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Abstract
Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We
used single-cell “mass cytometry” to examine healthy human bone marrow, measuring 34
parameters simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and
relative cell size). The signaling behavior of cell subsets spanning a defined hematopoietic
hierarchy was monitored with 18 simultaneous markers of functional signaling states perturbed by
a set of ex vivo stimuli and inhibitors. The data set allowed for an algorithmically driven assembly
of related cell types defined by surface antigen expression, providing a superimposable map of cell
signaling responses in combination with drug inhibition. Visualized in this manner, the analysis
revealed previously unappreciated instances of both precise signaling responses that were bounded
within conventionally defined cell subsets and more continuous phosphorylation responses that
crossed cell population boundaries in unexpected manners yet tracked closely with cellular
phenotype. Collectively, such single-cell analyses provide system-wide views of immune
signaling in healthy human hematopoiesis, against which drug action and disease can be compared
for mechanistic studies and pharmacologic intervention.

Fluorescence-based flow cytometry has been fundamental to the discovery and definition of
major and minor cell subsets of the immune system. Although the outline of hematopoiesis
is generally understood (1), a comprehensive framework of its system-wide properties
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remains to be determined (2). Technological developments in flow cytometry and cell
sorting [the introduction of new fluorophores, such as quantum dots (3)] have paralleled
appreciation of the compartmentalization of function in the hematopoietic system and
contributed to diverse fields, including immunology, stem cells (4, 5), HIV (6), cancer (7),
transcription (8, 9), intracellular signaling (10, 11), apoptosis, cell cycle (12), and
development of cytometry-based clinical diagnostics (13, 14). However, use of flow
cytometry remains practically confined to the measurement of 6 to 10 simultaneous
parameters (15). Analysis at the 11- to 15-parameter range is possible but limited by
compensation needed to correct for spectral overlap that can create a source of confounding
variability (16).

We used transition element isotopes not normally found in biological systems as chelated
antibody tags in atomic mass spectrometric analysis of single cells to create a detailed
response profile of the healthy primary human hematopoietic system with 34 simultaneously
measured cellular parameters. This allowed us to take full advantage of the measurement
resolution of mass spectrometry and apply it to single-cell analysis. Because the method is
largely unhampered by interference from spectral overlap, it allows for the detection of
considerably more simultaneous parameters than does traditional flow cytometry (17, 18).
Combined with its quantitative nature, atomic mass spectrometry measurement creates a
platform with which to conduct multiplexed measurement of single-cell biological
parameters that can exhibit vastly different dynamic ranges during signaling or over time
(such as signaling changes indicated by shifts in protein phosphorylation).

We simultaneously measured 34 parameters in each single cell in human bone marrow (BM)
samples to provide an in-depth analysis of normal human hematopoietic and immunological
signaling overlaid onto a detailed template of cell phenotype. Cell subset–specific signaling
phenotypes of drug action in the face of clinically meaningful physiologic stimuli were
localized to pathway and cell-specific boundaries, with examples in B cell signaling shown.
These provide a system-wide view of signaling behaviors, expanding our view of drug
action while allowing us to limit the functions that certain drugs might have on complex
tissues. Given that this technology can reasonably be expected to allow for as many as 100
parameters per cell (18, 19), it affords an opportunity to increase our understanding of cell
type–specific signaling responses in complex, distributed organs such as the immune
system.

Performance assessment of mass cytometry
The workflow for mass cytometry is comparable with that of fluorescence flow cytometry
(Fig. 1A). Antibodies coupled to distinct, stable, transition element isotopes were used to
bind target epitopes on and within cells. Cells, with bound antibody-isotope conjugates,
were sprayed as single-cell droplets into an inductively coupled argon plasma (created by
passing argon gas through an induction coil with a high radio-frequency electric current) at
approximately 5500 K. This vaporizes each cell and induces ionization of its atomic
constituents. The resulting elemental ions were then sampled by a time-of-flight (TOF) mass
spectrometer and quantified. The signal for each transition element isotope reporter was
integrated as each cell’s constituent ions reached the detector. Currently, TOF sampling
resolution enables the measurement of up to 1000 cells per second. We compared mass
cytometry with conventional nine-parameter fluorescence flow cytometry in analysis of
cytokine signaling through responses in human peripheral blood mononuclear cells
(PBMCs) from two healthy donors (Fig. 1, B to E, and fig. S1). Seven surface antigens
(CD3, CD4, CD8, CD45RA, CD56, CD20, and CD33) and two intracellular phosphoprotein
epitopes [phos-phorylated signal transducer and activator of transcription 3 and 5 (pSTAT3
and pSTAT5)] were measured by means of fluorescence cytometry on two human PBMC
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samples treated with interleukin-2 (IL-2), IL-6, IL-10, granulocyte-monocyte colony
stimulating factor (GM-CSF), or interferon-α (IFNα) to measure cytokine-mediated
signaling responses in specific cell subsets. In traditional flow cytometry, forward scatter
(FSC) and side scatter (SSC) measurements of laser light are used to detect the presence of a
cell and to “trigger” the electronics in order to collate information as a cell “event” (the
window of time during which a cell is measured). Because FSC and SSC are not currently
implemented on the CyTOF platform, alternative parameters providing analogous utility
were included to assist with the discrimination of single-cell events: (i) an antibody to the
surface epitope CD45 (expressed on most cells measured in this study), (ii) a metal-encoded
DNA intercalator to identify nucleated cells (20), and (iii) a derived parameter (“cell
length”) indicating the duration of each cell’s measurement window (18).

