maximal degree of entanglement between two chosen qubits once the rest of the qubits are measured. The resulting quantity
is referred to as the localizable entanglement (LE) between the two chosen qubits.30 In an ideal cluster state, the localizable
entanglement is maximal: any two qubits can be projected into a maximally entangled state by measuring the rest of the qubits.
For example, consider the three qubit state described by Eq. (2). By projecting the DE on the |+Z〉 state, we obtain two photons
in a maximally entangled state:

|ψ〉2−1 =
[(
|R2〉− |L2〉

)
|R1〉− i

(
|L2〉+ |R2〉

)
|L1〉

]/
2

=
(
|V2〉 |R1〉+ |H2〉 |L1〉

)/√
2i,

(3)

where |H2〉 and |V2〉 are the horizontal and vertical rectilinear polarization state of the second photon.
To compute the LE between two qubits in the state ρ̂N+1, we obtain their reduced density matrix after the rest of the qubits

have been measured in an optimized basis. The degree of entanglement between the two qubits is then evaluated by a standard
measure: the negativity31 N of the reduced density matrix. For N ≥ 0 the qubits are entangled, and N = 1

2 corresponds to
maximally entangled qubits. Full definitions for the negativity and LE are given in the Methods section.

In Fig. 3, we plot using blue circles the LE in the state ρ̂N+1, obtained from the measured process map, as a function of the
distance between two qubits in the string. As expected, the LE in the one dimensional state ρ̂N+1 decays exponentially with the
distance between the chosen 2 qubits.30 The LE, which characterizes the robustness of the multipartite entanglement in the
state produced by our device, is shown to persist up to 5 qubits.

Next, we used the measured correlations to directly obtain the LE between the different qubits. First, we consider the
entanglement between the DE and the emitted photon after one application of the cycle. Using the first set of DE-photon
correlation measurements we obtain a lower bound of N ≥ 0.20±0.04 for the negativity of their density matrix. The obtained
lower bound is marked as an orange data point in Fig. 3. Second, we consider the three qubit state obtained after two applications
of the protocol (comprising of the DE and the two emitted photons). We measure the density matrix of the two emitted photons,
while projecting the DE on the state |+Z〉. The negativity of this measured density matrix, N = 0.24±0.05, is marked by the
yellow data point in Fig. 3. The measured density matrix has fidelity of 0.81±0.1 with the maximally entangled state expected
from the ideal case as given by Eq. (3). Third, a lower bound on the LE between the DE and the first emitted photon, when the
2nd emitted photon is projected on the optimized state ei(0.1)σ̂z |V 〉, is extracted from our three photon correlations. The value of
this lower bound, N ≥ 0.09±0.06, is marked in purple in Fig. 3. Note the good agreement between the LE obtained directly
and the one obtained using the process map. The full set of measurements leading to the above values of N is given in the SM.

Finally, we use the measured DE-photon-photon correlations to directly verify that the 3 qubit state generated by our device
exhibits genuine 3 qubit entanglement.25 Since we did not project the DE spin on the |±X〉 states, the density matrix of the 3
qubits cannot be fully reconstructed.22–24 However, our measurements are sufficient to obtain bounds for the fidelity between
the 3 qubit state ρ̂3 produced by our device and the 3 qubit pure cluster state |ψ〉 of Eq. (2), expected from the ideal process
map. The value F = 〈ψ| ρ̂3 |ψ〉 that we obtain is 0.54 ≤F ≤ 0.69. The threshold for genuine 3 qubit entanglement32 is
F > 1/2 . The experimentally measured lower bound on F is larger by more than one standard deviation of the experimental
uncertainty from this threshold. For full details on the calculation of F , see the SM.

Both the quality of the state produced by our device and the correlation measurements can be significantly improved in
future experiments. Our demonstration and analysis are based on high repetition rate (76 MHz) deterministic writing of the
entangler and on time tagged three photon correlation measurements. Direct measurements of higher multi-photon correlations
are very challenging in the current experimental setup, due to its limited light harvesting efficiency, where only about 1 in 700
photons are detected (see SM). The limitation is mainly due to the low quantum efficiency of single photon silicon avalanche
photodetectors (< 20%) and the low light collection efficiency from the planar microcavity (< 20%). Both can, in principle,
be significantly improved (see33 and,19 respectively). In addition, the current length scale of the LE is mainly limited by the
radiative lifetime of the BiE. This lifetime can be significantly shortened by designing an optical cavity to increase the Purcell
factor of the device,19 for this particular transition, only.

In conclusion, we provide an experimental demonstration of a prototype device for generating on demand, one-dimensional
photonic cluster states.21 The device is based on a semiconductor QD and utilizes the spin of the DE as an entangler. Our
current prototype device can produce strings of a few hundred photons in which the localizable entanglement persists over 5
sequential photons. Further feasible optimizations of our device can enable faster and longer on-demand generation of higher
fidelity cluster states. Additionally, by using two coupled QDs, it is possible to generate a two-dimensional cluster state in a
similar manner.34 A two dimensional cluster state carries a promise for robust implementation of measurement-based quantum
computation.35 These may propel substantial technological advances, possibly bringing practical, widespread implementations
of quantum information processing closer.
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Figure 3. The localizable entanglement (LE) in the state generated by our device. The horizontal axis indicates the distance d
between two qubits in the string (the qubits are ordered according to the labeling convention in Fig 1(e)), and the vertical axis
corresponds to the negativity of the reduced density matrix of the two qubits. The blue circles correspond to N LE

m,m+d in the
state ρ̂N+1 obtained using the measured process map (see Methods section for definition of the LE). Here we use m = 1 and
d = N, but other values for m and d ≤ N +1−m yield similar results. The dashed lines represent the best fit to an exponential
decay law, N LE

m=1,m+d = N0 exp(−d/ξLE). The blue shaded area represents one standard deviation uncertainty in the
measurements determining the process map. The orange, yellow and purple data points represent the directly measured LE in
two and three qubit strings, where the color coded inset describes for each data point the pair of qubits between which the LE is
measured. The yellow and purple data points correspond to a lower bound on the negativity. To obtain the yellow (purple) data
points, we project the DE (2nd photon) on the state |Z〉 (ei(0.1)σ̂z |V 〉).

6/11



Methods
Experimental Setup
Fig. 4 describes the experimental procedures used to measure the process map by quantum tomography. The figure specifies the
energy levels of the DE and BiE, the optical transitions between these levels, and the pulse sequences which we use in the
measurements. Excitation pulses are indicated by upward straight arrows, subsequent emissions are indicated by downward
straight arrows, and non-radiative relaxations by gray downward curly arrows. The various arrows are color-coded according to
their wavelengths, where green represents transition from the vacuum to the excited DE (DE∗) at ∼ 954 nm. Blue represents
excitation from the DE to the BiE at ∼ 959 nm, and magenta represents emission from the BiE to the excited DE at ∼ 970 nm.
We note that there are two possible BiE to DE recombination paths. The oscillator strength for the transition that leaves an
excited DE at∼ 970 nm is two orders of magnitude stronger than the oscillator strength for the transition that leaves a ground DE
state in the QD.27 Therefore, the BiE to ground DE emission at∼ 954 nm is negligible and detected photons at 970 nm only, are
used in the polarization sensitive quantum tomography correlation measurements. We note that coherent superpositions of the
DE and BiE, which are not eigenstates of their respective two level system, precess in time with precession times TDE ≈ 3 nsec
and TBiE ≈ 5 nsec. These precession times are quite slow relative to the radiative lifetime of the BiE, trad = 0.33±0.03 nsec,
the non-radiative spin preserving phonon assisted relaxation time of the excited DE tnon-rad = 0.07±0.01 nsec, and the duration
of the exciting laser pulse of 12 psec.

Fig. 4a) schematically describes the experiment for measuring the process map by applying the protocol once and then
using two photon polarization sensitive correlation measurements, and Fig. 4b) describes the measurements when the protocol
is applied twice and three photon correlations are used. The first pulse in both figures is shown as an upward solid green
arrow. This pulse is used for on-demand initialization of the DE in four states: |+X〉, |−X〉, |+Y 〉 and |+Z〉, as described in
Fig. 1b). Following rapid non-radiative relaxation tnon-rad, a second |H〉 polarized π-area pulse—marked by an upward blue
arrow—converts the DE eigenstate into a BiE eigenstate. Downward purple arrow represents a photon emission from the BiE,
and formation of an excited DE state. Following this emission, a non-radiative spin preserving relaxation of the DE to its ground
level leaves an entangled state of the DE with the polarization of the emitted photon. The DE then freely precesses for 3/4 of a
precession period. This 3 fold increase in the precession time relative to the original proposal21 is required due to the limited
temporal resolution of the single photon detectors (≈ 0.4 nsec). The excitation, relaxation, emission and free precession of the
DE forms the repetitive process map of our protocol. In Fig. 4b), a second linearly polarized π-area converting pulse is then
applied for a second time, following free precession of the DE. Thus establishing two applications of the process map. In both
cases, the emitted photons polarization are projected on four polarization states: |H〉, |V 〉, |D〉 and |R〉 as described in Fig. 1b).

