
ar
X

iv
:0

90
6.

08
31

v2
  [

co
nd

-m
at

.m
es

-h
al

l] 
 2

0 
O

ct
 2

00
9

Fluxonium: single Cooper pair circuit free of charge
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The promise of single Cooper pair quantum circuits based on tunnel junctions
for metrology and quantum information applications is severely limited by the
influence of “offset” charges – random, slowly drifting microscopic charges
inherent to many solid-state systems. By shunting a small junction with the
Josephson kinetic inductance of a series array of large capacitance tunnel
junctions, thereby ensuring that all superconducting islands are connected to
the circuit by at least one large junction, we have realized anew superconduct-
ing artificial atom which is totally insensitive to offset charges. Yet, its energy
levels manifest the anharmonic structure associated with single Cooper pair
effects, a useful component for solid state quantum computation.

Electric charge can be manipulated at the level of a single charge quantum (1) in two types
of superconducting circuits with different topologies. The minimal example of the first type of
circuit is the Cooper pair box, which consists of an isolatedsuperconducting electrode (“island”)
connected to a superconducting reservoir on one side by a small tunnel junction, and on the
other side by a gate capacitance in series with a voltage source. The dynamics of the island is
described by two variables: the integer number of Cooper pairs occupying the island and its
conjugate, the2π-cyclic superconducting phase difference between the island and the reservoir.
The junction area must be chosen sufficiently small such thatthe electrostatic energy of the
island due to an extra Cooper pair is larger than the Josephson energy of its coupling to the
reservoir, thus confining fluctuations of the number of Cooper pairs below unity. Stated in
electrical engineering language, one needsZJ & RQ, where the junction reactive impedance
ZJ = (LJ/CJ)

1/2 is defined by the Josephson characteristic inductanceLJ and capacitance
CJ (2), and where the superconducting impedance quantum is givenbyRQ = ~/(2e)2 ≈ 1 kΩ,
denoting Planck’s constant~ and the charge quantume. The second type of circuit is based on
a superconducting loop connecting the two electrodes of a small junction with an inductance
which exceedsLJ . The circuit conjugate variables are now the magnetic flux generated by the
persistent current in the loop and the displacement charge on the plates of the small junction
capacitance. WhenZJ & RQ, the large loop inductance is submitted to quantum fluctuations
of flux larger than the flux quantumΦ0 = 2π~/2e, and therefore according to Heisenberg
principle, the junction charge fluctuations are reduced below the value2e.

In practice, the realization of both circuit types faces fundamental difficulties. Islands are
exposed to random electric fields due to fluctuating charged impurities which are ubiquitous
in most solid-state environments and whose compounded effect is described by a noisy offset
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charge. Although the fully developed charging effects weredemonstrated for the Cooper pair
box (3,4), it soon became clear that the low-frequency offset chargenoise was a major source of
decoherence for charge qubits derived from this device (4–7). This state of affairs has prompted
the development of alternative superconducting qubits based on large junctions withZJ ≪ RQ,
avoiding the single Cooper pair regime and the related charge offset problem (8–10). On the
other hand, implementing the island-free circuit, which isimmune to charge offset noise, is an-
other hard problem. This is because any finite-length wire with inductanceL always comes with
self-capacitanceC which reduces the total charging energy of the circuit and therefore steers
it away from the charging regime, unless(L/C)1/2 ≫ RQ. In fact, a purely electromagnetic
inductance is incompatible with the single Cooper pair effects since(L/C)1/2 is then bounded
by the vacuum impedance(µ0/ε0)

1/2 ≈ 377 Ω < RQ, µ0 andε0 being vacuum permeability
and permittivity (11,12).

In this paper, we present experimental results on a novel single Cooper pair circuit based on
a superconducting loop, which solves both the inductance and the offset charge noise problems.