Fluorescence (Fig. 1B and fig. S1A) and mass (Fig. 1C and fig. S1B) cytometry analysis
provided comparable results when analyzed via traditional dot plots (fig. S2). Pertinent
qualities, such as reduced CD45RA expression on CD4+ T cells relative to that on CD8+

cells, were reproduced between platforms (Fig. 1, B and C). Despite use of different metrics
for identifying cell events, both platforms yielded quantitatively similar frequencies (P <
0.000001) for 12 manually gated cell populations in the parallel analysis of two separate
door samples (fig. S1C and table S1). Patterns of specific induction of STAT protein
phosphorylation within the CD4+CD45RA+ T cell population demonstrated that both
platforms could equivalently detect pSTAT3, pSTAT5, and dual pSTAT3-pSTAT5
responses to IL-10, IL-2, and IFNα, respectively (Fig. 1D). One qualitative difference
between the two platforms was the mathematical correction required to address spectral
overlap in the fluorescence data (termed “compensation”), a procedure not required with the
atomic mass spectrometer. A second major distinction is the absence of cell-dependent
background signal in the mass cytometry data. Thus, although laser-based flow cytometry
detects signals from cellular autofluorescence, nonactivated cells had mass cytometric
phosphoprotein intensities near zero, indicating very little background antibody binding.
This manifests in atomic mass spectrometry as a narrow grouping of cell events at the low
end of the dot plot axes. Qualitatively and quantitatively (P < 0.000001) similar patterns
were revealed by means of fluorescence-based flow cytometry or mass cytometry in terms
of magnitude of the pSTAT3 and pSTAT5 responses in cell populations across two healthy
peripheral blood samples (Fig. 1E and fig. S1, D to F). An overview of the antibody quality
control with testing on cell lines, human PBMCs, and bone marrow is shown in fig. S11.
Taken together, mass cytometry and traditional fluorescence based approaches can produce
results with equivalent informational value.

Organization and analysis of high-dimensional single-cell data
Taking advantage of the increased dimensionality of mass cytometry, we prepared a set of
reagents to capture a system-wide view of immune cell types from a replicate analysis of
bone marrow mononuclear cells from two healthy human donors. Thirty-one distinct
transition element isotopes were used to label two antibody-staining panels for the study of
healthy human bone marrow mononuclear cells. [Data are publicly available at Cytobank
(www.cytobank.org/nolanlab). An “immunophenotyping” panel was designed that
monitored 13 “core” surface markers and 18 subset-specific cell-surface markers to allow
identification of human hematologic cell types. A “functional” panel contained the 13 core
surface markers and also 18 intracellular epitopes that reflect intracellular signaling states,
such as phosphorylation status of kinase substrates (21). These complementary panels
allowed simultaneous biochemical analysis of intracellular signaling in rare and diverse cell
subsets that were identified through in silico merging of the data. Intracellular signaling
responses were determined by treating cells ex vivo with modulators such as cytokines,
small molecules, or combinations thereof. Perturbation analysis has proven useful in
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causality determinations for signaling at the single-cell level (11, 22-25) and was applied
here to enable cell subset–specific response profiles. An additional three parameters—a
DNA intercalator, cell length, and a cell viability dye (21)—were included in the analysis
panels, creating a total of 34 parameters in each. With an overlap of 13 core surface
antibodies between the two analysis panels and the three shared additional cell features, a
combined total of 52 unique single-cell parameters were measured. The resulting single-cell
data set of bone marrow cells captured a snapshot of the cell types present and their
corresponding regulatory signaling responses throughout development from early human
hematopoietic progenitors to lineage-committed cells.

A central dogma of immunology is that cells at different stages of maturation can be
characterized by the expression of unique sets of proteins on the cell surface. Such “cluster
of differentiation” (CD) markers are routinely used for flow cytometric identification of cell
populations. Although it is convenient to think of cells in different stages of development as
having distinct, regimented profiles, hematopoiesis frequently manifests as a continuum of
CD marker expression connecting the cellular lineage stages (26). Although cells might
pause at recognized stages of development to which we ascribe certain phenotypes, cells
also pass through transient intermediate states that connect parent populations to their
progeny. As they proceed from one stage of development to the next, CD marker sets rise
and fall in accordance with programmed differentiation and environmental contexts. A
conventional display of the relationships between the 31 cell surface markers measured here
on human bone marrow would require greater than 450 biaxial dot plots (fig. S3), making a
comprehensive interpretation of the underlying cellular progression unwieldy, if not
impossible.

We hypothesized that the inherent similarity of cell stages and continuity of the transitions
between cell differentiation states could be used to organize high-dimensional data into
ordered, continuous clusters of similar cell phenotypes that, when projected on a two-
dimensional (2D) plane, would convey the relatedness of these cells in a higher dimensional
space. We leveraged progressive changes in CD marker expression to organize bone marrow
cells in an unsupervised manner, creating a tree-like scaffold for visualization of high-
dimensional intracellular signaling behaviors in various cell types present during
hematopoietic development in the bone marrow (27, 28). To accomplish this, we used
SPADE (spanning-tree progression analysis of density-normalized events), a density
normalization, agglomerative clustering, and minimum-spanning tree algorithm to distill
multidimensional single-cell data down to interconnected clusters of rare, transitional, and
abundant cell populations, which were organized and displayed as a 2D tree plot (Fig. 2A).
Such a tree plot from healthy bone marrow represented the clustered expression of the cell-
surface antigens that were used to build the tree in 13-dimensional space on the basis of the
core surface markers conserved between our two 34-parameter analysis panels (CD3, -4, -8,
-11b, -19, -20, -33, -34, -38, -45, -45RA, -90, and -123) (Fig. 2B). Each node of the plot
encompasses a cluster of cells that were phenotypically similar in the 13-dimensional space
defined by the core surface markers. The approach uses a minimum-spanning tree algorithm,
in which each node of cells is connected to its “most related” node of cells as a means to
convey the relationships between the cell clusters. The number of nodes and ultimately their
boundaries is driven by a user-definable value (21). Each node describes an n-dimensional
boundary encompassing a population of phenotypically similar cells. When connected via
the minimum spanning tree, this provides a convenient approach to map complex n-
dimensional relationships into a representative 2D structure.