In both cases, the remaining DE spin is projected on 2 spin directions, |±Y 〉, and |±Z〉 only, using the following procedures:
We use either |R〉, or |L〉 polarized converting pulse, shown as a solid upwards blue arrow. Detection of an emitted photon, after
this excitation, marked as downward dashed purple arrow, projects the DE spin on the |+Z〉 or |−Z〉 state at the time of the laser
pulse. This time, T , can be varied, as indicated by the horizontal double arrow in a) and b). Setting T = 3

4 TDE therefore projects
the DE spin on the |+Z〉 and |−Z〉, bases, while setting T = 1

2 TDE project the DE spin on the |+Y 〉 and |−Y 〉 spin states.
The broad downward orange arrow, which precedes the sequence of pulses represents a depletion pulse. The depletion

pulse empties the QD from the DE, and prepares it for a deterministic generation by the first pulse. This sequence of pulses
repeats itself at a rate of 76 MHz. At this high rate, the depletion efficiency is less than that reported in Ref.,29 resulting in
measured fidelity of initialization of the DE to a pure state of 0.78±0.04 (see SM). The optimal time separation for cluster state
generation is found by experimental tuning the pulse to pulse separation resulting in excellent agreement with our theoretical
model (see SM).

The emitted photons are detected by four different detectors. Each detector monitors the light at 4 different polarizations,
independently (see Fig. S3 in the SM). This arrangement facilitates efficient polarization tomography between the detected
photons.36 Fig. 4(c) and (d) show the time dependent single photon emission resulting from the recombination of the BiE
during one repetition of the experiments. Fig. 4(e) and (f) show the time dependent degrees of rectilinear, diagonal and circular
polarizations of the signal in Fig. 4(c) and (d), respectively. We note, as expected, that emission which follows linearly polarized
conversion is unpolarized, while emission which follows circularly polarized conversion is circularly polarized.

Measures of Entanglement
Negativity
Consider a density matrix describing the state of two qubits ρ̂ = ∑ρmµ;nν |m〉〈n|⊗ |µ〉〈ν |, where the labels m,n correspond to
qubit A, and µ,ν belong to qubit B, and the sum is over the labels m,n,µ,ν = 0,1. The partial transpose of ρ̂ is defined by
ρ̂TP = ∑ρmµ;nν |m〉〈n|⊗ (|µ〉〈ν |)T = ∑ρmν ;nµ |m〉〈n|⊗ |µ〉〈ν |. The state ρ̂ is entangled if and only if any of the eigenvalues
of ρ̂TP , is negative.31 Denoting by λ j the 4 eigenvalues of ρ̂TP , the negativity37 N is defined as N (ρ̂) = 1

2

(
∑ j |λ j|−λ j

)
, i.e.,

N (ρ̂) is the sum of the absolute value of the negative eigenvalues of ρ̂TP . The negativity measures the degree of entanglement
in ρ̂ , where N = 0 corresponds to an unentangled state, and N = 1

2 to a maximally entangled state.
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Localizable Entanglement
Given a state ρ̂N of N qubits, we define the localizable entanglement 30 (LE) of two qubits n and m as the maximal negativity
N of their reduced density matrix obtained after performing projective single qubit measurements on all the other N−2 qubits.
We denote by M a choice for the basis for the projective measurements, and by s the possible outcomes of the measurements.
For a specific M and s, the reduced density matrix between qubits n and m is given by

ρ̂(M ,s)
n,m =

1
ps

Tr j 6=m,n

[(
∏

j 6=m,n
P̂j

)
ρ̂N

]
.

In the above, the basis M and the outcomes s correspond to the sequence of projections ∏ j 6=m,n P̂j, where P̂j =
∣∣s j
〉〈

s j
∣∣

is a projector acting on qubit j. Note that all qubits are projected except for qubits n and m. Likewise, the partial trace
is taken over all qubits except photons m and n. Finally, ps is the probability to obtain the measurement outcome s, given
by ps = Tr

[
∏ j 6=m,n P̂jρ̂N

]
. The average localizable entanglement between the qubits n and m, maximized over all possible

measurement basis is then given by30

N LE
n,m (ρ̂N) = max

M
∑
s

psN
(

ρ̂(M ,s)
n,m

)
.

Fidelity
The fidelity F between two Hermitian positive matrices A and B is defined as38

F (A,B) = Tr
[√√

BA
√

B
]2/(

Tr [A] Tr [B]
)
.

The fidelity between two quantum states ρ̂1 and ρ̂2 is given by F (ρ̂1, ρ̂2). The fidelity between two process maps Φ1 and Φ2 is
given by F

(
CΦ1 ,CΦ2

)
, where CΦ is the Choi matrix corresponding to Φ (see SM for the definition of the Choi matrix).
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Figure 4. a) [b)] Energy levels, optical transitions, and the pulse sequence for measuring the process map by applying the
protocol once [twice] using two [three] photon correlations. The first pulse, shown as upward solid green arrow, is used to
initialize the DE in one of four spin states. The downward curly arrow represents non-radiative relaxation of the DE to its
ground level. The second pulse, marked by an upward blue arrow, is an |H〉 polarized π-area pulse, which converts the DE state
into a BiE state. The downward purple arrow represents the photon emission from the BiE to an excited DE level (DE∗). A
non-radiative spin preserving relaxation of the DE∗ to its ground level follows this emission. The DE then freely precesses for
3/4 of a precession period. The conversion, emission, relaxation and precession complete one full cycle of the protocol. A
second linearly polarized π-area converting pulse and free DE precession is applied to the QD in b) as a second cycle. The last
converting pulse, shown also as a solid upwards blue arrow, is |R〉 polarized, it is followed by photon emission, marked as
downward dashed purple arrow. Detection of this photon projects the DE spin at the time of the polarized laser pulse on the
|+Z〉 state. This time, T , can be varied, as indicated by the horizontal arrow in a) and b), permitting thus DE spin projection on
3 out of 4 required, independent states. The broad downward orange arrow, which precedes the sequence of pulses, represents a
depletion pulse at ∼ 941 nm. This pulse empties the QD from the DE,29 and prepares it for a deterministic generation of the
DE by the first pulse. This sequence of pulses repeats itself at a rate of 76 MHz. Note that arrow colors match Fig. 1b).
c) [d)] The emitted BiE photon count rate as a function of time as measured by each one of the four detectors. Correlated
photon detections during the two [three] emission windows resulting from the two [three] converting pulses are used for the
polarization tomography measurements.
e) [f)] The polarization degree as a function for the time of PL signal depicted in c) [d)]. Note that emission which follows
linearly polarized pulsed conversion is unpolarized, while emission which follows circularly polarized pulsed excitation is
circularly polarized.
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1 Sample Description
The sample used in this work was grown by molecular beam epitaxy on a (001) oriented GaAs substrate. One layer of
strain-induced InxGa1−xAs quantum dots (QDs) was deposited in the center of a one-wavelength microcavity. The microcavity
formed by two unequal stacks of alternating quarter-wavelength layers of AlAs and GaAs. The thinner stack was deposited on
top of the QD layer, thus facilitating prefered light emission towards the sample surface. The height and composition of the
QDs were controlled by partially covering the InAs QDs with a 3 nm layer of GaAs and subsequent growth interruption.1 To
improve photon collection efficiency, the microcavity was designed to have a cavity mode which matches the QD emission due
to ground-state e-h pair recombinations. The sample structure is schematically described in Fig. S1. During the growth of the
QD layer the sample was not rotated, resulting in a gradient in the density of the formed QDs.1 The estimated QD density in
the sample areas that were measured is 108 cm−2; however the density of the QDs that emit in resonance with the microcavity
mode is much lower.2 Thus, single QDs separated by a few tens of micrometers were easily located by scanning the sample
surface during confocal photoluminescence (PL) measurements.

Figure S1. Schematic description of the studied sample. DBR indicates a distributed Bragg reflecting mirror.

2 The Dark Exciton Physical System
An exciton is a fundamental semiconductor excitation in which one electron from the full valence band (formed of atomic
orbitals with unit angular momenta) is excited to the empty conduction band (formed of atomic orbitals with zero angular
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momentum). The missing electron is commonly called a “hole.” The hole has positive charge and opposite angular momentum
and spin to that of the missing electron.3 In QDs, due to the strain and quantum size effects, the lowest energy valence electrons
(highest energy holes) have parallel spins and angular momentum.3 Therefore while conduction electrons have a total spin
projection of either +1/2 or −1/2 on the QD symmetry axis (ẑ), those of the holes are either +3/2 or −3/2.

