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Abstract 

Electrons in correlated insulators are prevented from conducting by Coulomb repulsion 

between them. When an insulator-to-metal transition is induced in a correlated insulator 

by doping or heating, the resulting conducting state can be radically different from that 

characterized by free electrons in conventional metals. We report on the electronic 

properties of a prototypical correlated insulator vanadium dioxide (VO2) in which the 

metallic state can be induced by increasing temperature. Scanning near-field infrared 

microscopy allows us to directly image nano-scale metallic puddles that appear at the 

onset of the insulator-to-metal transition. In combination with far-field infrared 
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spectroscopy, the data reveal the Mott transition with divergent quasiparticle mass in the 

metallic puddles. The experimental approach employed here sets the stage for 

investigations of charge dynamics on the nanoscale in other inhomogeneous correlated 

electron systems. 

 

One challenge of contemporary condensed matter physics is the understanding of the 

emergence of metallic transport in correlated insulators or Mott insulators in which, for 

example, a temperature change or chemical doping induces anomalous conducting 

phases (1). In such a correlated metal the mobile charges experience strong competing 

interactions leading to exotic phases including the pseudogap state in cuprates and 

manganites, high-temperature superconductivity, charge stripes in cuprates, even phase 

separation in some manganites and cuprates (1,2,3,4,5,6,7,8). In systems where multiple 

phases coexist on the nanometer scale, the dynamical properties of these individual 

electronic phases remain unexplored because methods appropriate to study charge 

dynamics (transport, infrared/optical and many other spectroscopies) lack the required 

spatial resolution. Scanning near-field infrared microscopy can circumvent this 

limitation (9,10,11). Specifically, we probed coexisting phases in the vicinity of the 

insulator-to-metal transition in vanadium dioxide (VO2) at length scales down to 20 nm. 

This enables us to identify an electronic characteristic of the Mott transition, namely 

divergent quasiparticle mass in the metallic puddles, which would otherwise have 

remained obscured in macroscopic studies that average over the coexisting phases in the 

insulator-to-metal transition regime. 

One particular advantage of VO2 for the study of electronic correlations is that the 

transition to the conducting state is initiated by increasing the temperature without the 

need to modify the stoichiometry. The salient features of the first-order phase transition 

that occurs at Tc ≈ 340 K are the orders-of-magnitude increase in conductivity 
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accompanied by a change in the lattice structure (1). Compared to the high temperature 

rutile metallic (R) phase, the two main features that distinguish the lattice in the low-

temperature monoclinic (M1) insulating phase are dimerization (charge-ordering) of the 

vanadium ions into pairs, and the tilting of these pairs with respect to the c-axis of the 

rutile metal. The experiments on VO2 films (12,13) reported here reveal a strongly 

correlated conducting state that exists within the insulator-to-metal transition region in 

the form of nanoscale metallic puddles. Electromagnetic response of these puddles 

separated by the insulating host displays the signatures of collective effects in the 

electronic system including divergent optical effective mass and optical pseudogap. 

These findings, which were not anticipated by theoretical models, may also help to 

settle the decades long debate (1,14,15,16,17,18,19,20) on the respective roles played by 

the lattice and by the electron-electron correlations in the insulator-to-metal transition. 

The gross features of the insulator-to-metal transition in VO2 can be readily identified 

through the evolution of the far-field optical constants (13) obtained using spectroscopic 

ellipsometry and reflectance (Fig. 1).  The insulating monoclinic phase (T ≤ 341 K) 

displays a sizable energy gap of about 4000 cm
-1

 ( ≈ 0.5 eV) in the dissipative part of 

the optical conductivity σ1(ω). The T ≥ 360 K rutile metallic phase is characterized by a 

broad Drude-like feature in the optical conductivity, linear temperature dependence of 

resistivity, and an extremely short electronic mean free path of the order of the lattice 

constant, reminiscent of “bad metal” behavior in other transition metal oxides including 

the cuprates (21,22,23). The insulator-to-metal transition is evident from the increase of 

the conductivity with spectral weight “filling up” the energy gap that has to be 

contrasted with a gradual decrease of the energy gap magnitude. This feature of the 

transition, along with an isosbestic point at a frequency of 11500 + 125 cm
-1

, is one of 

several spectroscopic fingerprints of doped Mott insulators (1) identified in this work.  