The small junction of our circuit is shunted by a series arrayof carefully chosen larger
area tunnel junctions (Fig 1A-C). Here, all islands are connected to the rest of the circuit by
at least one large junction so that quasistatic offset charges on all islands are screened. The
large capacitances of the array junctions prevent phase slips within the array, and for excitations
whose frequencies are below the junction plasma frequency,the array effectively behaves as
an inductive wire. By choosing a sufficiently large number ofarray junctions it is possible to
create an inductance exceeding that of the small junction. At low energies, the loop is effectively
described by the loop flux̂Φ and the small junction chargêQ, satisfying[Φ̂, Q̂] = i~.

To form a charge offset-free inductively shunted junction,four conditions involving the ef-
fective inductanceLJA and capacitanceCJA of theN array junctions are required: (i)NLJA ≫

LJ , (ii) e−8RQ/ZJA < ε ≪ 1, (iii) N e−8RQ/ZJA ≪ e−8RQ/ZJ , and (iv)N < (CJA/Cg)
1/2. In

the first relation (i), we simply estimate the total array inductance to beNLJA and require that
it exceeds the small junction inductance, allowing it to support the large flux fluctuations of
the loop. The second relation (ii), whereZJA = (LJA/CJA)

1/2 is the array junction reactive
impedance, dictates the minimum size of the array junctionsnecessary to reduce (13) the un-
controlled offset charge on the islands of the circuit belowthe desired value of the order of
2e × ε. The third relation (iii) ensures that the inductive role ofthe array is not jeopardized by
quantum phase slips (14). Specifically, the probability amplitude of a phase slip event within
the array (l.h.s.) must be negligible compared to that in thesmall junction (r.h.s.). According to
relation (iii) a fluxon tunnels in and out of the loop predominantly via the small junction, thus
effectively erasing the discrete character of the array. Lastly, relation (iv) states that the induc-
tance of the array is not shunted by the parasitic capacitancesCg of array islands to ground. It
is obtained by estimating the array parasitic resonance frequency to be(LJAN × CgN )−1/2,
and requiring that it is larger than the junction plasma frequency(LJACJA)

−1/2. Remarkably, it
is the relation (iv) which, with present junction technology, most severely limits the maximum
number of junction in the array and, thus, its maximum inductance.

We have implemented the above array proposal and constructed a new superconducting arti-
ficial atom which we have nicknamed “fluxonium”. It containsN = 43 Al-AlOx-Al Josephson
junctions (15) such thatZJA ≃ 0.5RQ and a small junction withZJ ≃ 1.5RQ (16). The above
four conditions being realized, the fluxonium can be modelled (Fig. 1D) as a small junction
shunted by an inductanceLA (17). The three characteristic energies of this model, namely
EL = (Φ0/2π)

2/LA, EJ = (Φ0/2π)
2/LJ andEC = e2/ (2CJ) have values corresponding to

0.52 GHz, 9.0 GHz and2.5 GHz, respectively. The additionalLRCR resonator, capacitively
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Figure 1: (A) Sketch of a small Josephson junction shunted byan array of larger area junctions.
The two superconducting leads of the small junction are coupled capacitively to a quarter-wave
microwave resonator, a “parallel wire” transmission line shorted on the opposite end. The
resonator itself is probed capacitively and symmetricallyvia two50 Ω microwave ports, result-
ing in a loaded quality factor of400. The whole device is made with a single step standard
Al/AlOx/Al double angle evaporation through an e-beam lithography mask on a high resistivity
Si substrate. (B) Close-up view of the small junction region, showing top and bottom junction
electrodes (grey) and their thin oxide layer (green). Arrayjunctions are about one order of mag-
nitude larger in area and spaced as tight as e-beam lithography resolution allows, minimizing
microwave parasitics. (C) Electrical circuit representation of the loop formed by the small junc-
tion (black), with Josephson inductanceLJ and capacitanceCJ , shunted by the array of larger
junctions (purple), with the corresponding inductanceLJA and capacitanceCJA. Islands formed
between the array junctions have small capacitance to ground Cg. (D) Simplified circuit model
of the fluxonium, consisting of three sections: i) circuit equivalent to a Cooper pair box, where
the small junction with capacitanceCJ and non-linear Josephson inductanceLJ is capacitively,
with capacitanceCc, coupled to the probe (solid black), such thatLJ/CJ)