If the electron and hole spins are antiparallel, they can recombine radiatively by photon emission (the excited electron
simply ”returns” to the missing electron state in the valence band). The exciton is called “bright”, it lives for a short time
(∼ 0.5 nsec), and it has integer spin projections of either +1 or −1 on the symmetry axis. If, however, the electron and hole
spins are parallel, the exciton is predominantly optically inactive. It is called “dark” (DE), has either +2 or −2 integer total spin
projections and it lives orders of magnitude longer (∼ 1 µsec4, 5) than the BE. The exchange interaction between the electron
and hole removes the degeneracy between the bright and dark excitons (∼ 300 µeV in this case), and also between the two
spin eigenstates of the bright (∼ 34 µeV) and dark (∼ 1.4 µeV) exciton.6 Notice that the DE eigenstates, in increasing energy
order, are the antisymmetric (|+2〉− |−2〉)/

√
2 and symmetric (|+2〉+ |−2〉)/

√
2 coherent superpositions of its spin states

|±2〉= |±Z〉7, 8 (See Fig. S2 and Fig. 1 in the main text).
The lowest energy optical excitation of the DE results in a formation of a biexciton (BiE), composed of two electron-hole

pairs. The pair of electrons forms a spin singlet in their ground level while the holes form a spin-parallel triplet with one hole in
the QD ground level and one in the first excited level. Thus, the BiE forms a two level system with spin states |±3〉. The BiE
has a relatively short lifetime (≈ 0.33 nsec) determined by the efficient radiative recombination of an electron with a ground
level hole. This recombination results in an emitted photon at 970 nm and an excited DE (DE∗) in the QD. The recombination
of an electron with the excited level hole is about 50 times less efficient. This is due to the reduced overlap between the electron
and hole envelope wavefunctions of different spatial symmetries. The DE∗ then relaxes non-radiatively to the ground DE
level within ∼ 0.07 nsec by emitting a spin-preserving phonon.8 The DE and the BiE levels, their spin wavefunctions and the
transitions between these levels are illustrated in Fig. S2.

Figure S2. Schematic description of the DE-BiE energy levels, spin wavefunctions and optical transitions between these
levels. In the spin wavefunctions ↑ (⇓) represents spin up (down) electron (hole) with spin projection of +1/2 (-3/2) on the QD ẑ
axis. Blue (red) color in the spin wave functions represents carrier in the ground (excited) energy level. The vertical downward
(upward) arrows denote resonant optical emission (excitation) transition, where R (L) stands for right (left) hand circular
polarization. The colors of the optical transitions match these of Fig. 1 and Fig. 4 in the main Letter. Thicker arrows represent
stronger optical transitions. Curly arrows represent non-radiative spin-preserving hole relaxation.

3 Experimental Methods
The sample was placed inside a sealed metal tube cooled by a closed-cycle helium refrigerator maintaining a temperature
of 4 K. A ×60 microscope objective with numerical aperture of 0.85 was placed above the sample and used to focus the
light beams on the sample surface and to collect the emitted PL. Pulsed laser excitations were used. The picosecond pulses
were generated by two synchronously pumped dye lasers in repetition rate of 76 MHz. The temporal width of the dye lasers’
pulses was ∼ 12 psec and their spectral width ∼ 100 µeV. Light from a continuous wave external cavity laser, modulated by
an electro-optic modulator, synchronized with the dye lasers, was used to produce the depletion pulses of a few nanosecond
duration.9 The energy of one of the picosecond long laser pulses was independently tuned to resonantly excite (write) the
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DE4 while the energy of the other one was tuned to the DE-biexciton (BiE) optical transition for excitation of the BiE (for
converting and DE spin projection). The latter was divided into 3 different beams. The timing of the four picosecond long
pulses was set by computer controlled motorized delay lines. The polarizations of the pulses were independently adjusted using
polarized beam splitters (PBS) and three pairs of computer-controlled liquid crystal variable retarders (LCVRs). The collected
PL was equally divided into 2 beams by a non-polarizing beam splitter (NPBS). Two pairs of LCVRs and a PBS were then
used to analyze the polarizations of each beam. Thus, the emitted PL was divided into four beams, allowing selection of two
independent polarization projections and their complementary polarizations. The polarization projected PL from each beam
was spectrally analyzed by either a 1 or 0.5 meter monochromator and detected by a silicon avalanche photodetector coupled
to a PicoQuant HydraHarp 400™ time-correlated single photon counter synchronized with the pulsed lasers. This way the
arrival times of four emitted photons were recorded relative to the synchronized laser pulses. A special software package was
developed in order to handle the data acquisition on-line. In addition, a cooled charged coupled array detector could be used for
temporally integrated spectral analysis. The experimental system is schematically described in Fig. S3.

The overall detection efficiency of the system was about 1 photon in 700 (integrated over the four detectors).10 Thus, at a
repetition rate of 76 MHz, we detected about 100000, 150, and 0.2 one, two and three photon events per second, respectively.
An event here is a detection of a photon (a “click” in a detector) during a 13.2 nsec single period of the 76 MHz repetition rate.

In Fig. S4, we present the time-resolved PL signal for (a) one-photon events, (b) two-photon events, and (c) three photon
events for summation over all the polarization combinations required for the quantum tomography. The time resolved BiE PL
emission as seen in one of the four detectors is presented in Fig. S4(a). The signal at negative times results from the depletion
pulse,9 which empties the QD from the DE as evident from the vanishing signal at t = 0. We set t = 0 to the time of arrival
of the DE initialization pulse (green arrows in Fig. 4(a) and (b) in the main paper). The emission, which results from the
sequential two converting (solid purple arrows in Fig. 4(b) in the main paper) and one projective measurement (dashed purple
arrow in Fig. 4(b) in the main paper) pulses, is observed at positive times. In Fig. S4(b) and (c) temporally correlated two and
three photon events are observed as dense areas in which two and three detectors, respectively, clicked during the same period.
Statistics for the polarization tomography measurements are obtained from the main two and six dense regions in (b) and (c) by
taking into account the temporal order by which the two and three photons were detected, respectively. The probability that
two photons are emitted during one conversion pulse is measured to be 1.8%. Such low probability has no influence on the
conclusions drawn in this work.

4 Theoretical Model
We used a Markovian master equation model to describe the evolution of the density matrix ρ̂ . The equation takes the form
d
dt ρ̂ =− i

h̄ [H , ρ̂]+L [ρ̂], where H is the free Hamiltonian describing the system and L (ρ̂) is the Lindblad superoperator
describing the radiative decay and decoherence processes.

In the following paragraphs we will describe (i) the initialization process of the DE; (ii) the excitation process from the DE
to the BiE; (iii) the free evolution, decay, and decoherence of the system; and (iv) the combination of several protocol cycles
required for generating a cluster state of an arbitrary length. Here, each cycle contains an excitation pulse of the DE to the BiE
and the subsequent decay and temporal evolution, as depicted in Fig. S6.

4.1 Initialization and Reset Efficiency for the DE
We initialize the DE using a resonant picosecond-long polarized pulse to the excited dark exciton state (DE∗).4 The DE∗ then
decays non-radiatively within 0.07 nsec, by spin preserving acoustic phonon emission to the ground DE state, while retaining
its coherent state. Thus, we effectively initializing the DE state. The state in which the DE is initialized in the experiment is
described in our model by: ρ̂ init

DE = p |ψ init
DE 〉〈ψ init

DE |+(1− p) 1
2 I, where I is the identity matrix, and p is the probability of ρ̂ init

DE to be
in the pure state |ψ init

DE 〉 dictated by the polarization of the initialization pulse.4 For example, |ψ init
DE 〉= 1√

2
(|+Z〉− |−Z〉) = |−X〉,

in the protocol for cluster state generation (Fig. 1 in the main Letter). Thus, 1− p describes the probability that our depletion did
not result in an empty QD, and the remaining DE is in a totally mixed state. The depletion efficiency is deduced by comparing
the population of the DE between the beginning and the end of the depletion pulse. We obtained p = 0.72. We note that the
initialization probability in the current experiment is lower by about 20% than that achieved in Refs.4, 9, due to the 8 fold
increase in the repetition rate reported here. The increase in the repetition rate is required for obtaining the needed statistics for
the three photon correlations.

4.2 Excitation Pulse
We now describe the model of the population transfer from the DE to the BiE using a short excitation pulse in a single cycle.
The free Hamiltonian used for describing the unitary evolution of the system is given by H2⊕H3, where H2 =

1
2

(
0 h̄ω2

h̄ω2 0

)

acting on the DE states |±2〉 ≡ |±Z〉, and H3 =
1
2

(
0 h̄ω3

h̄ω3 0

)
acting on the BiE states |±3〉. Here h̄ω2 = ∆ε2 and h̄ω3 = ∆ε3 are
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Figure S3. Schematic description of the experimental setup. NPBS, non-polarizing beam splitter; PBS, polarizing beam
splitter; CCDL, computer controlled optical delay line; M, mirror; DM, dichroic mirror; TCSPC, Time correlated single photon
counter; MC, monochromator; OBJ, microscope objective; LCVR, liquid crystal variable retarder; Dn, detector n; CW,
continuous wave; FG, function generator; EOM, electro-optic modulator

.
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Figure S4. Simultaneously measured time-resolved (a) one-photon, (b) two-photon and (c) three-photon events, where the
number of detected photons per time bin of 0.33 nsec. for each detector is shown as (a) the ordinate, (b) and (c) the false color
scale. ∆t0,n represents the time difference between the clock pulse and detection of a photon on the n-th detector, in units of
nsec. For clarity, in (c) the threshold was set to 7 counts per three dimensional temporal bin. For each additional detection
channel, the number of detected events is reduced by a factor of ∼ 1/700.
The three peaks in (a) correspond to detections of emitted photons after each of the respective excitation pulses. The two main
dense areas in (b) correspond to detected two-photon events, during one period of the 76MHz experiment. The upper-left
(lower-right) dense area corresponds to events in which detector #1 (#2) detects a photon first and detector #2 (#1) detects a
photon second. The four additional dense areas correspond to events in which a photon from the third pulse was detected.
Similarly, the six main dense areas in (c) correspond to detection of three photon events during one period of the 76MHz
experiment by three detectors.