The isosbestic point is defined here as the location of equal conductivity for all spectra 

obtained at different temperatures. Finally, the divergence of the real part of the 
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dielectric function ε1 (inset of Fig. 1) signals the percolative nature of the insulator-to-

metal transition. This divergence of ε1 is similar to that observed near the percolative 

insulator-to-metal transition in ultrathin Au and Pb films (24). 

Mid-infrared near-field images directly show that in fact the insulating and metallic 

phases coexist in VO2 over a finite temperature range in the transition region (see Fig. 

2). This determination has been made using a scattering scanning near-field infrared 

microscope (s-SNIM) operating at the infrared frequencies ω = 930 cm
-1

 and ω = 1725 

cm
-1

. S-SNIM is capable of registering contrast between electronic phases according to 

their optical constants with spatial resolution º 20 nm. Specifically, the scattering 

amplitude signal demodulated at the second harmonic of the tapping frequency of the 

tip of our s-SNIM apparatus (maps in Fig. 2) is related to the local value of the complex 

dielectric function 21
~ εεε i+= of the sample. The amplitude of the scattering signal is 

expected to increase in metallic regions compared to the insulating regions: a behavior 

well-grasped by the so-called dipole model of the near-field infrared contrast (9,10,13).  

The amplitude-contrast near-field images in Fig. 2 show the electronic insulator-to-

metal transition in progress. At temperatures 295-341 K, in the insulating phase, we 

observe uniform maps of low scattering (dark blue color in Fig. 2). A small increase of 

temperature radically changes the near field images. For example, in  the T = 342.4 K 

image we now observe nano-scale clusters where the amplitude of the scattering signal 

is enhanced by a factor of 2-5 compared to that of the insulating host indicating a 

metallic phase. Representative scans show that the metallic regions nucleate, then grow 

with increasing temperature and eventually connect. We do not observe any obvious 

correlations between the size and/or shape of the metallic clusters and the features in 

simultaneously collected topographic images. While the percolative nature of the 

insulator-to-metal transition had been proposed previously (25), it is directly revealed 
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by our scanning near-field infrared measurements reported herein. The insulator-to-

metal transition is complete by T = 360 K where insulating islands are no longer seen.   

With the observation of nano-structured phases in Fig. 2, the far-field infrared spectra in 

Fig. 1 should be analyzed using an effective medium theory (EMT) for such phase-

separated systems (13,26). The effective optical constants of a two-phase heterogeneous 

system are an average of the optical constants of the insulating and metallic regions 

weighted by the respective volume fractions. Our near-field images enable us to 

determine these fractions. However, a simple weighting of optical constants of the 

insulating phase and of the rutile metallic phase at T = 360 K within the EMT model 

does not produce a satisfactory description of the far-field infrared data near the onset of 

the insulator-to-metal transition in VO2. This discrepancy indicates that the infrared 

properties of the metallic puddles, once they first appear at T ≈ 342 K, may be different 

from that of the high temperature rutile metal. We confirmed this hypothesis by 

extracting the response of the metallic puddles from a combination of near field results 

and far field spectra within an EMT analysis described in the supporting online material 

(13). 

The real part of the conductivity spectrum σ1a(ω) of the metallic puddles is plotted in 

Fig. 3B as it evolves with temperature. When these puddles appear at the onset of the 

electronic insulator-to-metal transition at T ≈ 342 K (see Fig. 3A), their conductivity 

spectrum differs markedly from that of the rutile metallic phase at higher temperature, 

for example, T = 360 K.  These metallic regions exhibit a narrow Drude-like peak at 

low frequencies, and then a dip followed by a prominent mid-infrared band peaked at 

≈ 1800 cm
-1

. Uncertainties in the EMT analysis (detailed in the supporting online 

material) do not exclude the possibility of a non-monotonic form of σ1a(ω) at the lowest 

frequencies, a behavior consistent with Drude response modified by localization. These 



6 

features indicate that the metallic islands are not simply isolated regions of the higher-

temperature VO2 rutile metal.  

In order to highlight distinctions between the electrodynamics of the metallic clusters 

and the rutile metallic phase, we perform the extended Drude analysis (13,27) on the 

optical constants of the metallic clusters to extract the scattering rate 1/τ(ω) and the 

mass enhancement factor m*(ω)/mb (mb is the electronic band mass) of the charge 

carriers (see Fig. 3C,D). In the limit of 0→ω  these quantities can be interpreted in 

terms of lifetime τ(ω) and effective mass m*(ω) of quasiparticles (27) in the metallic 

regions. One can recognize a prominent enhancement of m* )0( →ω /mb at T = 342 K 

that has to be contrasted with much lighter masses in the rutile phase (T = 360 K) 

spectrum in Fig. 3D (22). More importantly, the temperature dependence of 

m* )0( →ω /mb plotted in the inset of Fig. 3D shows divergent behavior in the vicinity 

of the insulator-to-metal transition: an unambiguous attribute of the Mott transition (28). 

