
UCRL-JRNL-211879

Comparative Metagenomics of
Microbial Communities

S. G. Tringe, C. von Mering, A. Kobayashi, A. A.
Salamov, K. Chen, H. W. Chang, M. Podar, J. M. Short,
E. J. Mathur, J. C. Detter, P. Bork, P. Hugenholtz, E.
Rubin

May 2, 2005

Science



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Comparative Metagenomics of 
UCRL-JRNL-211879 

Microbial Communities 

Susannah Green Tringe1,2†, Christian von Mering3†, Arthur Kobayashi1, Asaf A. 

Salamov1, Kevin Chen4, Hwai W. Chang5, Mircea Podar5, Jay M. Short5, Eric J. 

Mathur5, John C. Detter1, Peer Bork3, Philip Hugenholtz1, Edward M. Rubin1,2*

1DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, 

USA 

2Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA  

94720, USA 

3European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, 

Germany 

4University of California, Berkeley, Department of Electrical Engineering and 

Computer Science, Berkeley, CA 94720, USA 

5Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA 

 

One-sentence summary:  The predicted proteins encoded in unassembled DNA 

sequence from environmental microbial community samples reveal habitat-

specific metabolic fingerprints. 

 

*To whom correspondence should be addressed: emrubin@lbl.gov

†S.G.T and C.v.M contributed equally to this work 

1 

mailto:emrubin@lbl.gov


Assembled genomes are difficult to obtain from environmental samples, owing to 

the species complexity of microbial communities and challenges in culturing 

representative isolates.  Here we characterize and compare the metabolic 

capabilities of terrestrial and marine microbial communities utilizing largely 

unassembled sequence data obtained via the shotgun sequencing of DNA isolated 

from the various environments.  Quantitative gene content analysis revealed 

habitat-specific fingerprints that reflect known characteristics of the sampled 

environments.  The identification of environment-specific genes through a gene-

centric comparative analysis presents new opportunities for interpreting and 

diagnosing environments.   

 

Despite their ubiquity, relatively little is known about the majority of 

environmental microorganisms largely because of their resistance to culture under 

standard laboratory conditions.  A variety of environmental sequencing projects 

targeted at 16S ribosomal RNA (rRNA) (1, 2) has offered a glimpse into the 

phylogenetic diversity of uncultured organisms.  The direct sequencing of 

environmental samples has provided further valuable insight into the lifestyles 

and metabolic capabilities of uncultured organisms occupying various 

environmental niches.  These efforts include the sequencing of individual large-

insert BAC clones as well as small-insert libraries made directly from 

environmental DNA (3-7).   The application of high-throughput shotgun 

sequencing of environmental samples has recently provided global views of those 

communities not obtainable from 16S rRNA or BAC clone sequencing surveys (6, 
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7).  The sequence data have also posed challenges to genome assembly, 

suggesting that complex communities will demand enormous sequencing 

expenditure for the assembly of even the most predominant members (7). 

A practical question emerging from environmental sequencing projects is the 

extent to which the data are interpretable in the absence of significant individual 

genome assemblies.  Most microbial communities are extremely complex and 

thus not amenable to genome assembly (8).  This obstacle may in part be offset by 

the high gene density of prokaryotes (~1 open reading frame / 1000 base pairs) 

and currently attainable read lengths (700-750 base pairs) which result in most 

individual sequences containing a significant portion of at least one gene (9).  

Accordingly, while microbial as well as animal sequencing studies have typically 

targeted complete genomes, for metagenomic data this approach may not always 

be necessary or feasible.  Determining the proteins encoded by a community, 

rather than the types of organisms producing them, suggests a means to 

distinguish samples based on the functions selected for by the local environment 

and reveal insights into features of that environment.  In these studies, we took a 

gene-centric approach to environmental sequencing in our analysis of several 

disparate microbial communities. 

The samples we characterized were derived from agricultural soil and from three 

isolated deep sea “whale fall” carcasses (10).  In contrast to the nutrient-poor 

environments previously subjected to large-scale metagenomic sequencing (6, 7), 

each of these environments was nutrient-rich albeit with very different nutrient 

sources (plant material for soil, lipid-rich bone for deep sea whale fall samples).  
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We first analyzed the microbial diversity in these samples through polymerase 

chain reaction (PCR) amplified small ribosomal RNA libraries generated for each 

sample using primers specific for Bacteria, Archaea, and Eukaryota.  In the soil 

sample, a wide diversity of bacteria, very few archaeal species and some fungi 

and unicellular eukaryotes were found (Figure S2).  We sequenced a total of 1700 

clones from two independent libraries of PCR-amplified bacterial 16S rRNA 

sequences prepared from the soil DNA, and we identified at least 847 distinct 

ribotypes from more than a dozen phyla (Figure S2B).  A rarefaction curve built 

from these data failed to reach saturation, and coverage estimators such as Chao1 