the energy splittings of the DE and BiE eigenstates, respectively. Note that the emitted photons do not change their polarization
state during the QD free evolution. During the excitation pulse the following Hamiltonian was used to describe the pulse
interaction with the QD:

HP =
1
2




+∆ h̄ω2 2h̄ΩR(t) 0
h̄ω2 +∆ 0 2h̄ΩL(t)

2h̄ΩR(t) 0 −∆ h̄ω3
0 2h̄ΩL(t) h̄ω3 −∆


 , (1)

where ∆ = hc/λ − (ε3− ε2) = 0 is the energy detuning of the resonant pulse, λ is the excitation wavelength, and ε3 and ε2
are the energies of the BiE and DE, respectively; ΩR(t) and ΩL(t) describe the temporal shape of the right- and left-hand
circular polarization components of the Θ = π-area pulse. We assume a Gaussian pulse with width of h̄ΩW ∼ 100 µeV and
define the polarization of the excitation pulse polarization as ê = eRR̂+ eLL̂ with e2

R + e2
L = 1. Thus, the temporal shapes are

given by: ΩR/L(t) =
1
2 Θ · 1√

2π/ΩW
exp
(
− 1

2 Ω2
W t2
)
· eR/L. The system energy levels and transition rates between these levels are

schematically described in Fig. S5.

4.3 Free Evolution and Decay
Here, we describe the decay of the BiE to the DE together with all other decoherence processes. The Lindblad superoperator
takes the standard form L [ρ̂] = ∑k Ĉkρ̂Ĉ†

k − (Ĉ†
kĈkρ̂ + ρ̂Ĉ†

kĈk)/2, where each operator Ĉk describes a different decay or
decoherence process.

The decay from the BiE to the DE is described by the operators Ĉd,R =
√γd |+Z,Rn〉〈+3| and Ĉd,L =

√γd |−Z,Ln〉〈−3|,
corresponding to emission of a right- and left-hand circularly polarized photon, respectively; |Rn〉 and |Ln〉 are the n-th photon
right- and left-hand circular polarization states. For simplicity, the decay rate γd in our model accounts for both (i) the radiative
decay from the BiE to the excited DE (determined from the measured 0.33±0.03 nsec decay time using a pump-probe method,
not shown); and (ii) the non-radiative decay of the DE∗ to the DE (determined from the measured 0.07±0.01 nsec decay time
using pump-probe method, not shown). We checked numerically that since the decay is spin preserving and since both decays
are much shorter than the DE∗ and DE precession times, this simplification is justified.

The dephasing of the DE state is described by the operator Ĉ∗2 =
√

γ∗2 (|+Z〉〈+Z|− |−Z〉〈−Z|). For the rate γ∗2 = 1/T ∗2
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Figure S5. Schematic description of the energy levels and transition rates used in the model calculations. Here |±J〉
represents a state with total angular momentum projection J on the QD symmetry axis, and |±2〉 ≡ |±Z〉. Blue upwards arrows
represent pulsed excitation of the DE to its BiE where ΩR(t) (ΩL(t)), stands for right (left) hand circularly polarized π-area
pulse. Red downwards arrows denoted by γd = 1/trad represent spontaneous decay of the BiE to the DE associated with the
emission of a photon. The coherent evolution of the DE (BiE) is represented by curved arrows denoted ω2 (ω3). The DE
dephasing rate is denoted by γ∗2 = 1/T ∗2 . The numerical values of the parameters used are listed in Table S1.

Table S1. Physical values used in our model calculations

Quantity Symbol Value Units

Biexciton lifetime4 trad = 1/γd 0.330 nsec

Biexciton precession rate4 ω3 2π/5.05 rad/nsec

Dark exciton precession rate4 ω2 2π/3.03 rad/nsec

Dark exciton dephasing time4 T ∗2 = 1/γ∗2 100 nsec

DE to BiE excitation pulse width h̄ΩW 100 µeV

DE to BiE excitation pulse detuning ∆ 0 µeV

DE to BiE excitation pulse area Θ π rad

DE pure state initialization probability p 0.72

we used the measured lower bound of Ref.4 Since the radiative BiE to DE decay time is much shorter than the DE and BiE
dephasing times, we neglected the BiE dephasing.

4.4 Combination of Cycles
In order to generate the multi photon entangled state, we periodically repeat the same cycle several times. In each cycle we add
a new photon, entangled to its predecessor and to the DE. In modelling this procedure, the input to the n cycle is the density
matrix ρ̂n−1, at the end of the previous cycle. The output at the end of the cycle is ρ̂n, describing an n−1 photon and DE state.
The process starts with the initial density matrix ρ̂0 = ρ̂ init

DE , as described above.
We use the same physical values for each one of the cycles in our model calculation. These values, also mentioned in Fig. S5,

are listed and referenced in Table S1. The model allows calculations of cases in which the polarization of the exciting pulse
ε̂n,R/L, and the free evolution duration after the n-th pulse ∆tn vary. These facilitate direct comparison with the experimental
measurements, in which by tuning these values, we could calculate generation of a multi partite entangled state of an arbitrary
length.
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5 The Quantum Process Map

The protocol implemented in the experiment can be described by quantum circuit,11 which is comprised of a series of cycles.
The evolution of the system in each cycle is identical. Below, we first (Sec. 5.1) discuss an idealized version of the protocol, in
which each cycle is comprised of unitary operations acting on the DE’s spin and on the photon emitted in this cycle.

To describe the evolution of the system under the actual experimental conditions, we represent each cycle by a non-unitary
quantum process map: a completely positive, trace preserving map acting on the DE’s spin and on the photon emitted in this
cycle. In Sec. 5.2 we define the quantum process map. In Sec. 5.3 we discuss how this process map can be determined by
performing quantum process tomography.12, 13

5.1 The Idealized Protocol
In an idealized version of the current experiment, each cycle of the protocol consists of a unitary transformation, as described in
Fig. S6. In this figure, |0〉DE = |+Z〉 and |1〉DE = |−Z〉 represent the states of the dark exciton and |0〉n = |R〉n and |1〉n = |L〉n
represent the right and left handed circular polarization states of the n-th photon . Note that for convenience, we use a convention
in which the photon qubits are initialized in the state |0〉n (before they were actually emitted from the source) and the DE starts
in the state |0〉DE. The initialization of the DE is represented by the unitary gate Û such that |ψ init

DE 〉= Û |0〉DE. The entangling
CNOT gate between the DE and the n-th photon is given by ĈNOT = |0〉〈0|DE⊗ σ̂0,n + |1〉〈1|DE⊗ σ̂x,n. Here and throughout
the paper we use a notation where σ̂x, σ̂y, and σ̂z are the Pauli matrices, while σ̂0 = I is the identity matrix. The subscript n,
as in σ̂x,n, denotes that the matrices act on the n-th photon. The single qubit rotation Ĝ, acting on the DE is a π/2 rotation
around the x̂ axis (the x̂ direction coincides with the QD bright exciton horizontal polarization4), Ĝ = exp

(
−i σ̂x

2
π
2

)
. A cycle in

the protocol is defined as the CNOT gate applied to the DE and the emitted photon, followed by the Ĝ gate acting on the DE
(marked with a dashed box in the circuit diagram Fig S6). The resulting state after N cycles is identical (up to single qubit
unitary transformations) to a one dimensional cluster state.14 This cluster state is depicted on the right hand side of the circuit
in Fig. S6, where open circle represents the single qubit state 1√

2
(|0〉+ |1〉), and the lines connecting two open circles represent

the controlled-Z operation, ĈZ = |0〉〈0|n−1⊗ σ̂0,n + |1〉〈1|n−1⊗ σ̂z,n.

|0〉DE U • G • G · · · • G • G

|0〉N · · ·

|0〉N−1 · · ·

...
...

...

|0〉2 · · ·

|0〉1 · · ·

Figure S6. The quantum circuit representing the ideal protocol for generating a one dimensional cluster state. The unitary
gates inside the dashed box represent a single cycle. The right side of the quantum circuit presents a pictorial definition of the
resulting cluster state: the open circles on the right-hand side represent qubits initialized in the state (|0〉+ |1〉)/

√
2 , and the

edges between them represent a controlled-Z gate.

5.2 Non-unitary Quantum Process Map
The physical properties of the system used in the experiment cause a deviation from the idealized unitary case discussed above.
As a result, the evolution of the system in each cycle does not correspond to a unitary operation. Instead, we describe it by
a completely positive trace preserving map Φ. In the quantum circuit representation of the protocol, Fig. S6, this map acts
non-trivially only on the degrees of freedom of the DE and the photon emitted in the cycle. Using this, and the fact that the
photon qubits in the quantum circuit representation are always initialized in the fiducial state |0〉n, allows us to consider a
compact form of the process map. In this compact form, the map Φ is considered as a map from the space of 2×2 density
matrices describing the state of the DE spin to the space of 4×4 density matrices describing the state of the DE spin and an
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emitted photon. In a mathematical language, we consider a completely positive trace preserving (CPTP) map,

Φ : C2×2→ C4×4. (2)

for which Tr [Φ(ρ̂)] = 1.
We now describe the representation we use for the map Φ throught the paper. Recall the that the DE density matrix can be

represented by ρ̂DE =∑α ρ(DE)
α σ̂α with α = 0,x,y,z where σ̂0 = I2×2 is the identity matrix and σ̂x,y,z are the 2×2, Pauli matrices.