1/2 > ~/(2e)2 ; ii)
giant inductanceLA ≫ LJ provided by the junction array (purple); iii) a parallel combination
of CR andLR such that(LR/CR)

1/2 ≈ 50Ω ≪ ~/(2e)2 which is the circuit model for dis-
tributed transmission line resonator (grey). (E) Potential seen by the reduced fluxϕ and energy
spectrum of the circuit (D) for two values of external fluxΦext. At Φext = 0, energy levels pos-
sess well-defined parity as indicated with ‘+’ and ‘-’ signs next to level numbers. Note that, in
contrast with the RF-SQUID or flux qubit, there is on average only one level per local minima.
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Figure 2: Modulation of the reflected8.18 GHz microwave signal with externally applied flux
Φext. The signal is clearly flux-periodic indicating that the junction ring is closed and super-
conducting. The values ofΦext at which the signal undergoes full swings correspond to the
anticrossings of the0 − 1 transition frequency of the device with the resonator bare frequency,
later inferred to be8.1755 GHz. The measurement tone populates the resonator with less than
0.01 photon on average.

connected to the small junction (Fig. 1D), reads out the “atom” in a manner analogous to the dis-
persive measurement of cQED qubits (18). It is implemented by a quarter-wave superconduct-
ing coupled microstrip resonator (Fig. 1A) with quality factor 400 due to capacitive coupling to
the two50 Ω measurement ports. The resonator frequencyωR = (LRCR)

−1/2 ≃ 2π×8.17 GHz
is pulled by the reactance of the fluxonium circuit and is monitored by standard ultra low noise
microwave reflection technique. The fluxonium reactance depends on its quantum state, an
effect leading to a purely dispersive state measurement (15). An externally imposed, static
magnetic fluxΦext threading the loopΦ0-periodically modulates the spacings of energy levels
of our artificial atom.

Introducing the operatorŝN = Q̂/2e and ϕ̂ = 2eΦ̂/~, describing the reduced charge on
the junction capacitance and its conjugate reduced flux operator (1), the Hamiltonian of the
fluxonium coupled to its readout resonator can be written as

Ĥ = 4ECN̂
2 +

1

2
ELϕ̂

2 − EJ cos (ϕ̂− 2πΦext/Φ0) + gN̂
(

â + â†
)

+ ~ωRâ
†â (1)

Here â is the photon annihilation operator for the resonator,g is the atom-resonator coupling
constant. The second term and the range of definition ofϕ̂ andN̂ , whose eigenvalues are here
both on the entire real axis, distinguishes the form of Hamiltonian (1) from that of the Cooper
pair box in cQED experiments (18). There are three important points to note concerning this
Hamiltonian (2): i) it is invariant under the transformation̂N → N̂ + Noffset (Noffset stands
for offset charge value) hence the “charge-free” characterof our device; ii) it differs from that
of the transmon (13) since offset charge influence is screened for all states, not just for the
low-lying states; iii) its second term, despite the fact that EL is the smallest of the fluxonium
energies, has a non-perturbative influence on the full energy spectrum of this artificial atom,
which presents strongly anharmonic transitions (21) (Fig. 1E). Our experiment probes these
transitions by microwave spectroscopy, from which we inferthe size of charge fluctuations.

To characterize the fluxonium, we first measure the ground state resonator pull as a function
of Φext. The results (Fig. 2) show the expectedΦ0− periodicity as well as the avoided crossings
of the resonator frequency and the ground to excited state transitions. This confirms that the
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Figure 3: Phase (colored circles) of reflected readout tone as a function of spectroscopy tone
frequency taken atΦext = 0.05Φ0. Data for the first three resonances (further identified as
transitions from the ground state to states1, 2 and3) is shown from left to right in red, orange
and green respectively. Resonances are well-fitted by Lorentzians (solid black lines) for a broad
range of spectroscopy powers. Insets on the two sides of eachresonance show the dependence
of the resonant peak height (left) and width squared (right)on the spectroscopy tone power. Data
in all insets follow the predictions (solid black lines) of Bloch equations describing relaxation
dynamics for a spin1/2 and indicate that all transitions involve one photon.

entire44 junction loop is superconducting and that the resonator-atom system is in the strong
coupling regime of cavity QED (22).

