
Fig. 4. RNA hybridiza- A B C D E
tnon on blots with a
cDNA probe from the
human L-8 receptor.
Lane A, 5 gg of RNA 9.49=
not polyadenylated from 746 -
human neutrophils; B, 2 4.40-
gg of polyadenylated 2.37-
[poly(A)+] RNA from
human neutrophils; C, 2 1.35-
gg of poly(A)+ RNA
from U937 cells; D, 2 ag
of poly(A)+ RNA from
U266 cells; E, 2 psg of 0.24-
poly(A)+ RNA from Ju-
rkat cells. RNA was sep-
arated by size by electro-
phoresis on a formaldehyde (i%) gel (25),
transferred to nitrocellulose, hybridized to the fuill-
length cDNA insert from done pRK5B.il8ri.1,
and washed in 30 mM sodium chloride, 3 mM
trisodium citrate at 55MC.

was detected to mRNA from U266 or Jurkat
cell lines, which are of the B cell and T cell
lineages (Fig. 4). IL-8 does not bind to cells
from these lineages (11). No hybridization to
mRNA from the monocyte cell line U937 was
detected, although low levels of IL-8 binding
to these celis has been reported (11).

Alignment of the sequences of the human
receptors for the three neutrophil chemoatac-
tants IL-8, fMLP (15), and C5a (19) shows the
similarity (29 to 34% amino acid identity) of
these G protein-coupled recepts (Fig. 2).
The third intracellular loop ofreceptors in this
subfamily is shorter than that in other G pro-
tein-cpled receptors such as the f-adrener-
gic (4) or muscarinic aceticoline receptors
(20). This loop contains detminats at least
partially responsible for the binding ofG pro-
teins to the receptors (4). The intracellular
COOH-terminal region of the IL-8 receptor
has little similarity to those of the fMLP and
C5a receptors but it does contain several serine
and thronine residues that may function as
phosphorylation sites. Like the C5a receptor
(19), the NH2-te l extacelullar region of
the IL-8 receptor has several acidic residues.
These amino acids may participate in the bind-
ing ofIL-8, which is quite basic (pI -9.5), to
the receptor. The amino acid sequence present-
ed here is 77% identical with a receptor se-
quence presented in the accompanying paper
(21) ing consecutive amino adds match-
es of 105 and 64 amino adds. These two se-
quences may be members ofa family ofrelated
receptors for the I-8 family of cytokines.
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Cloning of Complementary DNA Encoding a
Functional Human Interleukin-8 Receptor
PHILIP M. MURPHY* AND H. LEE TIFFANY

Interleukin-8 (I1-8) is an inflammatory cytokine that activates neutrophil chemotaxis,
degranulation, and the respiratory burst. Neutrophils express receptors for IL-8 that
are coupled to guanme nucleotide-binding proteins (G proteins); binding ofIL-8 to its
receptor induces the mobilization of intracellular calcium stores. A cDNA clone from
HL60 neutrophils, designated p2, has now been isolated that encodes a human IL-8
receptor. When p2 is expressed in oocytes from XeOpus laevis, the obcytes bind
1251-labeled IL-8 specifically and respond to IL-8 by mobilizing calcium stores with an
EC50 of20 nM. This IL-8 receptor has 77% amino acid identity with a second human
neutrophil receptor isotype that binds IL-8 with higher affinity. It also exhibits 69%
amino acid identity with a protein reported to be an N-formyl peptide receptor from
rabbit neutrophils, but less than 30% identity with all other known G protein-coupled
receptors, including the human N-formyl peptide receptor.

I L-8, ALSO KNOWN AS NEUTROPHIL AC-

tivating protein-l or NAP-1, is a po-
tent chemoattractant for neutrophils

that is produced by many cell types in
response to inflammatory stimuli (1). IL-8 is

The Laboratory of Host Defenses, National Institute of
Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892.

