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Abstract

Mammalian tissue size is maintained by slow replacement of de-differentiating and dying cells. 

For adipocytes, key regulators of glucose and lipid metabolism, the renewal rate is only 10% per 

year. We used computational modeling, quantitative mass spectrometry, and single-cell 

microscopy to show that cell-to-cell variability, or noise, in protein abundance acts within a 

network of more than six positive feedbacks to permit pre-adipocytes to differentiate at very low 

rates. This reconciles two fundamental opposing requirements: High cell-to-cell signal variability 

is needed to generate very low differentiation rates, whereas low signal variability is needed to 

prevent differentiated cells from de-differentiating. Higher eukaryotes can thus control low rates 

of near irreversible cell fate decisions through a balancing act between noise and ultrahigh 

feedback connectivity.

Understanding how large populations of cells direct small subsets to a different state is 

crucial for understanding the differentiation of precursor cells and stem cells, as well as 

cancer progression (1). Adipocyte differentiation is of fundamental importance for disease-

associated conditions such as insulin resistance, obesity, and cancer and is also an accessible 

experimental system for investigating mammalian cell fate decisions. Adipocytes have a 

large pool of precursor cells that reside in the fat tissue–about one for every five 

differentiated cells (2)–which means that only about 1 cell out of 60 embarks on a 

differentiation path during the up to 12 days it takes to differentiate (3) (supplementary text). 

These pre-adipocytes differentiate through a bistable switch mechanism with a single 

threshold for activation in each cell that involves positive feedback between two key 

transcription factors, CCAAT/enhancer binding protein α (CEBPA) and peroxisome 

proliferator-activated receptor γ (PPARG) (Fig. 1A) (4). In a bistable system, if the 

precursor population were truly uniform, there would be a single critical threshold stimulus 

below which 100% of the cells remain precursor cells and above which 100% of the cells 

differentiate. Thus, it is a conundrum how a graded response is observed experimentally 

(Fig. 1B) (5), with weak stimuli inducing very low differentiation rates that increase as the 

stimuli intensity increases rather than causing all cells to convert at one critical stimulus 

threshold.
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By extension of results from bacterial differentiation (6), it is plausible that the observed 

regulated mammalian differentiation rates are generated by noise, or cell-to-cell variability, 

in the abundance of key regulatory proteins (7–10). Noise in the cell population makes it 

possible for only a small fraction of cells to differentiate at low receptor stimuli, R, but can 

also interfere with maintenance of the differentiated state by temporarily lowering the 

abundance of a key regulatory protein below a critical threshold. This dual effect of noise 

may explain why de-differentiation occurs in adipose (11), pancreatic beta (12), neuronal 

(13), epithelial (14), and cardiac cells (15). Thus, organisms have a fundamental 

optimization problem. They need noise to be able to regulate fractional rates of 

differentiation, but this same noise can also cause unwanted and stochastic de-

differentiation.

We explored these competing requirements computationally. We used a working model that 

includes the established feedback between PPARG (X0) and CEBPA (X1) as a driver for 

adipogenesis (Fig. 1C) (4). Figure 1D shows a steady-state representation of this model in 

which the positive feedback loop generates bistability. If an activating receptor input R 

exceeds a critical threshold Ron, the cell switches to the differentiated state. If R were later to 

decrease below Roff, the differentiated cell would drop back into the undifferentiated state. 

Irreversible differentiation requires that there is a basal activity R0 that remains higher than 

Roff when the stimulus is turned off.

The typically observed noise for mammalian protein abundance is 30% and stems from 

intrinsic noise in the synthesis and degradation of mRNA and proteins (16). Our simulations 

demonstrated that noise added to each of the two feedback components enabled receptor 

stimuli to control low fractional rates of differentiation: For a specific receptor stimulus 

(marked with a green line in Fig. 1E), only 1 out of 15 cells switched to the differentiated 

state. Plots in which different amounts of noise were stochastically added to each simulation 

showed that the ability to regulate the rate of differentiation by increasing receptor stimuli 

markedly improved as the amount of noise increased (Fig. 1F). Nevertheless, this same 

noise also caused increasing fractions of cells in the population to lose the differentiated 

state over time, even for high-stimulus amplitudes (Fig. 1, E and G). The constraints that 

allow regulation of low rates of differentiation and also locking of cells in the differentiated 

state can be appreciated in a combined graph (Fig. 1H). To lose less than 0.33% of the 

differentiated cells and thereby maintain the 10% yearly rate of mature adipocyte turnover 

(5, 17), the minimal basal receptor activity R0 value must be higher than 0.4. At the same 

time, a much smaller R0 of 0.1 is required to regulate the observed in vivo rate of pre-

adipocyte differentiation of less than 2% every 12 days (Fig. 1H, left axis, and 

supplementary text). Thus, this system cannot be optimized because R0 cannot be both more 

than 0.4 and less than 0.1, simultaneously. An ideal system must instead have differentiation 

and de-differentiation rates closer to the ones shown in the scheme in Fig. 1I. Although cell 

death may also contribute to maintaining constant cell numbers in tissues, recent studies 

indicate that de-differentiation might be an equally or more relevant process (12–15).