(11, 12) predicted the total number of bacterial ribotypes in this sample to be 

more than 3000 (Figures 1, S1), reflecting the enormous diversity found in soil 

(8).  The most common ribotype accounts for 112 (6.6%) of the clones (Figure 

S2D) when a 97% identity cutoff is used, and 81 (4.8%) when 98% identity is 

required.  The whale fall samples are both less diverse and less evenly distributed 

than the soil cohort and are estimated to contain between 25 and 150 distinct 

ribotypes of which the most abundant accounts for 15-25% of the library (Figure 

1, Supplemental Figure S3).  The reduced species and phyla diversity of the whale 

fall microbial communities as compared to soil is consistent with the extreme and 

specialized nature of this deep ocean ecological niche. 

We explored the genomic diversity of the communities by sequencing genomic 

small-insert libraries made from all four samples.  In light of the organismal 

complexity seen in the soil sample, we generated 100 million base pairs (Mbp) of 

sequence from this sample and 25 Mbp for each whale fall library.  Consistent 

4 



with the predicted high species diversity in the soil sample, attempts at sequence 

assembly were largely unsuccessful.  Less than 1% of the nearly 150,000 reads 

generated from the soil library exhibited overlap with reads from independent 

clones.  Based on our 16S rRNA data and the overlaps in the genomic sequence, 

we projected that somewhere between two and five billion base pairs of sequence 

would be necessary to obtain the eightfold coverage traditionally targeted for draft 

genome assemblies, even for the single most predominant genome in this complex 

community (13).  For each whale fall library, we estimate that between 100 and 

700 Mb of shotgun sequence data would be needed in order to generate a draft 

assembly for the most prevalent genome.  Assembling genomes for low-

abundance community members in any of these samples would clearly require 

significantly more sequence data.   

Given these hurdles to the assembly of complete genomes from the samples, we 

investigated the genes present without attempting to place them in the context of 

an individual genome.  In preliminary studies we compared gene predictions from 

assembled versus unassembled sequence using available metagenomic data (13).  

With our analysis supporting the validity of gene predictions on unassembled 

reads, we applied an automated annotation process to the sequence data from 

several different environmental samples.  As our analysis relied primarily on the 

predicted genes on small DNA fragments, the majority of which were individual 

sequence reads, we termed each environmental sequence an Environmental Gene 

Tag (EGT), to distinguish them from the sequencing reads primarily used for the 

assembly of genomes.  The gene contents of the partially assembled and 
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unassembled reads from soil and whale fall samples were compared to each other 

and to those of an acid mine drainage biofilm community (6) and each of three 

independent samples from Sargasso Sea surface waters (7).  Putative genes were 

predicted on at least 90% of the EGTs from all samples, even when the sequence 

fragments were individual reads.  More than a third of the EGTs contained two or 

more predicted open reading frames, raising the possibility of nearest-neighbor 

analysis (14).   

Roughly half of the predicted proteins in each sample exhibited homology to 

orthologous groups in an expanded in-house COG database (15, 16).  To test 

whether the orthologous groups observed in a limited sampling of each library 

were representative of the full range of groups in a community, we plotted the 

number of orthologous groups detected at increasing levels of sequencing depth.  

For all samples, saturation for frequently occurring orthologous groups is 

observed after a modest amount of sequencing while the general slope of the 

curve reveals information about community diversity (Figure 2).  In the relatively 

simple acid mine drainage biofilm community, 90% of the orthologous groups 

were detected with just 25 Mbp raw sequence (~15 Mbp quality sequence) – a 

fraction of that needed to assemble genomes.  Even in the considerably more 

complex soil community, the curve starts to flatten at 25 Mbp, suggesting that 

new orthologous groups detected at this point are found only in a minority of the 

community members.  The Sargasso Sea communities, consistent with their 

species complexity, fell between acid mine drainage and soil; the whale falls, 

however, exhibited trajectories quite similar to soil.  We observed qualitatively 
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similar curves when limiting the analysis to the 4873 COGs contained in the 2003 

release or to the domain-oriented Pfam database (17)(Supplemental Figure S3), 

suggesting that this phenomenon is not an artifact of comparison to a particular 

database.   