*To whom correspondence should be addressed.

structurally and functionally related to sev-
eral members of the macrophage inflamma-
tory protein-2 (or MIP-2) family of cytok-
ines. These include MIP-2, MGSA
(melanoma growth-stimulating activity),
and NAP-2 (2-4). High affinity binding
sites for IL-8 have been found on trans-
formed myeloid precursor cells such as HL-
60 and THP-i as well as on neutrophils (5,
6). NAP-2 and MGSA compete with IL-8
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95-
80-
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60- Fig. 1. In vitro transla-
45 tion of p2 cRNA and
35_ _ distribution of p2

mRNA in various cell

30- types. (A) Polypeptides
synthesized by transla-
tion of p2 cRNA in rab-
bit reticulocyte lysate

(lane 2) or by control lysate to which no
RNA was added (lane 1). Red blood cell mem-
brane proteins were used as molecular size stan-
dards indicated in kilodaltons (kD) at the left. The
gel was exposed to XAR-2 film for 12 hours (14).
(B) Distribution of p2 mRNA. The blot ofRNA
from neutrophils was prepared separately from 10
jig of total cellular RNA. The other lanes derive
from a single blot containing total cellular RNA
from peripheral blood T lymphocytes activated
with phytohemagglutinin (PHA-T, 5 jig),
THP-1 cells (5 ,g), and Jurkat cells (3 [Lg). The
lane marked HL-60 contains 10 jig of polyade-
nylated [poly(A)+] RNA from undifferentiated
HL-60 cells. The arrow indicates the location of a
faint band ofRNA from THP-1 cells. Both blots
were hybridized under identical conditions with
the same p2 probe and were washed at 68°C in
0.1 x SSPE (12) for 1 hour. Blots were exposed to
XAR-2 film in a Quanta III cassette at -80°C for
5 days. Results from three independent HL-60
cell preps and two separate THP-1 and neutrophil
blots were identical.

for binding to human neutrophils, suggest-
ing that they interact with the same recep-
tors (5). Stimulation of neutrophils with
IL-8, NAP-2, orMGSA causes mobilization
of intracellular calcium stores and elicits
motile, secretory, and metabolic responses
that are critical to the role of the neutrophil
in host defenses (3, 4, 7).

Functional expression in the Xenopus
oocyte has established the identity ofcDNA
clones encoding rabbit (8) and human (9,
10) forms of another peptide chemoattrac-
tant receptor on neutrophils, the N-formyl
peptide receptor. Yet the amino acid se-
quence of the rabbit form of the receptor
(originally designated F3R) is only 28%
identical with that of the human form (des-
ignated in this paper as FPR); this dissimi-
larity is far greater than the differences be-
tween species reported for all other G
protein-coupled receptors (11).
We therefore attempted to identify a hu-

man homolog of F3R. An oligonucleotide
probe corresponding to nucleotides 238 to
276 of the cDNA sequence of F3R (8) was
hybridized to cDNA libraries made from
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RNA from the promyelocytic leukemia cell
line HL-60 grown for 2 days in the presence
of dibutyryl cyclic adenosine monophos-
phate (750 liM), a treatment that induces a
neutrophil-like phenotype. Seven clones
that encoded an identical gene product were
isolated (12). The longest of these, designat-
ed p2, was sequenced on both strands. Con-
firmatory sequences were obtained from the
other clones. A 1065-bp open reading frame
begins with the sequence AACATGG,
which conforms to the Kozak consensus
criteria for translation initiation sites (13). A
24-bp polyadenylate tail is found at the end
of a 405-bp 3' untranslated region.
RNA synthesized in vitro from p2 cDNA

(p2 cRNA) directed the synthesis of a poly-
peptide of 32 kD in vitro (Fig. LA) (14).
This is the size of the deglycosylated native
N-formyl peptide receptor (15) and the FPR
protein synthesized in vitro (16). Binding
sites for N-formyl peptides are expressed in
mature, but not in immature, myeloid cells
(17). Expression of RNA for FPR is also
restricted to mature myeloid cells (10). In
contrast, a p2 probe hybridized with a single
3-kb band on blots of RNA from the my-
eloid precursor cell lines HL-60 and THP-1,
and from normal blood-derived human neu-
trophils but did not hybridize with RNA
from peripheral blood T lymphocytes or
Jurkat cells (Fig. 1B) (18). This pattern of
expression of p2 RNA is more like the
distribution of IL-8 binding sites than that
of N-formyl peptide binding sites (6).
Xenopus oocytes that had been injected

with p2 cRNA mobilized intracellular calci-
um in response to IL-8 with a mean effective