As such, related nodes could be mapped into traditionally described immunological cell
populations as determined by the localized expression patterns of 13 directly measured
surface markers (Fig. 2, B to E, and fig. S4A). A summary of evidence supporting these
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annotations and boundaries can be found in table S2. For instance, T cell populations were
annotated on the far right branch of the tree plot based on the high expression of CD3 (Fig.
2C, bright red). The T cell markers CD4 and CD8 were expressed in mutually exclusive
clusters but overlapped with CD3 expression. Density normalization enabled the display of
rare cell types, such as CD34+ progenitor cells, in the same space as the more abundant
differentiated cell types (Fig. 2E). The unsupervised organization of phenotypically related
cell types into adjacent branches, such as CD4 and CD8 Tcells (Fig. 2C), mature and
immature B cells (Fig. 2D), and different clusters of myeloid cells (Fig. 2E) collectively
illustrates that the algorithmic ordering of surface marker similarity can objectively organize
cell types into physiologically relevant compartments.

Although they were not used in the tree-building step, the 18 additional surface markers
from the “immunophenotype”-staining panel were used to confirm and refine cell subset
annotations (Fig. 2F and fig. S4B). These markers were overlaid in an unsupervised fashion
onto the existing tree by assigning each cell from the immunophenotyping experiment to
whichever node contained analogous cells from the functional data set according to the
expression of the shared 13 core surface markers in the registration space. The accuracy of
this automated overlaying approach is supported by the agreement of multiple natural killer
(NK), monocyte, and B cell markers that localized to the appropriate cell populations (Fig.
2F), even though they were not used to direct the tree’s original organization. Although the
tree structure derived from bone marrow data recapitulates many features of hematopoietic
organization and relatedness, it is interpreted here as a map of the phenotypic relationships
between diverse cell types and is not meant to imply a developmental hierarchy. Indeed,
even measuring a large number of cells in a single tissue will fail to capture some
developmental transitions, including (i) rapid activation (release of cytoplasmically
sequestered receptors) (29); (ii) uneven surface marker partitioning during asymmetric cell
division (30); and (iii) organ-specific development outside the assayed organ (maturation of
T cells in the thymus). In this bone marrow data set, several well-defined cell types (such as
T, NK, B, and monocyte) provide landmarks for the organization of the tree and give
context to the nodes encompassing transitional and less-understood cell types. Ultimately,
this approach enabled visualization of 34-dimensional bone marrow data in an intuitive
graphical format. Although the algorithm over-segregated some cell types into redundant
contiguous clusters, this approach has several advantages that complemented the complexity
of this data set: (i) increased resolution captured unexpected and transitional cell types that
escape standard classification strategies; (ii) Unsupervised analysis helped overcome the
bias of subjective gating; and (iii) n-dimensional algorithms leveraged the multi-parameter
mass cytometry data to define cell types on the basis of previously unappreciated, subtle
differences in surface expression. Although we used stochastically selected “seed” cells to
initiate the tree generation along with local similarity clustering and minimum-spanning
trees, the approach is amenable to incorporation of other more deterministic partitioning
approaches that might allow for other standardized tree structure formation.

Ex vivo analysis of healthy human bone marrow signaling
Historically, by detailing immune functions in vivo and in vitro a model of specialized cell
types in immunology and hema-topoiesis were mapped primarily on the basis of expressed
cell surface antigens—many of which were codified by using single-cell analysis and
fluorescence-based cytometry (31-34). Because cell-surface proteins represent only a small
proportion of the repertoire of gene products governing cell behavior, intracellular proteins
(33) are also critical in defining cell types. Because surface and intracellular molecules work
together in concert to support different cellular roles, it might be expected that proteins
governing specialized immunological cell functions (T cell receptor, B cell receptor, or
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cytokine receptors) are modulated in a coordinated manner as cells transit developmental
pathways from stem cell precursors to differentiated endpoints.

We monitored 13 surface markers to identify immune cell types and 18 intracellular epitopes
in order to interrogate intracellular signaling biology in healthy human bone marrow. We
examined the signaling dynamics of these 18 intracellular markers in response to 13 ex vivo
stimulation conditions (such as IL-7 or GM-CSF), including those shown to have prognostic
value in leukemia, lymphoma, and myeloproliferative disorders [such as granulocyte colony
stimulating factor (G-CSF)] (10, 35-37). Cell populations were first defined on the basis of
conventional surface expression gates, ultimately identifying 24 immunological populations
in human bone marrow (fig. S5). The induced intracellular signaling responses (changes in
phosphorylation state) in these populations, as compared with those of an untreated control,
were summarized as a heat-map (Fig. 3A). Unsupervised, hierarchical clustering of the
phosphorylation responses allowed distinction of biologically related cell types (T cell
subsets) by their signaling behavior alone, demonstrating that signaling capacities are
closely tied to cellular lineage (fig. S6). Several canonical signaling responses that mapped
to manually determined cell types are shown in Fig. 3B. These extremely specialized
responses, such as the tight restriction of IL-7–mediated pSTAT5 responsiveness in T cells
(Fig. 3B, arrow 4) (38) or lipopolysaccharide (LPS)–stimulated phosphorylation of the
mitogen-activated protein kinase (MAPK) p38 (p-p38) responsiveness in monocytes (Fig.
3B, arrow 5) (39), suggest the existence of correlations between signaling events and surface
marker–defined boundaries, thus presenting an opportunity to establish a unified view of
immune signaling during hematopoiesis.