The spectra of 1/τ(ω) reveal a threshold structure followed by an  overshoot at  higher 

energies up to ≈ 1000 cm
-1

. This is characteristic of systems with a (pseudo)gap in the 

electronic density of states (29) that is to be contrasted with the relatively smooth 

variation of 1/τ(ω) in the rutile phase.  We also note that the new electronic state 

exhibiting an enhanced mass and a gap-like form of the relaxation rate exists only in a 

narrow temperature range as shown by the shaded region in Fig. 3A. By T = 343.6 K, 

the optical constants of the metallic regions already resemble those of the rutile metallic 

phase.  

The analysis and discussion above suggest that the classic temperature induced 

insulator-to-metal transition in VO2 occurs from the monoclinic insulator to an incipient 

strongly correlated metal (SCM) in the form of nano-scale puddles. These metallic 

puddles exhibit mass divergence which is a clear signature of electronic correlations due 

to many-body Coulomb interactions (28). The pseudogap and mid-infrared band are the 



7 

consequence of optically-induced electronic excitations across a gap on some parts of 

the Fermi surface. The energy scale of the pseudogap in the SCM state in VO2 can be 

determined by the overshoot in 1/τ(ω) spectra that occurs at ≈ 1000 cm
-1

 (or ≈ 4kBTc). 

We note that the pseudogap is a common property of doped Mott insulators (1,27). The 

pseudogap features in the optical conductivity and 1/τ(ω) spectra also bear resemblance 

to those found in metallic systems with partial charge density wave (CDW) gap (30). 

The pseudogap in VO2 may result from a complex interplay between electronic 

correlations and charge ordering. 

The Mott transition commonly leads to anti-ferromagnetically ordered insulator as in 

closely related V2O3 (1). Vanadium dioxide avoids this magnetic ordering via 

dimerization of vanadium ions in the monoclinic insulating phase (14) due to competing 

effects of charge ordering (Peierls instability) that is likely caused by electron-phonon 

interactions. Thus, the insulating monoclinic (M1) phase of VO2 should be classified as 

a Mott insulator with charge-ordering. It remains an open question whether or not the 

insulator-to-metal transition occurs at a slightly different temperature from the structural 

transformation associated with charge ordering (18,19,31), and this raises the issue 

about the precise lattice structure of the metallic nano-puddles we have observed. This 

issue does not impact our observation of divergent optical mass, and can only be 

resolved by x-ray diffraction measurements on the nano-scale. We also note that the 

images of phase coexistence and percolation reported here (Fig. 2) are consistent with 

the thermodynamic evidence of the first order nature of the phase transition in VO2 (21). 

Moreover, our experiments show that the collapse of a large ≈ 0.5 eV energy gap and 

the formation of heavy quasiparticles in the emergent metallic nano-puddles at the onset 

of the insulator-to-metal transition are due to Mott physics (1,28), and percolation 

occurs at a later stage when these metallic puddles grow and connect (see Fig. 2).  
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A transformation from an insulator to a metal in many correlated electron systems 

including high-Tc cuprates, colossal magnetoresistive manganites and others occurs 

through an intermediate pseudogap regime (1,27,29). At least in the case of cuprates, 

optical signatures of the pseudogap state are similar to the results in the SCM state of 

VO2 (27). Furthermore, in many correlated systems, the pseudogap state is in the 

vicinity of the regime of the “bad metal” where resistivity shows a peculiar linear 

dependence with temperature whereas the absolute values of the resistivity are so large 

that the notion of quasiparticles becomes inapplicable (21,22,23)
 
. Often a crossover 

from pseudogapped metal to “bad metal” occupies an extended region of the phase 

diagram. In VO2, the boundary between the two electronic regimes is relatively abrupt 

and the emergence of “bad metal” transport in the rutile phase may be linked to the loss 

of long-range charge order that does not extend into the rutile metal. Then the poor 

conductivity of rutile VO2 and other “bad metals” appears to arise from the collapse of 

electronically and/or magnetically ordered states in the vicinity of a Mott insulator 

thereby causing the resistivity to exceed the Ioffe-Regel-Mott limit of metallic transport 