Likewise, the density matrix of the DE and an emitted photon can be decomposed as ρ̂DE−1 = ∑αβ ρ(DE−1)
αβ σ̂ (DE)

α ⊗ σ̂ (1)
β . Here,

we used σ̂ (DE) to denote Pauli matrices acting on the DE qubit, and σ̂ (1) to denote Pauli matrices acting on the photon qubit. The
map Φ can be represented using 64 real parameters Φγ

αβ , with γ = 0,x,y,z representing the initial state space and α,β = 0,x,y,z
representing the final state space. Its action is given by

Φ(ρ̂DE) = ∑
αβ

[
∑
γ

Φγ
αβ ρ(DE)

γ

]
σ̂ (DE)

α ⊗ σ̂ (1)
β . (3)

This is the representation used in Fig. 2 of the main text. Using Eq. (3) the state after N application of the map can be worked
out straightforwardly. For example, after two applications of the cycle, we obtain the state of the DE and two photons given by

ρ̂(DE−2−1) = ∑
αβγ

[
∑
µν

Φν
αβ Φµ

νγ ρ(DE)
µ

]
σ̂ (DE)

α ⊗ σ̂ (2)
β ⊗ σ̂ (1)

γ . (4)

Note that in Eq. (4), σ̂ (DE)
α acts on the DE’s spin, while σ̂ (2)

β and σ̂ (1)
γ act on the 2nd and 1st emitted photon, respectively.

So far, we have shown that Φ can be represented using the 64 real numbers Φγ
αβ . However, not all possible values of Φγ

αβ
correspond to a physical (completely positive and trace preserving) map. To find the requirements on Φγ

αβ which lead to a
CPTP map, it is convenient to use an equivalent representation of Φ using its Choi matrix CΦ. The Choi matrix is defined by15

CΦ = ∑
i j

ei j⊗Φ(ei j) , (5)

where ei j ∈ C2×2 is 1 in the i j-th entry and 0 otherwise. Therefore, the Choi matrix CΦ can be written as

CΦ = ∑
i j

ei j⊗
(

∑
αβ

∑
γ

Φγ
αβ Λγ

i jσ̂α ⊗ σ̂β

)
, (6)

where the matrices Λα
i j, with i, j ∈ {1,2} and α ∈ {0,x,y,z} are the unitary transformations from the basis of the Pauli matrices

σ̂α to the matrices ei j, given by

Λα
i j =




1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1


 . (7)

Choi’s theorem15 states that Φ is a completely positive map, if and only if its Choi matrix CΦ is a positive matrix. Therefore,
Choi’s theorem and Eq. (6) give (equivalent) conditions on the values of Φν

αβ such that they correspond to a completely positive
map Φ. The requirement that Φ is trace preserving, Tr [Φ(ρ̂)] = 1, gives, using Eq. (3), the following conditions

Φ0
00 = 1/2; Φγ

00 = 0, γ 6= 0. (8)

The conditions in Eq. (8) lead to the following conditions on CΦ,

Tr
[
CΦ σ̂0⊗ σ̂0⊗ σ̂0

]
= 2; Tr

[
CΦ σ̂α ⊗ σ̂0⊗ σ̂0

]
= 0, α 6= 0. (9)

5.3 Quantum Process Tomography of the Process Map
The process map can be obtained experimentally by performing quantum process tomography. This is achieved using the
following three steps:
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5.3.1 Step 1
The DE is prepared in four linearly independent initial states ρ̂DE( j), j = 1, ....,4. Full quantum state tomography on the final
density matrix of the DE and the emitted photon leads to the following set of equations

ρ(DE−1)
αβ ( j) = ∑

γ
Φγ

αβ ρ(DE)
γ ( j). (10)

Due to the selection rules of the DE-BiE transitions, we cannot directly measure the DE in the |+X〉 and |−X〉 states, which
means that we cannot directly measure the four elements ρ(DE−1)

xβ . Therefore, using Eq. (10) we can only obtain the 48 elements

Φγ
αβ for α 6= x.

5.3.2 Step 2
The elements Φγ

xβ , which were not determined by Eq. (10), can be obtained experimentally by applying two cycles of the
protocol, and measuring correlations between the state of the DE and the state of the two emitted photons. We consider the
state after two cycles, given four linearly independent initial states ρ̂(DE)( j), j = 1, ....,4 of the DE. As before, we expand the
state of the DE and the two emitted photons as ρ̂(DE−2−1) = ∑αβγ ρ(DE−2−1)

αβγ σ̂ (DE)
α ⊗ σ̂ (2)

β ⊗ σ̂ (1)
γ . Using Eq. (4) we get the set

of equations:

ρ(DE−2−1)
αβγ ( j) = ∑

µν
Φν

αβ Φµ
νγ ρ(DE)

µ ( j). (11)

This equation can be rewritten as

ρ(DE−2−1)
αβγ ( j)−∑

µ
∑
ν 6=x

Φν
αβ Φµ

νγ ρ(DE)
µ ( j) = ∑

µ
Φx

αβ Φµ
xγ ρ(DE)

µ ( j). (12)

Let us consider a subset of the equations in (12) for specific values of α,β and γ , such that α 6= x. Importantly, for this
case all of the elements in the first term on the left hand side of Eq. (12) can be obtained experimentally, by performing
measurements after application of two cycles of the protocol. All the elements of the second term were obtained in in step 1 [i.e.,
by performing measurements after application of a single cycle and by using Eq. (10)]. On the right hand side, the elements
Φµ

xγ are the unknowns, but the elements Φx
αβ were obtained in step 1 (recall that α 6= x). Therefore, if Φx

αβ 6= 0 we obtain a set
of 16 linear equations for the 16 missing elements Φµ

xγ , which completes the quantum process tomography.
The total set of 64 equations consisting of 48 equations from step 1 and the 16 equations from step 2 corresponds to a

complete set of measurements, which uniquely determines Φγ
αβ .

5.3.3 Step 3
In the actual experiment, the tomography is obtained from a finite number of 2 or 3 correlated events, in which single photons
are timely recorded by 2 or 3 detectors, respectively. This invariably leads to statistical errors in the measured expectation
values. Therefore, the process map obtained by solving Eqs. (10) and (12) using the measured values directly is not necessarily
a physical process map, i.e., the corresponding Choi matrix CΦ can have negative eigenvalues, or Eq. (9) may not be obeyed.
Therefore, in the final step of the quantum process tomography, we look for a physical process map which best fits our
experimental measurements. To achieve this, we use an algorithm which randomly samples the space of physical process maps,
and searches for the physical process map which minimizes the distance to the measured process map. Using this sampling
procedure, we achieve simultaneously two goals. The first goal is to find the physical process map which best fits the measured
map within the experimental uncertainties. The second goal is to verify that this physical process map is uniquely determined
by our measurements.

The sampling procedure employed by the algorithm proceeds as follows. Starting from an initial process map Φ0, which
is represented by an 8× 8 Choi matrix CΦ0 , the algorithm chooses a random Hermitian 8× 8 matrix HΦ, by expanding
log
(
HΦ)

αβγ = ∑αβγ LΦ
αβγ σ̂α ⊗ σ̂β ⊗ σ̂γ and drawing the coefficients LΦ

αβγ according to the distribution

µΦ0,Σ

(
LΦ

αβγ

)
=

1√
2πΣ2

exp

[
−
(
LΦ

αβγ −LΦ0
αβγ
)2

2Σ2

]
. (13)

where LΦ0
αβγ are the expansion coefficients of log(CΦ0) in the Pauli basis. Here, the subscripts αβγ imply that the drawing is

done in the Pauli basis, in which all the coefficients are real. The width of the distribution Σ is randomly chosen between 0.03

9/17



and 300 using a uniform distribution on a log10 scale. Small values of Σ imply initial conditions which are close to CΦ0 , while
large values imply distant conditions. The matrix H = exp(L) is Hermitian and positive. In order to yield a physical Choi
matrix CΦ, the matrix HΦ is then normalized according to

CΦ =
(
SΦ

1 ⊗ I4×4
)

H̄Φ (SΦ
1 ⊗ I4×4

)
, (14)

where H̄Φ = 2HΦ/Tr[HΦ] is the normalized Hermitian matrix, and the multiplication by SΦ
1 =

(
Tr2,3[H̄Φ]

)−1/2 ensures that
Eq. (9) is obeyed (here Tr2,3 refers to the partial trace of the 2nd and 3rd “qubits” of the Choi matrix, as presented in Sec. 5.2).

To quantify how well the process map Φ reconstructs the complete set of measurements (see step 2 above), we compute
a residue function R(Φ), which measures the weighted distance from the measured values. This function will be defined in
Sec. 5.3.4 below. We then numerically minimize R(Φ): starting from CΦ0 , we use a Nelder-Mead simplex search algorithm
to find a map Φmin, which gives a local minimum of the function R(Φ). The converged value Φmin depends mainly on the
reference point Φ0, and the distribution width Σ.