With ~104 signaling observations (Fig. 3A and fig. S10A) for each replicate bone marrow, it
was necessary to filter the data set in order to arrive at the most significant and potentially
novel observations. Using a one-sample t-test, over 500 observations were observed with a
Bonferroni-adjusted significance of P < 0.05 in each replicate bone marrow for a total of
860 unique responses (fig. S7 and table S3). Of the 248 observations overlapping between
patient marrows, 28 belonged exclusively to cells residing in the human hematopoietic
progenitor cell compartment [hematopoietic stem cells (HSCs), multipotent progenitors
(MPPs), granulocyte/macrophage progenitors (GMPs), and megakaryocyte-erythroid
progenitors (MEPs)], including G-CSF induction of pSTAT3 in the most primitive cell
types, HSC and MPP (40). This same signaling behavior correlated with negative prognosis
in acute myeloid leukemia (10), suggesting that, as in the case of other malignancies, there
may be a selective advantage for cells to mimic the properties of their most primitive
counterparts.

For a more objective and fine-grained view of these cell type–specific responses, free of the
biases of conventional 1D and 2D surface marker categorization, we overlaid the signaling
behavior of the 18 functional epitopes on the tree structure using a similar approach as
described for the immunophenotype staining panel (Fig. 2), allowing the intracellular
signaling status to be visualized on the previously annotated tree structure (Fig. 3C). Nodes
were colored according to the magnitude of the difference in their median responses relative
to the untreated control. This effectively eliminated the subjectivity of manual classification
and improved the resolution of the heatmap (Fig. 3A), separating the 24 manually assigned
cell types into 282 logically connected nodes of phenotypically distinct, but locally similar,
cell clusters.

The stimuli that corresponded closely with cell types identified manually in the heatmap also
exhibited appropriately specific responses when overlaid on the tree structure—specifically,
IL-7/pSTAT5 in T cells, B cell receptor (BCR)/phosphorylated B cell linker protein
(pBLNK) exclusively in immature and mature B cells, and LPS/p-p38 restricted to the
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monocyte compartments (Fig. 3C), with the latter corresponding to the expression of the
LPS co-receptor (CD14) (Fig. 2F). A complete set of the effects of 13 stimuli on 18 different
functional markers is presented as tree plots (fig. S8) along with a confirmatory analysis of a
second bone marrow (fig. S9).

With multiple matching canonical signaling pathways to validate the approach, we
examined the data set for previously unidentified or unexpected signaling behaviors. For
example, although pSTAT5 activation by IL-3 (Fig. 3D) was commensurate with IL-3Rα
(CD123) expression levels (Fig. 3D) in myeloid cells, IL-3–mediated pSTAT3 activation
was unexpectedly absent in mature B cells in spite of abundant presence of the receptor (Fig.
3D, blue arrow). This suggests that mature B cells share some, but not all, IL-3 signaling
mechanisms with myeloid cell types.

Other responses, such as phosphorylation of the protein tyrosine kinases Btk and Itk
mediated by IFNα or ribosomal protein S6 by G-CSF, were less tightly confined, exhibiting
a range of activity that spanned multiple cell types (Fig. 3E). Yet other responses showed a
signaling “gradient,” as exemplified by pervanadate (PVO4)–mediated disruption of the
kinase/phosphatase balance upstream of the adenosine 3′,5′-monophosphate (cAMP)
response element–binding protein (CREB) transcription factor. A gradient of responses,
highest in HSCs, decreased gradually along the path of B cell maturation (Fig. 3E). A range
of NFκB signaling responses, as measured by monitoring total IκBα levels, were observed
across monocyte, NK and T cell subsets following TNFα stimulation (Fig. 3E, light blue
nodes). As in the CREB response to PVO4 described above (Fig. 3E), the consistency of
responses within the different T cell subsets suggests tightly regulated differences in
signaling molecules that underlie the discrete functional roles of these related cell types.
Together, these varied signaling responses across algorithmically defined partitions dictated
solely by surface marker immunophenotype imply the existence of different classes of
developmental transition points: (i) precise transitions, which are characterized by
coordinated changes in cell signaling, such as the IL-7/pSTAT5 response in T cells and the
LPS/p-p38 response in monocytes (Fig. 3C), and (ii) continuous developmental
progressions, which are characterized by gradual gain or loss of expression of certain
kinases or phosphatases, as highlighted by PVO4/pCREB (Fig. 3E) in B cells (28). The latter
is indicative of fine-grained changes in regulatory architecture that track with immuno-
phenotype within conventionally defined hema-topoietic compartments and provides an
opportunity to explore the mechanisms that define these distinctive regulatory phenomena.

Confirmation of progression-specific signaling in hematopoietic
development

To investigate more closely the signaling transitions and the observed signaling
heterogeneity inside seemingly homogeneous cell compartments, we mapped changes in B
cell signaling as they coincided with the progression of B cell maturation. Using the cell
events comprising the Pre-B II through IL-3Rα+ mature B cell subsets defined in the
SPADE plot (Fig. 4A) (see table S2 for surface marker definitions of B lineage stages), we
used an independent statistical method—principal component analysis (PCA)—to distill the
dimensionality of 13-parameter surface marker data to a single linear “progression axis.”
Principal component analysis found that the first principal component—the axis of greatest
variation in the data (explaining 23% of the variation)—followed known markers of B cell
maturation. This progression axis was primarily defined by increasing CD20 expression and
decreasing CD38 expression, with smaller contributions from increasing CD45RA (Fig. 4B).
The match between the first principal component and the established sequence of B cell
development (26, 41) is further supported by additional markers, such as the increase in
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CD19 and CD123 along this axis of progression. Projecting cells onto this progression
trajectory defines a continuum of cells, rather than distinct subsets (Fig. 4A, gray line).