Next, we perform a two-tone spectroscopy measurement (23) at a fixed fluxΦext = 0.05Φ0,
during which, in addition to the fixed frequency readout tone, we probe the transition frequen-
cies of the atom through a second, variable frequency spectroscopy tone. The resulting peaks
(Fig. 3), correspond to the later-determined0 − 1, 0 − 2, and0 − 3 transitions from the atom
ground state. The peaks are well-fitted by Lorentzians and their power-dependent widths and
heights are well-explained by the Bloch equations of precessing spin1/2 (24) as shown in the
insets of (Fig. 3). Extrapolating fitted linewidths to zero spectroscopy power, we obtain lower
bound estimates of their decoherence time at350, 250 and80 ns respectively.

Our main result is the spectroscopic data collected as a function of both spectroscopy fre-
quency and flux (Fig. 4A). Note thatΦext variations span20% of Φ0 aroundΦext = 0 instead
of the usual1% or less aroundΦ0/2 in flux qubit experiments (9). In (Fig. 4B) we compare the
measured peak center frequencies with the prediction for the 0 − 1, 0 − 2, 0 − 3 and the two-
photon0− 4 transitions obtained from numerical diagonalization of Hamiltonian (Eq. 2). Note
that we are in effect fitting more than three flux dependent functions, i.e. the flux dependent
transition frequencies, with only three a priori unknown energiesEC ,EL andEJ so the problem
is severely overconstrained. The fit of the line (Fig. 4B) labeled SR (for array self-resonance)
requires a minor extension of the model taking into account parasitic capacitances across the
array (15). Apart from introducing another resonator mode coupled tothe atom, this extension
by no means invalidates the inductive character of the array, at least as far as the0−1 and0−2
transition of the fluxonium are concerned. Even the perturbation of the0−3 and0−4 transition
frequencies by this extra mode is less than2%.

Based on the excellent agreement between theory and experiment, we infer the wavefunc-
tions of the first three energy levels, and plot their amplitudes both in charge (Fig. 4C) and flux
(Fig. 4D) representations forΦext = 0. In the ground state, we find that the ratio of charge
to flux fluctuations is∆N/∆ϕ = 0.56, about5 times smaller than the fine structure constant
allows for a conventional resonator. This confirms that the charge in our circuit is indeed lo-
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Figure 4: (A) Phase of reflected readout tone as a function of the spectroscopy tone frequency
and external flux. The color scale encodes the value of phase,zero corresponding to the mauve
background, blue to positive values (peaks) and red to negative values (dips). The grey re-
gion shows the reflected phase of a single tone, swept close tothe resonator bare frequency
exhibiting a50 MHz vacuum Rabi splitting of the resonator with the fluxonium transition0−1.
The inset in (A) zooms in the central region of the0 − 2 transition and confirms that it is in-
deed symmetry-forbidden atΦext = 0. (B) Measured peak frequencies (blue circles) fitted
by numerically computed spectrum of Hamiltonian (2) (solidred lines) and its modification
(see supplementary online text) to explain the additional transition labeled “SR” (dashed black
lines). (C) Amplitude of fluxonium wave functions for levels0 (black),1 (red) and2 (orange)
computed in charge representation at zero flux bias, using circuit parameters extracted from
the fits. (D) Same as in (C) but in flux representation. The flux representation wave func-
tions demonstrate that the reduced flux is delocalized compared to the size of the Josephson
well while charge wave functions confirm that the localization of charge on the junction is less
than a single Cooper pair charge. Note that in this circuit, the junction charge is a continuous
variable, in contrast to the Cooper pair box, and flux swings of more than2π are allowed.
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calized at the single Cooper pair level (∆N = 0.53, ∆ϕ = 0.95). The wavefunctions in flux
representation (Fig. 4D) can be interpreted as simple superpositions of states in which the re-
duced fluxϕ is localized in the wells of the Josephson cosine potential (fluxon states, hence the
name fluxonium). The parity of fluxonium states, which forbids the0 − 2 transition at zero ex-
ternal flux, manifests itself explicitly by a remarkable “hole” in the corresponding spectroscopic
line (Fig. 4A, inset). The allowed transition between the second and third level (data not shown)
is particularly spectacular since it corresponds to motionof the total flux in the fluxonium loop
by two whole flux quanta. This is to be contrasted with the10% of flux quantum or less flux
motion involved in transitions of the flux and phase qubits (8,9). Nevertheless, despite the large
flux fluctuations of the system and the corresponding charge pinning, the circuit has complete
immunity to offset charge variations: the data of (Fig. 4A) has been taken piecemeal in72 hours
and no jumps or drifts have been observed during this period.