We now iterate the procedure by the following Monte Carlo approach. In the beginning of each iteration, we first consider the
starting point Φ0 and end point Φmin of the previous iteration. We then set a new value for Φ0 as Φ0 =Φmin if R(Φmin)<R(Φ0);
otherwise, we keep the same Φ0. We then choose a new value for Σ and draw a Hermitian matrix HΦ using the distribution
µΦ0,Σ of Eq. (13). Next, we compute the corresponding CΦ using Eq. (14). We conclude each iteration by using CΦ as the
starting point for the Nelder-Mead algorithm for finding Φmin which gives a local minimum of R(Φ).

After 104 iterations, we obtain a large set of process maps {Φmin}. The results are visualized in Fig. S7 where for each
Φmin we plot R(Φmin) versus the distance between Φmin and the process map obtained from the unitary process map of the
ideal protocol. The latter distance is quantified by the fidelity between the respective Choi matrices F

(
CΦ

min,C
Φ
ideal
)

(see Sec. 9
below for the definition of F ).

In Fig. S7, we show that the two goals we set were obtained. First, we obtain the physical process map which best fits our
complete set of measurements. The best fit is quantified by finding a global minimum for the residue R(Φ), which is well
within the experimental uncertainties (horizontal dashed line in Fig. S7). Second, Fig. S7 shows that this global minimum is
unique. The process map which gives this global minimum, and therefore gives the best fit to the measurements, is marked by a
black triangle and denoted by Φmeasured. This process map is shown in Fig. 2(a) of the main text. It has excellent similarity to
the ideal process map, as defined by the fidelity between their Choi matrices F

(
CΦ

measured,C
Φ
ideal
)
= 0.811±0.020 (see Sec. 9

below for the definition of F ).

5.3.4 The Residue Function
The residue function, which estimates the deviation between a drawn physical process map and the measured map, is given by

R(Φ) =

√
∑64

k=1 nk(PΦ
k −Pmeas

k )2

∑64
k=1 nk

, (15)

where the sum runs over all 64 independent correlation measurements described in step 1 and step 2 above. Each term in the
sum corresponds to a specific experimental configuration k, where each configuration consists of one out of four different
polarizations of the initial DE state, one out of four different polarizations for each of the emitted photons and one out of four
different final polarizations of the DE. We denote by nk the number of measured correlation events in the configuration k, and
by Pmeas

k and PΦ
k the measured and calculated probability of detecting this particular configuration, respectively. The calculated

probability is computed from the process map Φ, as described in sections step 1 and step 2 above. For example, suppose that the
k configuration corresponds to preparation of the DE in the j0 state, and after one cycle the DE is measured in spin state |+Y 〉
and the emitted photon in polarization state |H〉. Then PΦ

+Y,H = 〈+Y,H|ρ̂(DE−1)( j0)|+Y,H〉, where ρ̂(DE−1)( j0) is computed
from Φ according to Eq. (10). The measured probability Pmeas

k is obtained by dividing nk by a normalization constant, which is
calculated by summing over all correlated events using two orthogonal polarizations for each detected photon or spin state of
the DE. For example, for the configuration used in the example above, we get Pmeas

+Y,H = n+Y,H/(n+Y,H +n+Y,V +n−Y,H +n−Y,V )
The function R(Φ) therefore quantifies how much the process map Φ deviates from the measured data, where the measured 64
different experimental configurations are weighted by their statistical significance.

6 Localizable Entanglement
The quantification of entanglement in multiparticle systems is important, as it evaluates the amount of quantum information
processing (QIP) tasks that can be performed on the system. Localizable entanglement (LE)16 is a measure of this multiparticle
entanglement.

In Sec. 6.1 we define the LE. In Sec. 6.2, we apply this definition to our experimental results.
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Figure S7. Monte Carlo results. Each point corresponds to a process map Φmin obtained at the end of one iteration. The
points indicate the residue R(Φmin) versus the fidelity between their corresponding Choi matrix and the Choi matrix of the ideal
protocol. The color represents the width Σ of the distribution in Eq. (13), used in each iteration. A filled point depicts a positive
localizable entanglement (see Sec. 6) between the two photons in the 3 qubit density matrix when the DE spin is projected on
|+Z〉 state. An empty point means no entanglement. The black triangle depicts the global minimum, denoted by Φmeasured,
which represents the process map that fits best to the experimental measurements. The dashed gray line represents the
experimental uncertainties at R(Φmin) = 0.02.

6.1 Definition
Given a state ρ̂N of N qubits, we define the LE17 of two qubits n and m by the maximal negativity N of their reduced density
matrix obtained after performing projective single qubit measurements on all the other N−2 qubits. We denote by M a choice
for the basis for the projective measurements, and by s the outcomes of the measurements. For a specific M and s, the reduced
density matrix between qubits n and m is given by

ρ̂(M ,s)
n,m =

1
ps

Tr j 6=m,n

[(
∏

j 6=m,n
P̂j

)
ρ̂N

]
. (16)

In the above, the basis M and the outcomes s correspond to the sequence of projections ∏ j 6=m,n P̂j, where P̂j = |s j〉〈s j|
is a projector acting on qubit j. Note that all qubits are projected except for qubits n and m. Likewise, the partial trace
is taken over all qubits except qubits m and n. Finally, ps is the probability to obtain the measurement outcome s, given
by ps = Tr

[
∏ j 6=m,n P̂jρ̂N

]
. The average localizable entanglement between the qubits n and m, maximized over all possible

measurement basis is then given by17

N LE
n,m (ρ̂N) = max

M
∑
s

psN
(

ρ̂(M ,s)
n,m

)
. (17)

where N is the negativity of the density matrix ρ̂n,m. The negativity is defined as follows. Consider a density matrix describing
the state of two qubits ρ̂ = ∑ρmµ;nν |m〉〈n|⊗ |µ〉〈ν |, where the labels m,n correspond to qubit A, and µ,ν belong to qubit B,
and the sum is over the labels m,n,µ,ν = 0,1. The partial transpose of ρ̂ is defined by ρ̂TP = ∑ρmµ;nν |m〉〈n|⊗ (|µ〉〈ν |)T =

∑ρmν ;nµ |m〉〈n|⊗ |ν〉〈µ|. The state ρ̂ is entangled if and only if any of the eigenvalues of ρ̂TP , is negative.18, 19 Denoting by
λ j the 4 eigenvalues of ρ̂TP , the negativity20 N is defined as N (ρ̂) = 1

2

(
∑ j
∣∣λ j
∣∣−λ j

)
, i.e., N (ρ̂) is the sum of the absolute
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value of the negative eigenvalues of ρ̂TP . The negativity measures the degree of entanglement in ρ̂ , where N = 0 corresponds
to an unentangled (separable) state, and N = 1

2 to a maximally entangled state.

6.2 Localizable Entanglement in the Quantum State Generated in the Experiment
In an ideal cluster state, the LE between any two qubits is maximal, N LE

n,m = 1/2. It is convenient to give a position label to the
qubits in the quantum state ρ̂N+1 generated after applications of N cycles of the protocol, such that the qubit at position N +1 is
the DE, the first emitted photon is at position 1, the second emitted photon is at position 2, and the n-th emitted photon is at
position n (see Fig. 1(d) of the main text). For the states ρ̂N+1 generated in the experiment, the LE will depend on the distance
d between two qubits in the chain. If the number of qubits N +1 is sufficiently larger then d, the LE will not depend on N (for
N ≈ d the LE can show a weak dependence on N). We define the entanglement length16 ξLE, which measures the decay length
scale of the LE.

To obtain the LE in the state generated in the experiment, we compute the state ρ̂N+1 by applying the process map Φmeasured
to the initial partially mixed DE state ρ̂ init

DE = 0.72 |−X〉〈−X |+0.28I. Using Eqs. (16) and (17), we then compute the expected
localizable entanglement between the DE’s spin and the first emitted photon. These two qubits are at a distance d = N in terms
of the position labels discussed above. The resulting expected localizable entanglement, N LE

1,N+1 is shown as the blue points in
Fig. 3 in the main paper. To obtain an error estimate on the LE, we consider all process maps Φmin obtained in Sec. 5.3.3 with a
residue of R(Φmin)< 0.02, which is compatible with our experimental uncertainties.

The localizable entanglement persists across 5 qubits, and decays as N LE
1,N+1 = N0 exp(−N/ξLE) with ξLE = 3.2. The

localizable entanglement between two qubits at a distance d in the interior of long chains with N� d is in fact independent of
the purity of the initial state of the DE.11

7 Direct Measurement of Two Qubit Entanglement
In this section we describe direct verification of entanglement between each pair of qubits in our three qubit chain. In Sec. 7.1
we discuss entanglement between the first two photons, conditioned on measuring the DE. In Sec. 7.2 we discuss entanglement
between the DE and the nearest-neighboring photon, and in Sec 7.3 we discuss the localizable entanglement between the DE
and the next-nearest neighboring photon conditioned on measuring the polarization of the photon in-between.