Although no intracellular parameters were used in defining the PCA progression, many
intracellular markers demonstrated a smooth and gradual change along this axis of
progression, providing the opportunity to explore how signaling changes during B cell
development. Abundance of the cell cycle–associated nuclear protein Ki67 at basal state
revealed a transition point characterized by a peak in the amount of Ki67 (cycling cells)
followed by a concomitant increase in CD20 expression (Fig. 4B). The inverse relationship
between these parameters suggests that the continuous production of B cells in bone marrow
is paused when CD20 is gained, thus coinciding with the exit of immature B cells from the
marrow (42). The dramatic increase in the abundance of CD20+ B cells shortly after this
transition point (Fig. 4, A and B) may indicate the presence of a reservoir of dormant CD20+

mature B cells in bone marrow awaiting antigen activation (43).

Overlaying the basal (untreated) intensities of phosphorylated extracellular signal–regulated
kinase 1 and 2 (pERK1/2), Src homology protein tyrosine phosphatase 2 (SHP2), SLP-76/
BLNK (SLP-65), pPLCγ2, and CREB onto the PCA axis revealed that basal
phosphorylation of these molecules at the measured sites was relatively constant across
differentiating B cell types (Fig. 4C). However, induced phosphorylation of these sites by
PVO4 and BCR (Fig. 4C) clarified the heterogeneity of PLCγ2 phosphorylation observed
after PVO4 treatment in the tree plots (Fig. 5B), revealing instead a gradual decline that
tracked with maturation. An opposing trend was observed in pPLCγ2 responsiveness to
BCR activation, which exhibited an increase that closely tracked with CD20 expression
(Fig. 4C). The same trend was observed for pCREB pERK1/2, pSLP-76, and pSHP2,
suggesting a parallel and coordinated change in signaling pathways. In contrast, mature B
cells lacked a PVO4-sensitive mechanism, but the same set of signaling mediators appeared
to be repurposed in a coordinated phosphorylation response to BCR activation (Fig. 4C).
These results suggest that in pre-B II and immature B cells, but not mature B cells, pPLCγ2
activation is increased by an upstream tyrosine kinase with tightly regulated activity. This
example supports the existence of parallel signaling mechanisms affecting these nodes
(SLP-76, SHP2, PLCγ2, and ERK1/2) that gradually switches along with the expression
continuums determined by external immunophenotypic markers. Together, these parallel
continuums could define each cell’s functional role within the greater hematopoietic system.

Effect of pharmacologic kinase inhibition on normal hematopoietic
signaling

Having established a baseline of healthy signaling responses to a panel of stimuli, we
examined cell type–specific pharmacologic effects of some well-characterized kinase
inhibitors. These included the Janus kinase (JAK) I inhibitor and MAPK kinase (MEK)
inhibitor U0126. Predictably, when combined respectively with G-CSF and PMA/
Ionomycin treatments of human BM (figs. S8 and S9) reliable and specific inhibition,
respectively, of STAT3 and ERK1/2 phosphorylation are observed, which is consistent with
previously reported observations that used conventional single-cell analysis platforms (44).
Although interesting results were obtained with these inhibitors, we expanded to focus on
dasatinib, a clinically relevant small-molecule kinase inhibitor. Dasatinib was originally
introduced as a second-line BCR-ABL kinase inhibitor for imatinib-resistant chronic
myelogenous leukemia (CML) (45). Unlike imatinib, dasatinib is estimated to inhibit over
100 kinases besides Abl—particularly, Src family kinases (SrcFKs) (46). This promiscuity is
credited for dasatinib’s therapeutic efficacy in other malignancies (47). However, both
malignant and healthy cells must integrate the effects of a drug with myriad other
environmental inputs. We postulated that assessing drug activity in the presence of ex vivo
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stimuli may reveal interactions that underlie side effects for patients or expose new
opportunities for pathway intervention.

Using the same healthy human bone marrow, we selected a panel of ex vivo stimuli that
induced signaling in cell subsets either broadly [phorbol 12-myristate 13-acetate (PMA)/
ionomycin and PVO4] or specifically (Flt3-L, IL-7, and BCR), after 30 min of pretreatment
with dasatinib. The results showed several examples of pathway-specific inhibition that fit
with expected roles of dasatinib (fig. S10). For instance, activation of pERK1/2 in immature
and mature B cells through BCR cross-linking was completely suppressed by dasatinib (Fig.
5A), most likely through inhibition of Lyn, a critical SrcFK downstream of the B cell
receptor (48). In contrast, PMA/ionomycin–mediated activation of pERK1/2 was unaffected
by dasatinib, thus confirming the observation that protein kinase C (PKC) signaling is
mediated by dasatinib-insensitive kinases (Fig. 5A) (49).

Phosphorylation patterns of PLCγ2 after PVO4 induction (Fig. 5B) were similar to PMA/
ionomycin induction of pERK1/2 in the absence of dasatinib. However, dasatinib had a
uniformly suppressive effect upon PVO4 induction of PLCγ2 in all cell types (Fig. 5B),
whereas it minimally inhibited induction of Erk1/2 upon PMA/ionomycin stimulation (Fig.
5A). Thus, in contrast to the dasatinib-insensitive PKC pathway described above (Fig.5A)
the PVO4-sensitive cascade upstream of PLCγ2 was inhibited by dasatinib in all cell types,
including platelets. This result may reconcile a clinical observation of platelet dysfunction in
CML patients treated with dasatinib (50), in which the inhibition of the SFKs upstream of
PLCγ2 (Lyn and Fyn) is the proposed mechanism of dysregulation.