We next explored the relative proportion of the total protein sets devoted to 

particular functions in a sample, given evidence that not only message levels (18) 

but library representation (19) of genes coding for specialized enzymes can vary 

with sample source.  We specifically explored whether independent samples from 

similar, though geographically separated, environments would exhibit functional 

profiles more similar to each other than to those from disparate environments.  

We binned predicted proteins into functional categories at four levels; first, 

individual genes (orthologous groups inferred from sequenced genomes), second, 

groups of genes frequently observed as neighbors in complete genomes 

(“operons,” shown to correlate with metabolic pathways (20)), third, higher order 

cellular processes from the manually curated KEGG database (21), and fourth, 

broad functional categories from the COG database (13, 15).  Assembled contigs 

were weighted to account for the number of independent clones contributing to 

them.   

A two-way clustering of samples and KEGG maps, in which over- and under-

represented categories are indicated by red and blue blocks respectively, is 

displayed in Figure 3 (Figure S4 displays similar figures based on COGs and 

operons).  Regardless of the functional binning employed, the independent 

Sargasso Sea samples clustered together, as did the whale fall samples.  These 
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profiles clearly suggest that the predicted protein complement of a community is 

similar to that of other communities whose environments of origin pose similar 

metabolic demands.  Our results further support the hypothesis that the 

“functional” profile of a community is influenced by its environment and that 

EGT data can be used to develop fingerprints for particular environments.   

To assess the significance of these similarities and differences, and to identify 

functions of importance for communities existing in specific environments, we 

systematically examined the differences in gene content between samples (Figure 

4).  For this analysis, the three whale fall samples were pooled together, as were 

the three ocean samples.  At each level, significant differences among the 

respective microbial communities were observed that suggested environment-

specific variations in both biochemistry and phylogeny.  The acid mine drainage 

was not included in this analysis because of its high dissimilarity from the other 

samples (Figures 3, S6) and low species diversity, both likely reflective of the 

very extreme nature of this environment. 

At the individual gene level, quite a few orthologous groups are exclusive to a 

particular environment (Figure 4, upper left).  For example, 73 putative orthologs 

of cellobiose phosphorylase, involved in degradation of plant material, are found 

in the ~100 Mb of soil sequence but none are found in the ~700 Mb of sequence 

examined from the Sargasso Sea.  On the other hand, 466 distinct copies of the 

light-driven proton pump bacteriorhodopsin are found in the surface waters of the 

Sargasso Sea, while none are found in the deep sea whale falls or in soil.   
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The analysis of operons likewise reveals similarities and differences in functional 

systems (Figure 4, upper right) that suggest features of the environments.  The 

most discriminating operons tend to be systems for the transport of ions and 

inorganic components, highlighting their importance for survival and adaptation.  

With respect to ionic and osmotic homeostasis, for example, the two maritime 

environments are very similar – both show a strong enrichment in operons that 

contain transporters for organic osmolites and sodium ion exporters coupled to 

oxidative phosphorylation.  The soil sample, on the other hand, has a strong 

enrichment in operons responsible for active potassium channeling.  These biases 

nicely reflect the relative abundance of these ions in the respective environments: 

while typical ocean water contains considerably more sodium ions than 

potassium, the soil sample examined here contained high potassium and low 

sodium concentrations (13). 

Examination of higher order processes reveals known differences in energy 

production (e.g. photosynthesis in the oligotrophic waters of the Sargasso Sea, 

starch and sucrose metabolism in soil) (7) or population density and interspecies 

communication (overrepresentation of conjugation systems, plasmids, and 

antibiotic biosynthesis in soil; Figure 4, lower left) (22).  The broad functional 

COG categories, on the other hand, primarily suggest differences in genome size 

and phylogenetic composition (13).   

Notably, many uncharacterized genes and processes are among the most 

overrepresented categories in each sample.  This hints at an abundance of 

previously unknown functional systems, specific to each environment, whose 
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occurrence patterns may offer useful guidance for further, more directed 

experimental and computational investigations.  More extensive sampling in both 

time and space will reveal which features are broadly distributed within a given 

environment and which are unique to the places and times sampled here.  

Nonetheless, this analysis of genes and functional modules in environments 

reveals expected contrasts, hints at certain nutrition conditions, and points to 

novel genes and systems contributing to a particular “lifestyle” or environmental 

interaction. 