XJ

-9 -8 -7 -6
Log IL-41 (M)

concentration (ECso) of 20 nM (Fig. 2A),
(19) but did not respond to N-formyl me-
thionyl-leucyl-phenylalanine (fMLP). This
value is approximately 20-fold higher than
that reported for stimulation ofhuman neu-
trophils with recombinant human IL-8 (3).
The receptor specifically bound IL-8 over
the same concentration range as that re-
quired for stimulation of calcium flux (Fig.
2B) (20). Because specific binding was not
saturated at the highest concentration of
radioligand tested, a dissociation constant
could not be determined. Thus, the receptor
encoded by p2 is a low affinity IL-8 receptor
not previously recognized on human neu-
trophils (5, 6). The receptor also activated a
calcium flux in response to structurally relat-
ed ligands with the following order of po-
tency: IL-8 > MGSA > NAP-2 (Fig. 2C),
which correlates with the effectiveness of
these compounds in competing with 1251_
labeled IL-8 for binding to neutrophils (5).
C5a, a structurally unrelated chemoattrac-
tant that is similar in size (74 amino acids)
and charge (pI 8.6) to IL-8, did not activate
the IL-8 receptor (Fig. 2C).
The IL-8 receptor contains seven hydro-

phobic segments predicted to span the cell
membrane, a characteristic of the superfam-
ily ofG protein-coupled receptors (Fig. 3).
The COOH-terminal segment contains 11
serine or threonine residues that may be
phosphorylation sites for cellular kinases.
The third cytoplasmic loop, which may in-
teract with G proteins, consists of 20 amino
acids, similar in size to that of other peptide
receptors. The IL-8 receptor has a single
predicted site for N-linked glycosylation in

30 C
X
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Fig. 2. Expression of a human IL-8 receptor in Xenopus oocytes. (A) Signal transduction by the IL-8
receptor. Four days after injection with 5 ng of p2 cRNA, oocytes were stimulated with the indicated
concentration of IL-8 and Ca2' efflux was measured. The data are derived from five replicate
determinations per point and are representative of three separate experiments. (B) Binding of
'251-labeled IL-8 to oocytes expressing a functional IL-8 receptor. Total (0) and non-specific binding
(0) was determined by incubating oocytes injected with p2 cRNA with the indicated concentration of
5I-labeled IL-8 in the absence or presence of unlabeled IL-8 (1 pLM), respectively. Data are the mean

+ SEM of triplicate determinations per point and are representative of two separate experiments.
Non-specific binding was subtracted from total binding to determine specific binding (l). C5a (1 p.M)
did not displace `251-labeled IL-8 from oocytes injected with p2 cRNA. Specific binding of `2I-labeled
IL-8 by oocytes injected with water was undetectable. (C) Ligand selectivity of the IL-8 receptor. Three
days after injection with 5 ng of p2 cRNA, oocytes were stimulated with the indicated concentration
of IL-8 (-), MGSA (O), NAP-2 (0), fMLP (*), or C5a (A) and Ca2' efflux activity was measured.
The data are derived from eight replicate determinations per point. The percent of totat 45Ca2' released
from oocytes injected with 51 ng ofHL-60 neutrophil RNA in response to fMLP (1 pM) or C5a (500
nM) was 51 + 3 and 16 ± 5%, respectively. The response of oocytes injected with 5 ng of an irrelevant
cRNA encoding the rat serotonin lcreceptor (10, .5) was negligible for each of the five ligands; the
response to the relevant ligand, serotonin (1r.LM), was 34 ± 3% (n = 6). In (A) and (C) basal amounts
of calcium efflux and calcium uptake were similar among all experimental conditions.
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Fig. 3. Primary structure of a human IL-8 receptor (IL-8R) and alignment with that of the rabbit (F3R) and human (FPR) N-formyl peptide receptors.
Vertical bars indicate identical residues for each adjacent sequence position. The location of predicted membrane-spanning segments I through VII as
determined by the Kyte-Doolittle algorithm (26) are indicated. Open boxes designate predicted sites for N-linked glycosylation. Arabic numbers above the
sequence blocks refer to the IL-8 receptor sequence and are left justified. Dashes indicate gaps that were inserted to optimize the alignment. Abbreviations
for the amino acid residues are: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, fle; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg;
S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. The nucleotide sequence has been deposited at GenBank (accession number M73969).
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Fig. 4. Genomic analysis
of a human IL-8 recep-