We have thus demonstrated that an array of Josephson junctions with appropriately chosen
parameters can perform two functions simultaneously: short-circuit the offset charge variations
of a small junction and protect the strong non-linearity of its Josephson inductance from quan-
tum fluctuations. The data shows that the array possesses a microwave inductance104 times
larger than the geometric inductance of a wire of the same20 µm length. The reactance of such
inductor is about3RQ ≈ 20 kΩ at 10 GHz while its resistance is less than1 Ω. The spectrum
of the fluxonium qubit suggests it is as anharmonic as the flux qubit but as insensitive to flux
variations as the transmon qubit. Possible applications ofthis single Cooper pair charging effect
immune to charge noise include the observation of fully developed macroscopic quantum coher-
ent oscillations between fluxon states (25), the search for a “Λ” or “V” transition configurations
for the shelving of quantum information (26) in superconducting artificial atoms, topological
protection of superconducting qubits (27), and finally the long-sought quantum metrology of
electrical current via Bloch oscillations (28,29).
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Supporting Material

1 Materials and Methods

Sample fabrication.The device is made on a high-resistivity Si substrate,300 µm thick. Both
Josephson junctions and the readout resonator are fabricated in a single step using e-beam
lithography, double angle Al e-beam evaporation and lift-off techniques. The Al evaporation
and oxidation is conducted in an e-gun evaporator at pressures less than10−5 Pa, AlOx grown
in the environment of680 Pa of 15% oxigen-in-argon mixture during10 minutes. The areas
of the small junction and array junctions are designed to be0.2 × 0.3 µm2 and0.25 × 2 µm2,
respectively. All43 array junctions are equally spaced at less than200 nm so that total length
of the array is only20 µm. The loop area of the array-small junction ring is3× 20 µm2.

Sample mount.The Si chip is glued using GE varnish to the copper base of a fully enclosing,
custom-made microwave sample holder, shielding the samplefrom both residual RF, infrared
and optical photons. The holder provides two well-matched transitions from the Anritsu K-
connectors on the outside of the holder to the two microstriplines made on a PCB inside the
holder. The resonator’s on-chip launching pads, schematically indicated as two sections of a
coaxial cable and marked “50 Ω” in (Fig. 1A), are then wirebonded to the ends of the two
microstip lines.

Cryogenic setup.The experiment is performed in a dilution refrigerator withbase temper-
ature10 − 20 mK. Both resonator and the qubit are differentially excited via the∆-port of a
180◦ hybrid (Krytar, 2 − 18 GHz), whose two outputs are connected to the two ports of the
sample holder. Incoming and outgoing signals are separatedwith a directional coupler (Krytar,
2−20 GHz). The incoming signal line is attenuated using10 and20 dB microwave attenuators
(XMA) at all temperature stages of the refrigerator, to remove non-equilibrium noise. The out-
put line is amplified at the4 K stage with a low-noise HEMT amplifier (Caltech,1 − 12 GHz,
30 dB gain). Two cryogenic isolators (Pamtech,4 − 12 GHz, 15 dB) are placed between the
amplifier and the sample, at the800 mK stage and at the base stage, again to remove non-
equilibrium noise, especially that coming from the amplifier. Stainless steel SMA cables are
used to connect between the different temperature stages. All components are thermally an-
chored to the proper refrigerator stages. A∼ 1 cm diameter custom made superconducting coil
is glued to the sample holder, a fewmm away from the chip, to provide perpendicular magnetic
flux bias. The sample holder together with the coil is placed into a Cryoperm cylinder to shield
it from stray quasistatic magnetic fields.