(21,22,23).  Finally, we note here that in the cuprates, in contrast to VO2, the effective 

mass of doped carriers inferred from infrared spectroscopy data (32) shows no 

divergence. However, if electronic phase separation exists in doped cuprates as 

suggested by recent scanning probe studies (6,8), then infrared analysis of the effective 

quasiparticle mass needs to be revisited with the help of nano-imaging tools employed 

in this work.  
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Figure Legends 

Fig. 1: The real part of the optical conductivity 
π

ωωε
ωσ

4

)(
)( 2

1 =   of VO2 is plotted as a 

function of frequency for various representative temperatures. The open circle denotes 

the isosbestic (equal conductivity) point for all spectra. The inset shows the temperature 

dependence of the real part of the dielectric function ε in the low frequency limit (ω = 

50 cm
-1

). 

Fig. 2: Images of the near-field scattering amplitude over the same 4 µm x 4 µm area 

obtained by scattering scanning near-field infrared microscope (s-SNIM) operating at 

the infrared frequency ω = 930 cm
-1

. These images are displayed for representative 

temperatures in the insulator-to-metal transition regime of VO2 to show percolation in 

progress. The metallic regions (light blue, green and red colors) give higher scattering 

near-field amplitude compared to the insulating phase (dark blue color). See supporting 

online material for details (13). 

Fig. 3: (A) The phase diagram of VO2 and the resistance-temperature curve showing the 

insulator-to-metal transition. The shaded area highlights the region of the phase diagram 

in which the strongly correlated metal (SCM) with divergent quasiparticle mass and an 

optical pseudogap exists. Panels (B), (C), and (D) show the evolution of the optical 

conductivity σ1a(ω), the scattering rate 1/τ(ω), and the optical effective mass normalized 

by the band value m*(ω)/mb of the metallic regions of VO2 with increasing temperature. 

The inset in panel (D) shows the 0→ω  limit of the mass enhancement factor as a 

function of temperature. The data points between T = 400 K and 550 K are taken from 

Ref.(22). 
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Supporting Online Material 

Samples and measurements 

The VO2 films used in this study are º 100 nm thick and were grown on )0121(  oriented 

Al2O3 (sapphire) substrates. Details of film growth and characterization are given in 

Ref.(S1). We chose thin films of VO2 for infrared measurements in the phase transition 

regime instead of single crystals because the crystals fracture when taken across the 

phase transition and thereby create problems of reproducibility and significant 

uncertainties in the quantitative results in the transition regime. Data obtained for high 

quality films grown on lattice matched substrates are free of the above complications and 

thus enable studies of the intrinsic properties of VO2. 

The data and results presented in this report were obtained while heating up the sample. 

The data and results for the cooling runs show the same behavior as obtained for the 

heating runs for all the measurements but in reverse order. There is also a downward shift 

in Tc by ≈ 8 K on cooling compared to the Tc on heating due to hysteresis resulting from 

the first order nature of the phase transition (see Ref. S1).  

The resistance of the film plotted in Fig. 3a was measured by a standard four-probe 

method. The technique of scanning near-field infrared microscopy (S2,S3,S4) is described 

in the following section.  The far-field complex optical constants (or dielectric function) 

)()()(~
21 ωεωεωε i+=  were obtained via a combination of ellipsometry in the spectral 

range 400 - 20000 cm
-1

 and near-normal incidence reflectance in the spectral range 40 - 

680 cm
-1

 (see below for details). We note here that in general the complex conductivity 

)()()(~
21 ωσωσωσ i+=  of a material is related to its complex optical (dielectric) constant 

)(~ ωε  by )(~4
1)(~ ωσ

ω
π

ωε
i

+= . The effective medium theory (EMT) was employed to 

obtain the optical constants of the metallic puddles in the insulator-to-metal transition 



regime (S5,S6). The details of the EMT and the extended Drude analysis (S7) are given in 

subsequent sections. 

Scanning near-field infrared microscopy.  Scattering scanning near-field infrared 

microscopy was performed with a custom Atomic Force Microscope (AFM) using Pt-

coated silicon tips in the tapping mode (S2,S3)
 
. The ω = 930 cm

-1
 and ω = 1725 cm

-1 

infrared frequencies were provided by a CO2 laser and a CO laser respectively. The 

pseudo-heterodyne scheme with second harmonic demodulation was employed to isolate 

and detect the near-field signal in amplitude and phase
 
(S4). The spatial resolution of the 

near-field infrared probe is about 10-20 nm and is set by the radius of curvature of the tip. 