In B cells, dasatinib prevented phosphorylation of all measured components of the BCR
signaling cascade (Syk, SHP2, Btk, BLNK, and PLCγ2) regardless of whether activation
was through BCR crosslinking or PVO4 treatment (Fig. 5B and fig. S8C). This off-target
activity may underlie the efficacy reported in a patient with chronic lymphocytic leukemia, a
B cell malignancy (51). However, these effects may also have undesirable consequences.
For example, suppression of subtle pro-survival (“tonic”) B cell signaling (52) may account
for the decline of circulating B cells observed in CML patients undergoing high-dose
dasatinib therapy (53).

Disruption of the tyrosine kinase/phosphatase equilibrium with PVO4 also caused potent
phosphorylation of STAT5 in nearly all cell types, but this was completely abrogated by
dasatinib in all but the plasmacytoid dendritic cells (Fig. 5C). This time, dasatinib had no
effect on the exclusive induction of STAT5 phosphorylation shown in T cells by IL-7 (Fig.
5C). The suppression of pSTAT5 in PVO4-treated myeloid cells (Fig. 5C) supports the
alternative mechanism of SrcFK activation of STAT5 activity and resembles the effect of
dasatinib in a BCR-ABL–positive CML cell line (54).

That these pleiotropic downstream signaling molecules (ERK, STAT5, and PLCγ2) can be
potently activated via both dasatinib-sensitive and -insensitive pathways highlights the
drug’s context and cell-type specificity for different signaling mediators. Thus, the
unchecked endogenous tyrosine kinase activity revealed by PVO4 may unveil differences in
druggable signaling architecture between cell types by mimicking the dysregulated signaling
of cells susceptible to disease or dysfunction. Additionally, as underlined by these limited
examples, the dasatinib data set provided a mechanistic blueprint of regulatory cell signaling
events that could potentially be exploited in later clinical applications.

Given the diverse cell type–specific effects of dasatinib, we investigated whether drug
sensitivity would follow immunophenotypic progressions as observed above (Fig. 4). Cells
representing HSC through pre-B I phenotypes were selected from the SPADE plot and
subjected to principal component analysis (Fig. 5D). Unsupervised PCA detected the
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phenotypic progression in early B cell development as a single linear progression axis
defined primarily by CD19, CD34, and CD33 intensities (Fig. 5E). This axis recapitulated
the expected developmental sequence and independently verified the ordering identified by
the SPADE algorithm (Figs. 2 and 5D). The basal intensities of four intracellular signaling
mediators (pSHP2, pCREB, pSrcFK, and p-p38) were unchanged throughout the PCA
progression axis (Fig. 5F) and exhibited similar potential for activation by PVO4 (Fig. 5G).
In contrast, these same signaling mediators exhibited a gradual increase in sensitivity to
dasatinib correlated with maturation (Fig. 5H). This observation may be attributable to high
expression of drug efflux pumps in the most immature cell types (HSCs and MPPs) (55).
Alternatively, because PVO4 reveals endogenous kinase activity by repressing tyrosine
phosphatases these observations may indicate a gradual shift in the phosphatase/kinase
balance during early B cell maturation. Altogether, this approach provides insight into how a
high dimensional analysis can call attention to potential off-target effects and new
therapeutic opportunities that can be leveraged at all stages of the drug development
pipeline.

Discussion
In this study of the immune system, coupling classical phenotypic organization to cellular
functional responses was unrestricted by the inherent limitations imposed by fluorescence.
This merging provided a systems-level view of human hematopoiesis and immunology from
the perspective of immunophenotype and coupled it to underlying events as measured
through receptor engagement and small-molecule drug actions. Although yielding both
qualitatively and quantitatively identical measurements when compared (Fig. 1 and fig. S1),
current mass cytometry detection may not be as sensitive as fluorescent detection of the
most quantum-efficient dyes (Fig. 1, D to E). However, the differences in sensitivity
between mass cytometry isotopes used here are within a twofold range (19), whereas
quantum yields of routinely used fluorescence dyes vary across a 10-fold range and require
compensation for spectral overlap. This combined with the lack of background signal
(autofluorescence) and the substantially greater number of parameters that can be
simultaneously analyzed makes mass cytometry an attractive platform currently available
for highly multiplexed single-cell analysis.

The single-cell functional outcome data set (free to explore and available online) both
confirmed expected immunological phenomena and yielded unexpected observations related
to the spectrum of cell type–specific signaling faculties and drug responses that arise during
hematopoietic development. For instance, there was a lack of IL-3 regulation of STAT3 in
mature B cells, despite the presence of CD123 (IL-3 receptor–α chain) (Fig. 3).
Additionally, both precise and more gradual continuous signaling transitions observed in the
data set across developing cell subtypes (Fig. 3) represent some of the most interesting
biological insights. Many of these precise transitions correlate well with receptor expression
measured here [IL3/CD123 and LPS/CD14 (Fig. 3 and figs. S4 and S8) and known from
previous work (IL7/pSTAT5 based on IL7 receptor expression on T cells (56)]. As for the
continuous transitions, more broadly acting conditions such as PVO4 treatment revealed
more subtle phosphorylation changes (Figs. 3 to 5) that probably reflect equally subtle
changes in the kinase/phosphatase expression levels upstream of each of these measured
targets, paralleling the phenotypic transitions.

These observations not only offer an opportunity to investigate the mechanism underlying
the differences but may also provide a possibility to design drugs that might more precisely
modulate disease states. There were many examples of signaling that corresponded with
known distinct hematopoietic stages as well as multiple examples of progressive signaling
responses across continuums of related cell types. We expect that a deeper mining of this
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and additional data sets will reveal many unexpected, system-wide correlations that could
initiate new forms of mechanistic inquiry beyond what is currently possible with
conventional techniques.