The predicted metaproteome, based on fragmented sequence data, is sufficient to 

identify functional fingerprints that can provide insight into the environments 

from which microbial communities originate.  Information derived from extension 

of the comparative metagenomic analyses performed here could be used to predict 

features of the sampled environments such as energy sources or even pollution 

levels, while the environment-specific distribution of unknown orthologous 

groups and operons offers exciting avenues for further investigation.  Just as the 

incomplete but information-dense data represented by expressed sequence tags 

(ESTs) have provided useful insights into various organisms and cell types, EGT-

based ecogenomic surveys represent a practical and uniquely informative means 

for understanding microbial communities and their environments. 
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Figure 1:  Species complexity.  Rarefaction curves of bacterial 16S rRNA 

clone sequences for soil and whale fall samples.  Inset: Rarefaction curve 

for all 1700 soil clones.  The three whale falls are: 1, Santa Cruz Basin 

bone; 2, Santa Cruz Basin microbial mat; and 3, Antarctic bone.  

Figure 2:  Identification of orthologous groups with greater sequencing 

depth.  The number of orthologous groups observed at least once is shown 

as a function of the raw sequence generated.  Numbers in brackets indicate 

lower limits of the total number of groups in the sample. 

Figure 3: Functional profiling of microbial communities.  Two-way 

clustering of samples and encoded functions based on relative enrichment of 

KEGG functional processes.  The 15 most discriminating processes are 

highlighted. 

Figure 4: Specific Enrichments.  Three-way comparisons of soil, whale 

fall and Sargasso Sea environments, in terms of COGs, operons, KEGG 

processes or COG functional categories.  Each dot shows the relative 

abundance of an item in the three environmental samples, such that 

proximity to a vertex is proportional to the level of enrichment in the 
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respective sample.  Color indicates statistical significance of the 

enrichment. Marked items discussed in main text: 1) COG5524 – 

Bacteriorhodopsin. 5) COG3459 – Cellobiose phosphorylase. 7) ABC-

type proline/glycine betaine transport system. 10) Na+-transporting 

NADH:ubiquinone reductase. 14) Osmosensitive, active K+-transport 

system.  18) Photosynthesis. 19) Type I polyketide biosynthesis 

(antibiotics).  A complete listing of numbered items is available in the 

SOM, and an enhanced version of the figure is at 

http://string.embl.de/metagenome_comp_suppl/. 
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Materials and Methods 

Sample collection: 

Surface soil (0-10 cm) was collected in September 2001 from a farm in Waseca 

County, Minnesota.  The surrounding area had been used for livestock, including 

sheep, cattle, and pigs, and was in the drainage path of a silage storage bunker that 

had been used for sweet corn and pea silage waste operations from 1990 to 1997.  

The sample was collected and sealed in polyethylene bags and stored at 4°C for 

processing prior to archiving at -80°C.  Biochemical analysis (Wallace 

Laboratories) on 20 g of soil from the same site revealed it to be clay loam, with 

fair to low organic matter content and high levels of most essential elements.  

Potassium was present at 926.15 mg/kg dry weight and sodium at 75.38 mg/kg; 

levels of most nonessential elements were low.  Microscopic analysis, including 

Sybr green staining, found the organisms in the sample to be primarily 

prokaryotic. 

Three other samples were from microbial communities growing on sunken whale 

skeletons, a lipid-rich nutrient source that can foster the growth of a flourishing 

ecosystem in an otherwise nutrient-poor environment (S1).  This unique 

ecological niche, referred to as a “whale fall,” has been suggested to select for 

“specialist” species in geographically remote locations (S2).  Three independent 

whale fall sample libraries were examined.  “Whale fall 1” is a section of a rib 

bone from a gray whale carcass experimentally sunk in 1998 in the Pacific Ocean, 

Santa Cruz Basin (N33.30 W119.22), at a depth of 1674 meters (S3).  “Whale fall 

2” is an orange microbial mat from the same whale carcass; both samples were 

collected using a remote operated vehicle (ROV).  “Whale fall 3” is a whale bone 

of uncertain age and species collected by otter trawl on a muddy seafloor at a 

depth of 560 meters off the West Antarctic Peninsula Shelf (S65.10 W64.47).   

Library construction: 

DNA for all libraries was isolated as described (S4).  For analysis of small 

ribosomal RNA sequences, three sets of primers were used to individually target 

bacterial (27F and 1392R), archaeal (21F and 958R) and eukaryotic (forward 
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primer: 5'-ACCTGGTTGATCCTGCCAG-3', reverse primer: 5'-

TGATCCTTCYGCAGGTTCAC-3') genomes.  Products were then cloned into 

the pCR4-Topo vector (Invitrogen). 

For soil genomic sequencing, community DNA from 0.5 g material was cut with 

6-base recognition site restriction enzymes and cloned into the lambda ZAP 

vector (S5).  The library was amplified once then in vivo excised to form a 

phagemid library according to manufacturer’s protocol.  Average insert size was 

determined to be 2.4 kb by gel electrophoresis.  All three whale fall libraries were 

made from mechanically sheared community DNA cloned into the lambda ZAP 

vector, then in vivo excised, without amplification, to form a phagemid library.  