The near-field penetrates about 20 nm into the VO2 film and is a bulk probe of the 

insulator-to-metal transition compared to the scanning tunneling microscope, for 

example, which is a surface sensitive probe.  

The near-field interaction between the tip and the sample is described by the dipole 

model. Within this model, the complex scattering signal at the second harmonic of the 

tapping frequency is a function of the optical constants of the tip and the sample (S2,S3). 

The scattering amplitude is higher for metallic regions which have large negative real 

part and large positive imaginary part of the optical constants at ω = 930 cm
-1

 and ω = 

1725 cm
-1

. Insulators like monoclinic VO2 yield lower scattering amplitudes because of 

the negligibly small imaginary part of the optical constants and a positive real part 

somewhat higher than unity (ε1 [ω = 930 cm
-1

]º 5 and ε1 [ω = 1725 cm
-1

] º 6 in 

insulating VO2). This difference in scattering amplitudes allows us to image the insulator-

to-metal transition in VO2. The near-field scattering amplitude images obtained with ω = 

1725 cm
-1

 are similar to those shown in Fig. 2 which were obtained with ω = 930 cm
-1

.  

The dipole model provides a good quantitative description of the near-field infrared 

scattering amplitudes near the onset of the insulator-to-metal transition where the metallic 



puddles are separated by the insulating host. The model also captures the observed near-

field contrast at higher fractions of the metallic regions but will need to be refined to 

quantify the continuously increasing scattering amplitude from the expanding metallic 

regions. However, this does not impact the determination of the insulating and metallic 

fractions from near-field images. 

We note that repeated near-field scans in the insulator-to-metal transition regime over the 

same sample area and at a fixed temperature show nearly identical patterns of metallic 

puddles in the insulating host. This indicates that the effect of possible dynamic 

fluctuations on the static patterns is small. The metallic islands are most likely seeded and 

controlled by stress at the interface, defects, grain boundaries etc. and this is a reasonable 

scenario for realistic samples. These nucleation centers would lead to static and 

reproducible patterns of inhomogeneity at a given temperature. Therefore, the fraction of 

the static metallic (and insulating) regions obtained from near-field images can be used to 

interpret far-field data within the effective medium theory described in a subsequent 

section. 

Far-field infrared spectroscopy. Spectroscopic ellipsometry provides the real and 

imaginary parts of the ellipsometric coefficients at each measured frequency (S8). This 

enables us to obtain the optical constants of the VO2 film without recourse to Kramers-

Kronig analysis which breaks down in the insulator-to-metal transition region of VO2 

because of inhomogeneity and phase-coexistence. Provided the incident wavelength is 

large compared to the size of the nano-scale metallic puddles, the inhomogeneous system 

can be described by an effective dielectric function (S5,S6). This is certainly expected to 

be the case for long wavelengths in the far- and mid-infrared regime (between 40 cm
-1

 

and 5000 cm
-1

). In accord with the Bruggeman effective medium theory (EMT) (S5,S6), 

simple mixing of the dielectric functions of the insulating phase and rutile metallic phase 

(T = 360 K) in the mid-infrared to visible regime (3000-20000 cm
-1

) provides a good 



description of the data. Therefore, it is appropriate to assign an effective dielectric 

function to the inhomogeneous, phase-separated regime of VO2 even when the 

wavelength becomes comparable to the size of the metallic puddles.  

The effective dielectric function )(~ ωε E of the inhomogeneous, phase-separated regime of 

VO2 is thus obtained via the standard analysis of the combined ellipsometric and 

reflectance data based on a two-layer model of a VO2 film with an effective dielectric 

function on a sapphire substrate (S8). The contributions of VO2 phonons to )(~ ωε E  were 

modeled by Lorentzian oscillators and subsequently the phonon contributions were 

subtracted so that the electronic contribution to the optical constants could be 

unambiguously presented and analyzed. 

Effective medium theory. A simple weighting of optical constants of the insulating 

phase and of the metallic phase (T = 360 K spectrum) within the effective medium theory 

(EMT) produces a good description of the far-field infrared data near the onset of the 

insulator-to-metal transition at frequencies between 3000 cm
-1

 and 20000 cm
-1

. 

Deviations from this description become progressively stronger at longer wavelengths 

(40 to 3000 cm
-1

), a regime where the EMT formalism is expected to be most directly 

applicable (S5,S6). This implies that the optical constants of the metallic puddles when 

these first appear at the onset of the insulator-to-metal transition are different from the 

optical constants of the rutile metal (T = 360 K). Therefore, we use the EMT to extract 

the optical constants of the metallic puddles. 