Regulatory systems with bistability typically have cooperativities of 2 to 4, although in a 

few cases higher cooperativities have been found (18). As shown in Fig. 2A, increasing the 

cooperativity from 3 to 6, and to 12, broadened the window between Roff and Ron. However, 
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the higher cooperativity combined with the co-dependence between the feedback loop 

mediators, X0 and X1, resulted in a large increase in the total parameter noise of the system 

(Fig. 2B). Thus, increasing the cooperativity in a single loop system improves the system's 

performance but still does not allow optimization (Fig. 2B and fig. S1).

We explored whether increasing the number of feedback loops would help. Dual positive 

feedback, with one of the feedbacks being much slower, allows high-frequency signaling 

noise to be rejected (19). We noticed in our simulations that a system with two loops 

connected in an AND-gate configuration reduced the rate of de-differentiation by a 

mechanism that does not require different time constants of the loops. The improvement in 

system performance was still insufficient to allow optimization, so we tested whether a large 

number of feedbacks might be even better (model 2 in Fig. 2C). A system architecture with 

ultrahigh feedback connectivity–that is, more than six positive feedbacks, each having a 

cooperativity of only two–resulted in an optimized system that successfully balanced very 

low rates of cell differentiation with stability of the differentiated state (Fig. 2, D and E). 

There are two main reasons for this marked improvement in performance of this ultrahigh 

feedback loop system: First, by connecting different loops required for adipogenesis in an 

AND-gate configuration, the cooperativities of the feedback loops can be added together to 

give a high overall system cooperativity. Second, the noise in protein abundance in each 

feedback loop is independent and random from each other, leading to a reduction in overall 

system noise compared with a system with fewer feedback loops and the same overall 

cooperativity (Fig. 2, C and F, and supplementary text).

We wanted to test our prediction that adipocyte differentiation requires ultrahigh feedback 

connectivity. To identify feedback loops and evaluate their importance, one needs a method 

to perturb a protein in the network and then measure the effect of that perturbation over time 

on many other proteins, that is, the candidate feedback loop partners. We used mouse OP9 

cells, a bone marrow-derived adipocyte model, as a cell model that shares key regulatory 

processes with adipogenesis in vivo (7, 20–23). We selected 60 nuclear proteins–including 

PPARG, CEBPB, CEBPA, and other proteins implicated as important in adipogenesis from 

the literature or from our small interfering RNA (siRNA) knockdown screening data (table 

S1)–as our candidate network to identify the prevalence of feedback loops coupled to 

PPARG and used selected reaction monitoring mass spectrometry (SRM-MS) to 

quantitatively measure the abundance of these proteins (figs. S2 to S8) (24, 25).

For a protein to be classified as being in a feedback loop with PPARG, it had to meet four 

criteria. First, because the abundance of PPARG changes dramatically during adipogenesis, 

we assumed that the abundance of a protein in a feedback loop with PPARG also had to 

change over the time course of adipogenesis (figs. S9 and S10). Second, to confirm a link 

from PPARG to the candidate feedback loop protein, changing PPARG abundance with 

siRNA or small molecules needed to result in a corresponding change in the abundance of 

the candidate feedback loop protein (Fig. 3A and figs. S11 and S12). Third, to confirm a link 

from the candidate protein back to PPARG, changing the abundance of the candidate protein 

by siRNA-mediated depletion needed to result in a corresponding change in the abundance 

of PPARG (Fig. 3B and fig. S13). As a fourth criterion, titration of the PPARG activator 

rosiglitazone onto undifferentiated cells at basal conditions had to result in a direct change 
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of expression of the candidate protein (Fig. 4A and fig. S14). Out of 60 candidate proteins 

(table S1), we identified seven positive feedback mediators of PPARG that satisfied these 

four criteria: three previously unknown positive feedback mediators (the CCAAT-box DNA 

binding protein CEBPZ, the fatty-acid binding protein FABP4, and the phosphatidic acid 

phosphohydrolase enzyme LPIN1), two new mediators of double negative feedback loops 

that function analogously to positive feedback loops (the actin-binding protein FLNA and 

transcription factor RUNX2), and validated two known positive feedback mediators (the 

transcription factors CEBPB and CEBPA) (7) (Fig. 4B).