The extension of this analysis pipeline to preclinical settings can provide new insights into
the mechanisms of diseases that perturb hematological function and could help pinpoint the
true specificity and efficacy of drugs designed to restore the system to homeostasis.
Expansion of this technology to additional parameters per cell (18, 19) can be enabled by the
use of other isotopes and binding agents—such as with isotopically enriched nanocrystals
and new metal chelators. Combination of the increased availability of parameters in this
platform with the high-throughput methods previously demonstrated in fluorescence flow
cytometry [fluorescent cell barcoding (57 ) and drug screening (44)] opens avenues for
massively multiplexed single-cell assays. Opportunities exist to extend the repertoire of
transition element isotope reporter–enabled reagents to mimic (and potentially improve on)
many of the assayable capabilities of fluorophores. Together, these advances offer an
opportunity to delve deeper into signaling, studying entire pathways in cellulo, and thus
explore the developmental functions of the immune system as a whole. Such studies of
normal immune function can act as a backdrop to better understand how cancer,
inflammatory, and autoimmune diseases affect or disable system-wide immune functions.
An important next step will be the unification of these single-cell systems studies with other
“-omic” (such as genomic, epigenomic, metabolomic, and proteomic) approaches to lead to
an integrated view of how disease manifests and the ways we can precisely correct
pathologic processes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Mass cytometry profiling of immune cell response patterns. (A) Work-flow summary of
mass cytometry analysis. Cells are stained with epitope-specific antibodies conjugated to
transition element isotope reporters, each with a different mass. Cells are nebulized into
single-cell droplets, and an elemental mass spectrum is acquired for each. The integrated
elemental reporter signals for each cell can then be analyzed by using traditional flow
cytometry methods as well as more advanced approaches such as heat maps of induced
phosphorylation and tree plots. (B and C) Representative antibody surface-staining results
and cell population definitions (“gating”) for (B) fluorescence and (C) mass cytometry
analysis of fixed PBMCs from the same donor. Replicate analysis of a second donor is
provided in (21) (Fig. S1A and S1B). *Pearson correlation between frequencies measured by
fluorescence or mass cytometry, including both donors (r = 0.99, P < 0.000001, two-tailed t
test) (table S1 and fig. S1C). (D) Induction of STAT3 and 5 phosphorylation by various ex
vivo stimuli in naive CD4 +CD45RA+ T cells [(B) and (C), red boxes] as measured by (top)
fluorescence and (bottom) mass cytometry. Red arrows indicate the expected shift along the
STAT phosphorylation axes. (E) Heatmap summary of induced STAT phosphorylation in
immune populations from the PBMC donor defined in (B) and (C) [column headers refer to
blue polygons in (B) and (C)]. Responses to the indicated stimuli in each row were
measured by (top) fluorescence and (bottom) mass cytometry. Color scale indicates the

Bendall et al. Page 14

Science. Author manuscript; available in PMC 2012 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