7.1 Photon–Photon Localizable Entanglement
We conducted four sets of 16 polarization-projective measurements. In each set we initialized the DE in its |Ψinit

DE〉 = |−X〉
eigenstate, and then used two timed |H〉 polarized pulses, corresponding to application of two cycles of the protocol, and a
third readout pulse in four different configurations, as described in the method section of the main paper. As a result of the
pulse sequence, three photons are emitted, their correlated detection comprised a measured event. The last pulse was polarized
in either |R〉 or |L〉, with appropriate timing as to project the DE spin on the |±Z〉 or |±Y 〉 states. In each case, the first two
photons are measured using 16 different mutual polarization projections, from which we reconstruct the density matrix of the
two photons. Specifically, each photon was projected on the |H〉, |V 〉, |L〉, and |D〉 polarizations. For example, the density
matrix element ρLL,LL in the circular polarization basis was obtained by ρLL,LL = nLL/(nHH +nHV +nV H +nVV ) where nP1P2 is
the measured number of correlated photons in the two photon |P1P2〉 polarization configuration.

The density matrices we obtained from these polarization tomographies21 are presented in Fig. S8. For reasons of simplicity
in the presentation of these matrices the first photon is always displayed in the circular polarization basis while the second
photon is displayed in a linear polarization basis. In the figure, we denote the density matrices by ρ̂meas

PDE
, where PDE corresponds

to the state onto which the DE was projected. Only for the first two cases Fig. S8(a) and (b), corresponding to projections of the
DE onto the states |R〉 and |L〉 the density matrices are expected to correspond to an entangled state. Indeed, their negativities
N are 0.242±0.052 and 0.248±0.069, and their fidelities F to the appropriate Bell state (see Fig. S8) are 0.730±0.060
and 0.722± 0.054, respectively. These values show entanglement between the two photons and serve as a measure of the
localizable entanglement between adjacent qubits, as discussed in Sec. 6 above and presented in Fig. 3 of the main paper.
The fidelities of the density matrices in Fig. S8(c) and (d) to the appropriate pure state, as expected from the ideal protocol,
are 0.633±0.037 and 0.681±0.048, respectively. The “expected localizable entanglement” between the two photons (after
optimizing the measurement basis and averaging over the measurement outcomes) gives

N LE
2−1 = 0.168. (18)

7.2 DE–Photon Entanglement
A direct measurement of the density matrix of the DE and the emitted photon (after application of a single cycle) requires full
state tomography of both qubits. However, projections of the DE on the states |±X〉, which are required for full tomography,

12/17



Figure S8. a) [b)] The measured two-photon density matrix obtained by polarization tomography of the two emitted photons
conditioned on detecting the third photon, following a right [left] hand circularly polarized DE projection pulse, 3/4 of a
precession period after the second converting pulse. This detection, therefore projects the DE on the |+Z〉 [|−Z〉] state.
c) [d)] The measured two-photon density matrix as in a) [b)], but this time, the circularly polarized DE projection pulse is timed
1/2 a precession period after the second conversion pulse. This way the DE is projected on the |−Y 〉 [|+Y 〉] state. In all cases
the DE is initialized in the |−X〉 state, and the first photon is displayed in the circular polarization basis. The second photon in
a) and b) is displayed in the rectilinear polarization basis and in c) and d) in the linear diagonal polarization basis. The fidelities
to Bell-states (|RV 〉+ |LH〉)/

√
2 in a) and to (|RV 〉− |LH〉)/

√
2 in b) are 0.730±0.060 and 0.722±0.054, respectively. The

fidelities to the pure states |RD〉 in c) and |LB〉 in d) are 0.633±0.037 and 0.681±0.048, respectively.

are not straightforward and require additional resources. Fortunately, projective measurements on the |±Z〉 and |±Y 〉 bases are
sufficient to provide a lower bound22 on the fidelity between the DE-photon density matrix and the maximally entangled state
of two qubits,

|ψ〉DE−1 =
[(
|+Z〉+ i |−Z〉

)
|R1〉−

(
|−Z〉+ i |+Z〉

)
|L1〉

]/
2. (19)

The fidelity between the DE-photon density matrix, ρ̂(DE−1) and the state |ψ〉DE−1 is defined as

F
(
ρ̂(DE−1), |ψ〉〈ψ|DE−1

)
= DE−1〈ψ| ρ̂(DE−1) |ψ〉DE−1 . (20)

The lower bound on F can be written as22

F
(
ρ̂(DE−1), |ψ〉〈ψ|DE−1

)
≥
(
F1 +F2

)
/2. (21)

where F1 and F2 are defined as

F1 = ρ(DE−1)
ZR,ZR +ρ(DE−1)

−ZL,−ZL−
√

ρ(DE−1)
ZL,ZL ·ρ

(DE−1)
−ZR,−ZR, (22)

and

F2 = ρ(DE−1)
Y B,Y B +ρ(DE−1)

−Y D,−Y D−
(
ρ(DE−1)

Y D,Y D +ρ(DE−1)
−Y B,−Y B

)
. (23)

We experimentally measured both F1 and F2. To obtain F1, we measured the DE in the |±Z〉 basis and the photon in the
|R〉 and |L〉 basis. For F2, we measured the DE in the |±Y 〉 basis and the photon in the |D〉 and |B〉 bases. We got

F
(
ρ̂(DE−1), |ψ〉〈ψ|DE−1

)
≥ 0.705±0.041. (24)
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The lower bound on the entanglement fidelity that we obtained this way is similar to that obtained in Refs.22–26.
Importantly, the state ρ̂(DE−1) is entangled if F

(
ρ̂(DE−1), |ψ〉〈ψ|DE−1

)
> 0.5. The negativity of ρ̂(DE−1) for 2 qubits is

directly related to F using

N
(
ρ̂(DE−1))≥F

(
ρ̂(DE−1), |ψ〉〈ψ|DE−1

)
−0.5. (25)

Therefore, our measurements also yield a lower bound on the negativity N
(
ρ̂(DE−1)

)
≥ 0.205±0.041.

7.3 DE–Next-nearest-photon Localizable Entanglement
We now discuss the localizable entanglement between the DE and the first emitted photon in the three qubit state obtained after
applying two cycles of the protocol. The localizable entanglement measures the degree of entanglement in the density matrix
between of the DE and the first emitted photon,

ρ̂(DE−1)
P2

= Tr2
[
ρ̂(DE−2−1)(I⊗|P2〉〈P2|⊗ I)

]
, (26)

obtained after a projective measurement of the second emitted photon on the state |P2〉. Since we cannot measure the DE in
the basis |±X〉, we used the same approach as discussed in Sec. 7.2. Choosing |P2〉= |V 〉 we obtained a lower bound on the
fidelity of ρ̂(DE−1)

V with the state

|ψ〉DE−1 =
(
|+ZR〉+ |−ZL〉

)
/
√

2, (27)

which is equivalent to a bound on the negativity of ρ̂(DE−1)
V . Note that while in Sec. 7.2 two photon correlations were sufficient,

here three photon correlations were required.
The data presented in Fig. S8 contain the required information needed to obtain the lower bound. As discussed above, in

Fig. S8 four density matrices of two photons are presented. Each matrix presents two photon density matrix while the DE is
projected on one the states |+Z〉, |−Z〉, |+Y 〉 and |−Y 〉 (see Fig. S8 (a), (b), (c) and (d), respectively). Using this data, we
construct the elements of the density matrix ρ̂(DE−1)

P2
which are necessary for obtaining the quantities F1 and F2 defined in

Eq. (22) and Eq. (23). Next, we optimize the projective measurement polarization P2 in order to maximize (F1 +F2)/2. We
find that the optimal polarization is |Ṽ 〉= exp

(
iθσ̂z/2

)
|V 〉 with θ =−11◦, for which we obtain for the 2 remaining qubits

F
(
ρ̂(DE−1)

Ṽ , |ψ〉〈ψ|DE,1
)
≥ 0.590±0.062 ⇒ N

(
ρ̂(DE−1)

Ṽ

)
≥ 0.090±0.062. (28)

8 Direct Measurement of Genuine Three Qubit Entanglement
In this section we show that the 3 qubit state that was generated in the experiment, consisting of the DE and the two emitted
photons, exhibits genuine three qubit entanglement. A three qubit state ρ̂3 with genuine three qubit entangled is defined as a
state of three qubits, A,B and C which is not bi-separable, i.e., it cannot be written as ρ̂3 = ∑k p(1)k ρ̂(A)

k ⊗ ρ̂(BC)
k +∑l p(2)l ρ̂(AB)

l ⊗
ρ̂(C)

l +∑m p(3)m ρ̂(AC)
m ⊗ ρ̂(B)

m , where ρ̂(A)
l , ρ̂(B)

l and ρ̂(C)
l are single qubit states of the qubits A,B and C, respectively, ρ̂(AB)

m , ρ̂(AC)
m

and ρ̂(BC)
m are two qubits states of the qubits AB, AC and BC, respectively and p( j)

k ≥ 0 with ∑ j,k p( j)
k = 1.

Since we do not perform measurements of the DE in the basis |±X〉, we do not perform full tomography on the three qubit
(DE-photon-photon) state. Instead, as in Secs. 7.3 and 7.2, we use our measurements to demonstrate that the three qubit state is
genuinely three qubit entangled in two complementary ways. First, in Sec. 8.1 we obtain a lower bound on the fidelity of the
density matrix of the 3 qubits with that of the three qubit cluster state. Second, in Sec. 8.2 we construct an entanglement witness
and measure its expectation value. Each approach separately demonstrates that the DE-photon-photon state is genuinely three
qubit entangled.