Supporting the assumption that different feedback loops regulate PPARG expression 

independently, the identified feedback mediators interacted with PPARG in very different 

ways. For example, the promoter of CEBPZ has several predicted CEBPA binding elements 

(26), suggesting that the observed up-regulation of CEBPZ expression by PPARG activation 

is likely through PPARG-mediated increase in accumulation of CEBPA FABP4 likely 

activates PPARG by transporting PPARG-activating ligands into the nucleus (27). LPIN1 

activates PPARG by releasing a corepressor of PPARG (28).

To understand whether the newly identified feedback loops contribute to differentiation, we 

used siRNA to deplete the feedback loop proteins in undifferentiated OP9 cells; induced 

differentiation by adding the PPARG activator rosiglitazone for 24 hours (7,29); and then 

fixed, imaged, and analyzed the cells (Fig. 4C, left column). To understand the feedback 

loop contributions to preventing de-differentiation, we terminally differentiated OP9 

preadipocytes into adipocytes by adding rosiglitazone for 48 hours and then used siRNA to 

deplete the feedback loop proteins in these cells (Fig. 4C, right column). The effect of the 

feedback loops on differentiation and de-differentiation was not necessarily symmetrical. 

For example, depletion of CEBPB or LPIN1 had a greater effect on differentiation than on 

de-differentiation, suggesting that these loops promote differentiation and are less important 

for keeping cells in the terminally differentiated state.

At least four of the identified feedback loop proteins–CEBPA, FABP4, CEBPB, and 

LPIN1– are required for adipogenesis and are thus connected as AND-gates. siRNA-

mediated depletion of each of these proteins during adipogenesis resulted in a nearly 

complete lack of adipogenesis in most cells (enrichment of cells in the low PPARG 

abundance peak as shown by the solid lines in the top two plots in the left column of Fig. 

4C). Nevertheless, the specific regulatory mechanisms by which each of the identified 

feedback loops acts is likely not the same and may include a mixture of additive (OR-gate) 

and multiplicative (AND-gate) features. In addition, the differential effects of the feedback 

loops on adipogenesis indicate that the cooperativity is likely different for the different loops 

and that our model in which all loops have equal cooperativity is a simplification.

This ultrahigh feedback system with multiple AND-gate feedback loops creates the 

ultrasensitivity needed to create a robust bistable switch that can be triggered at variable 

activation thresholds within the cell population and at the same time limits the noise within a 

range that permits both low rates of differentiation and locking of cells into the 

differentiated state. Furthermore, a system with a large number of feedback loops with 

various regulatory proteins can integrate information from a broad range of signaling, 
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metabolic, and stress inputs to regulate and better control the fraction of differentiating cells. 

The advantages of such a system design suggest that the combination of noise with ultrahigh 

feedback is a ubiquitous regulatory feature that applies to other cell fate decisions in 

multicellular organisms. Our integrated approach combining SRM-MS, chemical and 

genetic perturbations, and single-cell microscopy may be useful to identify and understand 

such feedback loop circuits in other cell fate decisions.
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Fig. 1. Description of the control problem
(A) Schematic of the bistable switch from pre-adipocyte to adipocyte. Right, bimodality in 

single cell abundance of PPARG. (B) Control of very low rates of adipocyte differentiation 

by increasing the stimulus, R, applied to mouse OP9 preadipocyte cells. Here, R is 

rosiglitazone, a PPARG agonist, which directly induces adipogenesis in these cells (7). (C) 

Quantitative model of the protein network controlling the terminal differentiation decision in 

adipocytes. ε0 and ε1 represent noise in the abundance of X0 and X1, respectively, α is a 

feedback amplification term experimentally measured to be ∼15 (7). (D) Steady-state plot of 

a one-feedback loop system with cooperativity, n = 3. As the receptor stimulus R is 

increased, Ron is the level of R at which the modeled cell triggers into the differentiated state 

(yellow dot). As R is decreased, Roff is the level of R at which the cell loses the 

differentiated state (purple dot). R0 is the level of basal receptor activity. (E) Sample steady-

state plots of the system in (D) but with 30% log-normal noise randomly added to each 

simulation. At the stimulus intensity marked by the green line, only one cell differentiated 

but several differentiated cells de-differentiated (red arrows). (Fand G) The relationship 

between Rand number of cells differentiating or de-differentiating becomes more graded as 

more noise is added. Each curve in these plots summarizes the Ron (F) or Roff (G) values 

obtained from 20,000 simulations. Noise was added randomly to each simulation to result in 

an average of no noise (thin solid line) up to 30% log-normal noise (thick solid line). (H) 