Within the Bruggeman effective medium theory (S5,S6)
 
, the effective (complex) optical 

constants )(~ ωε E  of a two-component inhomogeneous system are given by: 
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 In this equation, )(~ ωε a  and )(~ ωε b  are the complex optical constants of the metallic and 

insulating phases respectively, f and )1( f− are the volume fractions of the metallic and 

insulating phases respectively, and q is the depolarization factor that depends on the 

shape of the components which is inferred from near-field images. This factor is taken to 

be 0.2-0.4 assuming nearly spherical metallic regions at low concentrations of the 

newborn metallic state because their lateral dimensions are less than the film thickness 

and the out-of-plane dimension is assumed to be similar to the lateral dimensions. The 

depolarization factor continuously increases to 0.5 which is appropriate for thin flat disks 

at higher concentrations of metallic clusters as their lateral dimensions exceed the out-of-

plane dimension which is limited by the thickness of the film (S6)
 
. The volume fractions 

of the insulating and metallic phases are obtained directly from the near-field images. The 

far-field optical constants of the insulating phase )(~ ωε b and the inhomogeneous transition 

regime )(~ ωε E have also been measured (see Fig. 1). The optical constants of the 

insulating phase are assumed to be independent of temperature in this analysis. This is 

supported by the near-field images which show little variation of the scattering intensity 

from the insulating regions with increasing temperature. Since )(~ ωε E , )(~ ωε b , and f are 

known whereas the range of q is constrained based on the knowledge of the metallic 

cluster size and film thickness, the equation can be solved to obtain the optical constants 

of the metallic regions )(~ ωε a , and hence the complex conductivity )(~ ωσ a  whose real part 

σ1a(ω) is plotted in Fig.3B. Values of f and q at relevant temperatures are listed in Table 

S1. Uncertainties in the magnitude of q do affect the behavior of )(~ ωσ a spectra at the 

lowest frequencies close to the experimental cut-off of the data. Specifically, these 



uncertainties do not rule out a non-monotonic form of the conductivity σ1a(ω): a response 

consistent with Drude dynamics modified by localization. Irrespective of some ambiguity 

in the form of the conductivity in the limit of ω → 0 , the oscillator strength of this low-

energy mode is continuously decreasing as the transition to the insulator is produced, 

signaling an increase of the optical effective mass. 

 

Interfacial scattering and localization will become important when the size of the metallic 

puddles is comparable to or less than the intrinsic mean free path of the charge carriers 

within these puddles. Our estimate of the mean free path based on the scattering rate data 

in Fig.3C is of the order of few nanometers. Thus the smallest puddles we can detect 

(limited by the 20 nm spatial resolution of our probe) are still in the regime where the 

mean free path is shorter than the spatial extent of metallic regions.  Therefore, we 

believe interfacial scattering and localization are unlikely to affect charge dynamics in the 

metallic puddles. However, we cannot rule out signatures of localization below our 

experimental cut-off frequency. 

 

Extended Drude formalism. The following equations of the extended Drude formalism
 

(S7) completely describe the evaluation of the scattering rate 1/τ(ω) and the mass 

enhancement factor m*(ω)/mb from the real and imaginary parts of the optical 

conductivity of the metallic regions )()()(~
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The plasma frequency ωp = 22000 cm
-1

 is nearly constant (within ten percent) for the 

metallic states and is obtained via the partial sum rule: 

ωωσ
ω ω

d
c

a

p

∫=
0

1

2

)(
8

  (4) 

Here, the frequency cut-off ωc = 13700 cm
-1

 is chosen to exclude contributions from 

higher-lying optical transitions.  

 

The plasma frequency is related to the carrier density (n) by the following expression: 

b

p
m

ne2
2 4π

ω =   (5) 

Since the experimentally determined plasma frequency is nearly constant for the metallic 

states, we infer that the carrier density is also nearly constant for the evolving metallic 

regions provided that the band mass (mb) of the carriers does not change drastically. 

 

 

 

 

 

 

 

 

 



 

T (K) f q 

342 

342.6 

343 

343.6 

0.18 

0.31 

0.48 

0.7 

0.2 

0.33 

0.45 

0.5 

 

Table S1. The values of the filling fraction f and depolarization factor q used to obtain the 

optical constants of the metallic regions at selected temperatures within the framework of 

the EMT formalism (Eq.1). 
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