8.1 Fidelity to a Pure Cluster State
The fidelity between the DE-photon-photon state and the three qubit cluster state is given by

F
(
ρ̂(DE−2−1), |ψ〉〈ψ|C

)
= C〈ψ| ρ̂(DE−2−1) |ψ〉C , (29)

where ρ̂(DE−2−1) is the state of the DE and the two emitted photons, and

|ψ〉C =
(
|+Z〉

[(
|R2〉− |L2〉

)
|R1〉− i

(
|R2〉+ |L2〉

)
|L1〉

]

+ |−Z〉
[
i
(
|R2〉+ |L2〉

)
|R1〉+

(
|R2〉− |L2〉

)
|L1〉

])/
2
√

2.
(30)
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Table S2. Results of the stabilizer measurements. For each Ŝi, we give Ŝiρ̂ in terms of the measured density matrices, which
are described in Fig. S8; TrDE is a trace over the DE spin; smeas

i = Tr[Ŝiρ̂], the measured stabilizer observable value; and ∆si, its
measurement error.

Operator Density Matrix Measured Value Error Value
Ŝi TrDE

[
Ŝiρ̂
]

smeas
i ∆si

Ŝ1 +(σ̂z⊗ σ̂y)(ρ̂meas
+Z + ρ̂meas

−Z ) 0.780 0.058
Ŝ2 −(σ̂x⊗ σ̂z)(ρ̂meas

+Z − ρ̂meas
−Z ) 0.619 0.061

Ŝ3 −(σ̂y⊗ σ̂x)(ρ̂meas
+Z − ρ̂meas

−Z ) 0.555 0.107
Ŝ4 −(σ̂0⊗ σ̂y)(ρ̂meas

+Y − ρ̂meas
−Y ) 0.409 0.056

Ŝ5 −(σ̂z⊗ σ̂0)(ρ̂meas
+Y − ρ̂meas

−Y ) 0.586 0.032

Importantly, if F
(
ρ̂DE−2−1, |ψ〉〈ψ|C

)
> 0.5 then the three qubit state is genuinely three qubit entangled.

Consider the following eight mutually commuting observables (the first one being the identity) Ŝi, i = 0,1, . . . ,7

Ŝ0 =+σ̂0⊗ σ̂0⊗ σ̂0, Ŝ1 =+σ̂0⊗ σ̂z⊗ σ̂y, Ŝ2 =−σ̂z⊗ σ̂x⊗ σ̂z, Ŝ3 =−σ̂z⊗ σ̂y⊗ σ̂x,

Ŝ4 =−σ̂y⊗ σ̂0⊗ σ̂y, Ŝ5 =−σ̂y⊗ σ̂z⊗ σ̂0, Ŝ6 =−σ̂x⊗ σ̂x⊗ σ̂x, Ŝ7 =+σ̂x⊗ σ̂y⊗ σ̂z.
(31)

The order of the qubits, upon which the Pauli matrices in Eq. (31) act, is DE−2−1. We shall refer to these operators as
“stabilizers”.27

Importantly, the cluster state |ψ〉C is an eigenstate with eigenvalue +1 of each of the Ŝi, i.e., Ŝi |ψ〉C = |ψ〉C. Since the
operators are mutually commuting, there is a common diagonalizing basis {|ψ〉i}7

i=0. We choose |ψ0〉= |ψ〉C. Since Ŝ2
i = I,

the eigenvalues of the stabilizers are ±1. Writing Ŝi |ψ j〉= λi j |ψ j〉 with λi j ∈ {−1,+1}, the stabilizers Ŝi can be related to the
spectral projection operators P̂i = |ψi〉〈ψi| via

Ŝi =
7

∑
j=0

λi jP̂j, λ =




+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 −1 +1 −1 +1 +1 −1


. (32)

We denote si = 〈Ŝi〉 = Tr
(
ρ̂(DE−2−1)Ŝi

)
and p j = Tr

(
ρ̂(DE−2−1)P̂j

)
. The fidelity, as in Eq. (29), is then given by

F
(
ρ̂(DE−2−1), |ψ〉〈ψ|C

)
= p0. Since the matrix in Eq. (32) is invertible, measuring all the values si would suffice to de-

termine the probabilities pi and in particular the fidelity, given by p0. In practice, as Ŝ6, Ŝ7 were not measured, the probabilities
{pi} cannot be deduced directly. It turns out, however, that the 6 known values together with the physical requirement
that probabilities are non-negative gives a strong restriction on possible values of p0. Thus, for example, the identity
p0− p3 =

1
4 (s2 + s3 + s4 + s5) together with the relation p3 ≥ 0 gives one non-trivial lower bound on the fidelity p0.

We consider the intersection of the simplex of physical probabilities, pi ≥ 0 and ∑i pi = 1, with the confidence ellipsoid
corresponding to our measurements. Specifically, we define the function

V [p0, . . . , p7] =
5

∑
i=1

(
si− smeas

i
∆si

)2

, (33)

where s1, . . . ,s5 are considered as functions of p0, . . . , p7 through Eq. (32), and smeas
i ,∆si are the measured values and their

statistical errors.
The measured expectation values of the stabilizers, smeas

i , i = 1, . . . ,5 were calculated from the reconstructed density
matrices in Fig. S8. For example, to measure the stabilizer Ŝ2 one applies

smeas
2 = Tr[ρ̂ Ŝ2] = Tr

[
−(ρ̂meas

+Z − ρ̂meas
−Z )(σ̂x⊗ σ̂z)

]
.

Similar relations hold for Ŝ1,3,4,5; these are given in Table S2.
Using the results in Table S2, and demanding

√
V < r for various values of r, gives p0 ∈ [0.542−0.035r, 0.694+0.022r].

To obtain this result, we numerically calculated the maximum and minimum of p0 under the constraint
√

V ≤ r for each value
of r. In particular, the region p0 = F

(
ρ̂(DE−2−1), |ψ〉〈ψ|C

)
≤ 1

2 in which there is no genuine 3-qubit entanglement is 1.215
standard deviations away from the measured results.
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8.2 Entanglement Witnesses
We can also demonstrate tripartite entanglement using an entanglement witness. In close analogy to the case of two qubit states,
we define an entanglement witness19 Ŵ for a genuine 3-qubit entangled state as a Hermitian quantum operator such that and
Tr[Ŵ ς̂ ]≥ 0 for any bi-separable state ς̂ (see opening paragraph of Sec. 8 for definition), while Tr[Ŵ ρ̂]< 0 for some entangled
state ρ̂ .

Using the methods presented in Ref.27 of constructing witness operators using the stabilizer formalism, we define

Ŵ = 2I− Ŝ5(I+ Ŝ6)(I+ Ŝ7)

= 2I− Ŝ2− Ŝ3− Ŝ4− Ŝ5,
(34)

where the stabilizers Ŝ j where defined in Eq. (31). The operator Ŵ is a “Mermin-type” witness, as in Eq. (28) of Ref.27, but
with a different choice of stabilizers. As such, Tr[Ŵ ς̂ ]≥ 0 for any bi-separable state, and therefore detects genuine three qubit
entanglement.27

Using the measured values of the stabilizers, as given in Table S2, we obtain expectation value 〈Ŵ 〉 = −0.170±0.138,
which is 1.23 standard deviations above the separability threshold, thus proving a genuine 3 qubit entanglement.

9 Fidelity

The fidelity F between two Hermitian positive matrices A and B is defined as28

F (A,B) = Tr
[√√

BA
√

B
]2/(

Tr [A] Tr [B]
)
. (35)

The fidelity between two quantum states ρ̂1 and ρ̂2 is given by F (ρ̂1, ρ̂2). The fidelity between two process maps Φ1 and Φ2 is
given by F (CΦ1 ,CΦ2), where CΦ is the Choi matrix corresponding to Φ, see Eq. (5).

9.1 Error Calculation
For estimating the error in the calculated fidelity between density matrices, we followed the procedure and notations outlined in
Ref.21. For any function g(ρ̂) of the density matrix, its error is given by (∆g)2 = ∑ν

( ∂g
∂ sν

)2Λν , where sν = 〈ψν |ρ̂|ψν〉 is the
normalized number of measured coincidences for a particular measurement projection |ψν〉, and Λν accounts for the errors in
sν resulting from the photon statistics and uncertainty in the polarization projections. The measured density matrix ρ̂ is also
defined by ρ̂ = ∑ν Mν sν , where Mν are the auxiliary matrices as defined in Ref.21.

For calculating the fidelity of ρ̂ to a given density matrix τ̂ , explicitly F
(
ρ̂, τ̂
)
= Tr

[(√
τ̂ ρ̂
√

τ̂
)1/2 ]2 .

= Tr
[√

ω̂
]2, we

define auxiliary F ′ =
√

F , whose derivative is given by ∂F ′
∂ sν

= Tr
[ 1

2 (
√

ω̂)−1
√

τ̂Mν
√

τ̂
]
, where (

√
ω̂)−1 is the pseudo-inverse

of
√

ω̂ . The total error is given by ∆F = 2F ′∆F ′.
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