Room temperature measurement setup.The readout resonator is excited with Agilent E8257D
signal generator, the spectroscopy signal is generated using Agilent E8267D vector signal gen-
erator and Tektronix 520 AWG. Both signals are combined at room temperature and sent into
the input line of the refrigerator. The reflected∼ 8 GHz readout signal from the refrigerator out-
put line is amplified at room temperature with two Miteq amplifiers (1− 12 GHz, 30 dB gain),
mixed down with a local oscillator (a third Agilent E8257D) to an IF signal of0 − 50 MHz,
filtered and amplified with the IF amplifier (SRS SR445A), and finally digitized using1 GS/s
Agilent Acqiris digitizer. A software procedure then extracts the phase and the amplitude of the
digitized wave. The experiment is typically repeated104 times to average the Gaussian noise to
an acceptable level. Because the duration of each experiment is about10 microseconds, every
averaged data point is taken in a fraction of a second. All microwave test equipment is phase
locked using a Rb precision10 MHz reference (SRS FS725). The magnetic coil is biased in
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Figure 5: Models for the fluxionium device. (A) Inductively shunted junction model. (B)
Extended fluxionium model, including the capacitive coupling to the mode of a transmission-
line resonator, and parasitic capacitances across the array. Numbers in cyan enumerate the
nodes of the circuits.

series with a resistor with Yokogawa 7751 voltage source.
Comments on the data.The data in (Fig. 2) shows the digitized homodyne (zero IF) signal

as a function of magnetic field, with the spectroscopy generator turned off. The data in (Fig.
3) shows the phase of the digitized heterodyne (50 MHz IF) signal, as a function of frequency
of the spectroscopy generator. The data in (Fig. 4A) is takenin the pulsed regime, when the
spectroscopy generator outputs a6 µs saturating pulse followed immediately by the2 µs readout
pulse. This way we ensure that the sample is exposed to only one tone at a time, avoiding various
spurious effects. The image presented in (Fig. 4A) contains367× 4597 data points.

2 Supplementary Text

In our analysis of the fluxonium device, we use two simple models whose corresponding cir-
cuits are depicted in Figure 5: (A) the inductively shunted junction model, (B) the extended
fluxonium model, describing the fluxonium coupled to a transmission-line resonator.

Inductively shunted junction model. The simplest model of the fluxonium device is the
inductively shunted junction model, see Fig. 5(A). It neglects parasitic capacitances across the
fluxonium’s Josephson junction array, and assumes that all internal degrees of freedom of the
array are frozen out. In this limit, the fluxonium consists ofa single Josephson junction with
capacitanceCJ and Josephson energyEJ , shunted by a large inductanceL. Quantization of this
circuit (1) is straightforward and leads to the Hamiltonian

Ĥ0 = 4ECN̂
2 +

1

2
ELϕ̂

2 − EJ cos

(

ϕ̂− 2π
Φext

Φ0

)

, (2)

where the charge on the junction capacitanceN̂ (in units of 2e) and the reduced flux̂ϕ are
canonically conjugate variables,[ϕ̂, N̂ ] = i. Structurally, this Hamiltonian is identical to the
Hamiltonian describing one-junction flux qubits, and flux-biased phase qubits. However, the
regime of large inductances relevant for the fluxionium differs from typical parameters in flux
and phase qubits, and has been discussed in Ref. (2).