tor. A Nytran blot ofhu-
man genomic DNA di-
gested with the indicated
restriction endonu-

cleases was hybridized
with full-length cDNA
of the IL-8 receptor at
high stringency (final
wash at 68MC in 0.1 x
SSPE for 1 hour). The
blot was exposed to Ko-
dak XAR-2 film in a

Quanta III cassette at
-80°C for 5 days. The
position of DNA size
standards is indicated in
kilobases at the left. The
autoradiogram shown is
representative of two in-

dependent experiments.

the NH2-terminal segment and two sites in the
second extracellular loop. As with the C5a
receptor (21), the NH2-terminal segment is
rich in acidic residues and may form the bind-
ing site for 11-8, which is basic (pl -9.5).
The IL-8 receptor possesses 69% amino

acid identity to F3R after the imposition of
ten gaps. If only the predicted transmem-

brane domains (TMD) are compared, 84%
identity is found with F3R (22). Moderately
conserved domains include the NH2-termi-
nal segment (38% identity, four gaps), the
first extracellular loop (33%, one gap), and
the COOH-terminal 23 residues (22%, no

gaps). The third cytoplasmic loops are 95%
identical. The IL-8 receptor shares less than
30% amino acid identity with all other
reported G protein-coupled receptor se-

quences including that of FPR (Fig. 3).
When a p2 probe was hybridized under

conditions of high stringency to blots of

human genomic DNA (23), the banding

1282

pattern was most consistent with one copy
per haploid genome of a small gene encod-
ing the low affinity IL-8 receptor (Fig. 4).
Detection of faint bands, however, in DNA
digested with Eco RV, Hind III, and Xba I
after long exposure of the blot suggested
that a closer human homolog of F3R, and
perhaps a high affinity IL-8 receptor, could
be found with the p2 probe. We therefore
rescreened cDNA libraries from HL-60
neutrophils with a p2 probe (12). The 13
hybridizing plaques were sequenced and all
were identical to p2. Therefore, if a gene
encoding a receptor more closely related to
F3R is present in HL-60 cells, it must either
not be expressed or be expressed in very low
amounts.

In the accompanying paper, a cDNA from
human neutrophils is described that encodes
a high affinity IL-8 receptor (24). This re-
ceptor has 77% amino acid identity with the
low affinity IL-8 receptor and is more closely
related to F3R (79% versus 69% amino acid
identity). Neither human IL-8 receptor in-
teracts with N-formyl peptides. The low
affinity form diverges most extensively from
the other two sequences in the NH2-termi-
nal segment, although the acidic character of
this region is conserved. Thus, the human
neutrophil expresses at least two distinct
calcium mobilizing IL-8 receptors. It is pos-
sible that the low affinity IL-8 receptor
could be a high affinity receptor for an as yet
undefined ligand similar in structure to IL-
8. Structural comparison of the IL-8 recep-
tors with F3R predicts that it encodes a high
affinity rabbit IL-8 receptor.
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Viral Persistence in Neurons Explained by Lack of
Major Histocompatibility Class I Expression
ETIENNE JOLY,* LENNART MUCKE, MICHAEL B. A. OLDSTONE

Viruses frequently persist in neurons, suggesting that these cells can evade immune
surveillance. In a mouse model, 5 x 106 cytotoxic T lymphocytes (CTLs), specific for
lymphocytic choriomeningitis virus (LCMV), did not lyse infected neurons or cause
immunopathologic injury. In contrast, intracerebral injection of less than 103 CTL
caused disease and death when viral antigens were expressed on leptomeningial and
choroid plexus cells of the nervous system. The neuronal cell line OBL21 expresses
little or no major histocompatibility (MHC) class I surface glycoproteins and when
infected with LCMV, resisted lysis by virus-specific CTLs. Expression ofMHC heavy
chain messenger RNA was limited, but f2-microglobulin messenger RNA and protein
was made normally. OBL21 cells were made sensitive to CTL lysis by transfection with
a fusion gene encoding anotherMHC class I molecule. Hence, neuronal cells probably
evade immune surveillance by failing to express MHC class I molecules.