Plot showing the probabilities of triggering differentiation (blue) versus losing the 

differentiated state (red) as a function of the stimulus intensity R [20,000 simulations of the 

system described in (E)]. Such a system would be unable to maintain tissue size because, at 

the rate of preadipocyte differentiation observed in vivo (1.65%, as marked by dashed green 

line), ∼80% of adipocytes would de-differentiate. (I) Plot showing ideal condition which 

allows for graded control of low rates of differentiation but with no de-differentiation.
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Fig. 2. A protein architecture that can regulate a 10% annual renewal rate
(A) Steady-state plots when the cooperativity, n, is increased. (B) Sample steady-state plots 

for a system with a single high cooperative feedback loop (n = 12) and 30% log-normal 

noise added to each simulation. (C) Schematic of two system architectures that have the 

same overall cooperativity but different overall noise. Model 1 has one feedback loop with a 

cooperativity of 12. Model 2 has six positive feedback loops, each with a cooperativity of 2. 

(D and E) Simulation results for model 2. An average of 30% log-normal noise was 

randomly added to each simulation. (D) Sample steady-state curves. Plotting the curves with 

R on a log-scale shows that the variability in Ron and Roff is similar (fig. S1C). (E) Results 

of 20,000 simulations showing that such a system can maintain tissue size. At the low 

differentiation rate needed to renew adipose tissue (1.65%, yellow dot), less than 0.1% of 

differentiated cells would lose the differentiated state. (F) The matrix shows the overall 

system noise as a function of number of feedback loops versus cooperativity of the 

individual loops. The colored boxes mark systems with the same total cooperativity (n = 12), 

but with decreasing system noise as the number of feedback loops increases.
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Fig. 3. A method to systematically uncover feedback loops in a protein network
(A) SRM-MS was used to measure changes in nuclear protein concentrations over the 

timecourse of adipogenesis in response to siRNA or chemical perturbations to PPARG (see 

also figs. S10 to S12). OP9 preadipocytes were induced to differentiate into mature 

adipocytes in 4 days by addition of the adipogenic cocktail (dexamethasone, 

isobutylmethylxanthine, and insulin). (Top) Cells were transfected with siRNA targeting 

PPARG (blue) or yellow fluorescent protein (YFP) as a control (black) 24 hours before 

addition of the adipogenic factors. (Bottom) A PPARG agonist (rosiglitazone) or PPARG 

inhibitor (CHIR-99021) was added together with the adipogenic mix. All values were 

normalized to the control value at day 0. Each data point is the average of three biological 

replicates (error bars show standard deviation). A protein was classified as regulated by 

PPARG activity if its abundance in the perturbed versus control (YFP) samples varied 

significantly at one or more time points, P < 0.05 (*) calculated using the student's t test, 

two-tailed, two-sample equal variance. (B) siRNA-mediated depletion of the candidate 

feedback loop partners was used to determine which ones regulate PPARG. The knockdown 

effect in OP9 cells was measured by immunocytochemistry staining for PPARG. Each bar in 

the plots represents ∼10,000 cells. Error bars show standard error. See also fig. S13.
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Fig. 4. Differentiation from pre-adipocyte to adipocyte is regulated by a single module consisting 
of multiple positive-feedback loops connecting back to PPARG
(A) Test for feedback connectivity by directly activating PPARG. The PPARG agonist 

rosiglitazone was titrated into the medium of undifferentiated OP9 cells, and the protein 

abundance of the candidate feedback loop mediators was measured by SRM-MS 48 hours 

later, a time point at which PPARG is maximally expressed (7). Curves show the best fits to 

the data using an optimized Hill coefficient (black) versus a Hill coefficient of 1 (red). (B) 

Schematic of the seven identified feedback loops. (C) Contributions of the identified 

feedback loops to switching pre-adipocytes (low PPARG peak) to adipocytes (high PPARG 

peak) and to preventing de-differentiation. To measure contributions to differentiation, we 

transfected OP9 cells with siRNA 24 hours before the start of the experiment to remove the 

specified feedback loop components. The cells were then stimulated with 1 μM rosiglitazone 

for 24 hours and fixed (left column). To measure contributions to de-differentiation, OP9 

cells were first differentiated into adipocytes by adding 1 μM rosiglitazone to the culture 

media for 48 hours, then transfected with the specified siRNA and fixed 24 hours later (right 

column). PPARG abundance was quantified by immunocytochemistry staining with anti-

PPARG and then imaged.
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