Extended fluxonium model. For a more complete modelling of the spectra obtained in the
experiment, we take into account the coupling of the fluxonium device to a transmission-line
resonator. In addition to this resonant mode, the experimental data shows another resonance
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coupling to the fluxonium device. Such additional resonances are expected when accounting
for the parasitic capacitances of the Josephson junction array. The simplest effective model
accurately describing the experimental data includes veryfew of these capacitances, and ap-
proximates the array by a combination of inductances and capacitances as shown in Fig. 5(B).

The Lagrangian describing this circuit can be written in theform

L =
C′

J

2
φ̇3 −

1

2L
(φ3 − Φext)

2 + EJ cos
(

2πφ3

Φ0

)

+ C ′θ̇2 −
1

L′
θ2
2
+

C′

R

2
ϕ̇2

4
− 1

2LR
ϕ2

4
(3)

+Cc

2
φ̇3ϕ̇4 + C̃θ̇2φ̇3,

whereC ′
J = Cc/2+CJ +2C1λ

2

1
+C2λ

2

2
, λi = Li/L, C ′ = 9(C1+2C2)λ

2

1
λ2

2
, L′ = L/(9λ1λ2),

C ′
R = CR + Cc/2, C̃ = 6λ1λ2(C1λ1 − C2λ2), and we have disposed of another resonant mode

which does not couple to the fluxonium device. In terms of the original generalized fluxφi

at each nodei, the relevant variables areφ3 (associated with the fluxonium subsystem), the
resonator modeϕ4 = φ4−φ5, and the additional resonant modeθ2 = − 1

6λ1λ2

(φ2−φ1−λ2φ3).
Employing canonical quantization of this circuit, we find the effective Hamiltonian

Ĥ = Ĥ0 +
∑

j=1,2

~ωjâ
†
j âj + ~

∑

j=1,2

gjN̂(â†j + âj), (4)

describing the inductively shunted junction,Ĥ0, coupled to two resonant modesj = 1, 2 with
coupling strengthsg1 andg2, respectively.

Theory fits to experimental data. Design and fabrication of the fluxonium system only allow
for imprecise estimates of the system parameters. Thus, thecomparison between experimental
data and theoretical prediction requires the fitting of theory curves to determine the system
parameters with more accuracy. The parameters at our disposal are:EJ , EC , andEL (for both
the inductively shunted junction and the extended fluxoniummodels). In addition, the extended
fluxonium model takes the resonant mode frequencies and coupling strengthsω1,2 andg1,2 as
input. Fits are obtained by extracting the center frequencies from the experimental data and
employing a least-squares fit algorithm.

Fit to inductively shunted junction model. A simultaneous fit to the full flux-dependence of
the 0–1 and 0–2 transitions around the zero-flux point fully determines the fluxonium parame-
tersEC ,EJ , andEL (see Table 1 for the obtained parameter values). A comparison between the
resulting theory prediction of higher transitions can thenbe used as a consistency check. While
the agreement for the 0–1 and 0–2 transitions is good, we find systematic deviations for higher
levels. The reason for these deviations lies in the effect ofthe additional resonance on the 0–2
transition: the additional resonance leads to significant frequency shifts of the 0–2 transitions.
Ignoring this effect leads to a systematic error in the estimation of the fluxonium parameters.

Fit to extended fluxonium model. For best agreement, both resonator and additional resonant
mode are taken into account. Using the full experimental data we obtain a fit for the extended
fluxonium model, which shows excellent agreement with the data. The resulting parameter
values are given in Table 1.
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inductively shunted extended fluxonium model
junction model

EC/h 2.39 2.47
EJ/h 8.93 8.97
EL/h 0.52 0.52
ω1/2π n.a. 8.18
ω2/2π n.a. 10.78
g1/2π n.a. 0.135
g2/2π n.a. 0.324

Table 1: Fluxonium system parameters obtained from least-squares fits to the inductively
shunted junction and the extended fluxonium model. All values are given in GHz. The coupling
constants are expressed in terms of the coupling strength for the fluxonium 0–1 transition.
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