difference in log2 mean intensity of the stimulated condition compared with the
unstimulated control. Signaling responses of a second donor are provided in (21) (fig. S1D).
**Pearson correlation between signaling induction measured by fluorescence or mass
cytometry, including both donors [pSTAT3: r = 0.92; P < 0.000001, two-tailed t test (fig.
S1E); pSTAT5: r = 0.89, P < 0.000001, two-tailed t test] (figs. S1E and S1F).
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Fig. 2.
SPADE links related immune cell types in a multidimensional continuum of marker
expression. (A) Summary of SPADE analysis. Single-cell data are sampled in a density-
dependent fashion so as to reduce the total cell count while maintaining representation of all
cell phenotypes. Neighboring cells are then grouped by unsupervised hierarchical clustering.
Resulting nodes (defined as those cells within a boundary of an n-dimensional hull) are then
linked by a minimum-spanning tree, which is flattened for 2D display.(B)
Immunophenotypic progression in healthy human bone marrow. A tree plot was constructed
by using 13 cell-surface antigens in healthy human bone marrow. 18 additional intracellular
parameters were acquired concurrently but excluded from tree construction. The size of each
circle in the tree indicates relative frequency of cells that fall within the 13-dimensional
confines of the node boundaries. Node color is scaled to the median intensity of marker
expression of the cells within each node, expressed as a percentage of the maximum value in
the data set (CD45RA is shown). Putative cell populations were annotated manually (table
S2) and are represented by colored lines encircling sets of nodes that have CD marker
expression emblematic of the indicated subset designations. (C) Overlaid expression
patterns of CD3, CD8, and CD4. Three markers, along with CD45RA (B), were used in
clustering that helped define T cell lineages. Color scale is as described in (B). (D) Overlaid
expression patterns of CD19, CD20, and CD38. Three markers were used in clustering that
helped define B cell lineages. Color scale is as described in (B). (E) Overlaid expression
patterns of CD34, CD123, and CD33. Three markers were used in clustering that helped
define myeloid and progenitor cell lineages. Color scale is as described in (B). (F) Overlaid
expression of complementary surface markers from a staining panel with 18 additional
surface markers (fig. S4) by using the 13 core surface markers as landmarks (21). Overlaid
expression patterns are shown for eight complementary surface markers that helped to
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further define the myeloid (CD13, CD14, and CD15), B cell (CD10), and NK/T cell (CD7,
CD56, CD161, and CD16) portions of the SPADE representation. These markers were not
used for tree construction. Color scale is as described in (B).
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Fig. 3.
Signaling functions mark developmental transitions in hematopoietic progression. (A) A
heatmap summary, ordered developmentally by cell type and stimulation condition, of the
status of 18 intracellular functional markers in cells treated with 1 of 13 biological and
chemical stimuli. (Left) Abbreviations refer to recombinant human proteins, except BCR, B
cell receptor cross-linking; LPS, lipopolysaccharide; PMA/Iono, phorbol-12-myristate-13-
acetate with ionomycin; and PVO4, pervanadate. Single-cell data from healthy human bone
marrow were manually divided (“gated”) into 24 conventional cell populations (fig. S5)
according to 13 surface markers and DNA content. Signaling induction was calculated as the
difference of inverse hyperbolic sine (arcsinh) medians of the indicated ex vivo stimulus
compared with the untreated control for each manually assigned cell type (21). Each row
within a given stimulus group (gray bars) indicates the signaling induction of 1 of 18
intracellular functional markers (bottom). A subset of conditions (red numbers) was
highlighted for further discussion in (B). (B) Magnified view of the conditions marked in
(A). A subset of these signaling responses (blue boxes) are shown as SPADE plots [(C) to
(E)] to investigate correlations between signaling function and differences in
immunophenotype as discussed in the text. (C) Canonical, cell type–specific signaling
functions. Stimulation by IL-7, BCR, or LPS each induced phosphorylation of STAT5 in T
cells, BLNK (SLP-65) [detected with an antibody raised against pSLP-76 (21)] in B cells,
and p38 MAPK in monocytes, respectively. Signaling induction for each node in the
SPADE diagram was calculated as the difference of arcsinh median intensity of the
indicated ex vivo stimulus compared with the untreated control. (D) Correlation of IL-3–
mediated induction of pSTAT3 and pSTAT5 with IL-3Ra expression [(Left) color scale as
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described in Fig. 2B] in myeloid and B cells. The B cell population that did not
phosphorylate STAT3 in response to IL-3 stimulation is indicated (blue arrow). All
nucleated cell subsets, including IL-3Rα+ B cells, exhibited pSTAT3 induction in response
to IFNα stimulation. Signaling induction calculated as in (C). (E) Examples of
phosphorylation responses that paralleled immunophenotypic progression identified by the
SPADE algorithm. Changes in Btk/Itk, S6, CREB phosphorylation, and total IκBα are
shown in response to IFNα, G-CSF, PVO4, and TNFα, respectively. Signaling induction is
calculated as in (C).
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Fig. 4.
PCA confirms that cellular signaling potentially tracks with the immunophenotypic
continuum in B cell subsets. (A) Using the SPADE representation (right), cells assigned to
pre-B II, immature B, mature B, and IL-3Rα+ mature B cell populations were selected for
PCA in 13 dimensions defined by the core immunophenotypic markers used in both panels.
The relative frequencies of the four B cell populations are shown as stacked bars in 1%
windows along the phenotypic progression axis (colors correspond to key at right); the
number of cells in each window is expressed as a proportion of the sample subjected to PCA
(gray line). (B) The measured intensities of five immunophenotypic markers (CD45RA,
CD19, CD20, CD38, and CD123) along the phenotypic progression axis. These markers
captured the majority of the phenotypic changes observed here during B cell maturation.
Intracellular Ki67 expression, an indicator of cellular proliferation, was not used in defining
the PCA axis but was among the 18 functional markers that were measured concurrently at
thesingle-cell level.(C) Phosphorylation of ERK1/2, SLP-76(BLNK/SLP-65), PLCγ2,
CREB, and SHP2 overlaid on the PCA progression axis. These and other functional epitopes
were not used in the PCA axis construction. The top plot displays the basal levels
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(untreated) of these phosphorylated epitopes in the untreated sample. Subsequent plots
display induced changes in phosphorylation in response to PVO4 and B cell receptor cross-
linking relative to the untreated control.
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Fig. 5.
Multiplexed mass cytometry analysis reveals diverse signaling dynamics in response to the
kinase inhibitor agent dasatinib. (A) SPADE plots of exemplary cell type–specific inhibitory
effects of dasatinib. Phosphorylation of ERK1/2 was sensitive to dasatinib when induced
with BCR cross-linking but not when induced with PMA/ionomycin. Signaling induction for
each node in the SPADE diagram was calculated as the difference of arcsinh median of the
indicated ex vivo stimulus compared with the untreated control. (B) T lymphocytes
exhibited STAT5 phosphorylation in response to IL-7 in the presence of dasatinib with
similar magnitudes as the response observed without drug. PVO4 induction of STAT5
phosphorylation was inhibited by dasatinib in all but plasmacytoid dendritic cells.
Calculated as in (A). (C) Blymphocytes exhibited specific PLCγ2 phosphorylation in
response to receptor cross-linking that was completely abolished in the presence of
dasatinib. PLCγ2 phosphorylation was relatively large in all but B lymphocyte lineages in
the presence of PVO4 but was inhibited completely by dasatinib treament in all cells.
Calculated as in (A). (D) Using the SPADE representation, cells corresponding to HSC,
MPP, pro-B, and pre-B I cell populations were selected for PCA of the 13 core
immunophenotypic markers. The relative frequencies of the four progenitor cell populations
are shown as stacked bars in 1% windows along the phenotypic progression axis (colors
correspond to key at right); the number of cells in each window is expressed as a proportion
of the sample subjected to PCA (gray line). (E) The measured intensities of six
immunophenotypic markers (CD34, CD33, CD19, CD20, CD38, and CD123) along the
progression axis. These markers captured the majority of the phenotypic changes observed
here during progenitor cell maturation. (F) Basal (untreated) phosphorylation levels of p38,
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SrcFK, CREB, and SHP2 overlaid on the phenotypic progression axis. These and other
functional epitopes were not used in the PCA axis construction. (G) Induced changes in
phosphorylation of p38, SrcFK, CREB, and SHP2 in response to PVO4 compared with
untreated control. Signaling induction is calculated as in (A). (H) Suppression of normal
PVO4 response by dasatinib. Suppression index is calculated as the signaling induction by
PVO4 with dasatinib pretreatment, minus the signaling induction by PVO4 alone.
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