NE EURONS ARE ESSENTIAL FOR RE-

ceiving, integrating, and passing
information. Although they main-

tain many essential functions of an orga-
nism, they cannot be replaced once de-
stroyed. Hence, it is likely that neurons have
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unique strategies to avoid injury. Neurons
can be persistently infected by many viruses
(1). The cardinal host response to eliminate
virally infected cells is the generation of
CTLs (2), which recognize and kill infected
cells when viral peptides appear on the sur-
face that are complexed to glycoproteins of
the class IMHC (3). Yet, although activated
CTLs can cross the blood brain barrier (4),
they seem unable to lyse neurons that are
persistently infected with any of several dif-
ferent RNA or DNA viruses.
Neurons may have evolved a selective

survival mechanism to avoid CTL recogni-
tion and lysis, such as a failure to present
viral peptides complexed by MHC glyco-
proteins on the cell surface. Although the
consequence of escape from CTL-mediated
lysis would be favorable to the neuron, it
would allow viruses to persist in these cells.

Lymphocytic choriomeningitis virus
(LCMV) infection is controlled primarily by
virus specific CTLs (2, 5). We generated
CTL clones to the major epitopes ofLCMV
(6): CTL clones 228 and 232 are Db-re-
stricted and recognize amino acid residues
(aa) 278 to 286 of the LCMV glycoprotein
(GP); CTL clones HD8, HD9, and HD47
are Ld-restricted and recognize aa 119 to
127 of LCMV nucleoprotein (NP); and
CTL clone Q9 is H-2q-restricted and sees aa
116 to 127 of NP (6). CTL clone K39 is
H-2k-restricted and recognizes a non-GP,
non-NP epitope located on the L RNA
strand of the virus [either the viral polymer-
ase or Z protein (6)]. During acute LCMV
infection of the brain, virus replication is
restricted primarily to cells in the lepto-
meninges and choroid plexus and rarely, if
ever, in neurons [(7) and Fig. 1, top].
During persistent infection, the opposite
occurs: neurons are heavily infected, but few
other nervous system cells express viral an-
tigens (Fig. 1, bottom). We took advantage
of such observations to transfer LCMV-
specific CTL intracerebrally to mice either
acutely (87 mice) or persistently (36 mice)
infected with virus. Virally infected neurons
evaded CTL-mediated injury, and persis-
tently infected mice remained alive through-
out the 2- to 4-week observation period,
despite receiving doses of CTLs > 1 x 106
per mouse. In contrast, intracerebral transfer
of similar CTL clones to acutely infected
mice resulted in immunopathologic injury
and death within 7 to 12 days. This phe-
nomenon was MHC-restricted since CTL
clones were effective only when injected into
mice of matched MHC haplotypes, includ-
ing H-2b, H-2d, H-2k, and H-2q (Fig. 1).
Death correlated directly with the number
of CTL transferred. The 50% lethal dose
(LD50) end point ranged from 2 x 102 to 8
x 102 CTL for all haplotypes (tenfold dilu-
tions of CTL from 106 to 101, six mice per
group). Thus, although CTLs efficiently
lysed virus-infected cells of the choroid plex-
us and leptomeninges, which express MHC
class I glycoproteins, they did not kill neu-
rons infected with virus.
To examine the mechanism by which neu-

rons escape CTL lysis, we studied interac-
tions between neurons and CTL in vitro.
The OBL21 cell line was established by in
vitro transformation of olfactory bulb cells
of newborn CD1 mice (H-2q haplotype)
with a retroviral vector (8). Such cells re-
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