Average insert sizes were 3.3 – 3.5 kb.   

Clones for all libraries were picked and bidirectionally sequenced by standard 

protocols (http://www.jgi.doe.gov/). 

16S/18S rRNA sequence analysis: 

Paired reads from 16S and 18S rRNA clones were assembled using phrap 

(www.phrap.org); 18S clones with two successful sequencing reads that failed to 

assemble were manually assembled with Ns filling the central gap.  Chimeric 

sequences were identified by the Bellerophon program (S6) and removed from 

further analysis.  However, any sequences that appeared in both independent 

bacterial PCR libraries from soil were flagged as non-chimeric and retained.  

Species abundances were determined by a Perl script that utilized Megablast 

alignment and single-linkage clustering to group together any sequences with 

>97% identity over the full length of the insert; clustering was also performed 

with 98% and 99% identity cutoffs for comparison.  Rarefaction curves and total 

species estimates were generated using EstimateS (Version 7, R. K. Colwell, 

http://purl.oclc.org/estimates).  For phylogenetic assignment, all bacterial and 

archaeal sequences were blasted against an internal ARB database of curated 16S 

rRNA sequences; any sequences without hits of >95% identity, as well as all 

eukaryotic 18S rRNA sequences, were blasted against the NR database.  

Sequences with >95% identity to a database sequence were assigned to the same 
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phylum.  For clusters that remained unassigned, a representative member was 

phylogenetically classified by incorporation into the ARB database tree via 

clustalw and manual refinement based on secondary structure.  Singlets that could 

not be automatically assigned to a phylum remained unclassified. 

Genomic sequence analysis: 

Prior to annotation, low-quality and duplicate sequencing reads were removed 

from the soil sequence.  Among the original set of 198529 reads, 8164 had fewer 

than 200 bases with phred score >20 and were therefore removed as being 

unlikely to contribute useful information.  The remaining reads were then scanned 

for duplicate clones resulting from the amplification step in the library 

preparation.  41,280 reads were defined as duplicates and removed, using the 

criteria that any reads that matched each other with >95% identity over at least 

400 bp or 90% of the insert length, and had the same insert orientation, were 

considered duplicates.  When pairs of duplicates were found, the read with fewer 

high-quality bases was deleted from the data set.  The remaining 149085 reads 

were subjected to phrap assembly, to identify overlapping reads from independent 

clones, and functional annotation for EGT analysis. 

Metagenome size calculations: 

To calculate the amount of metagenomic sequence needed to assemble the 

genome of the most common species in soil, we estimate based on the 16S rRNA 

data that this species represents roughly 5% of the library.  Assuming an average 

genome size of 6 Mb (S7-9), and a desired coverage level of 8X, we would need 

to sequence 48 Mb of DNA from this organism.  Accordingly, nearly a gigabase 

of sequence from this community would be necessary.  However, significantly 

more could be needed if the 5% representation of this clone is inflated by biases 

such as preferential PCR amplification:  if the ~3000 taxa were present in equal 

abundance, >150 Gb could be required.   

To estimate the sequence coverage based on the assembly statistics from soil, we 

considered two extremes, in which either one species dominates or all species are 

present in equal abundance.  In total, 744 contigs were identified in the phrap 

3 



assembly that contained reads from at least two independent clones and were 

longer than 850 kb.  Within these contigs, roughly 0.3 Mb of sequence were 

covered more than once.  We first assumed that these overlapping sequences all 

derived from the same 6 Mb genome.  The Lander-Waterman equation indicates 

that the number of bases covered more than once will be equal to G * (1 - e^(-c) – 

ce^(-c)), for coverage c of a genome (or metagenome) of size G.  Solving this 

equation, we estimate that the most abundant genome is covered at a depth of 

about 0.35 in our data, so achieving the 8X coverage desired for assembly would 

therefore require more than 2 Gb additional sequence.  On the other extreme, if 

we assume that all species are present in equal abundance, the same equation 

predicts a total “metagenome” size of 16.7 Gb (~2800 individual genomes of 6 

Mb) and implies that more than 130 Gb of sequence would be required for 

genome assembly.  Thus both the 16S rRNA data and the assembly statistics 

independently project the need for an amount of sequence on the order of one to a 

hundred gigabases in order to assemble one or more prokaryotic genomes from 

the soil community.   

Whale fall “metagenome size” estimates were calculated by determining the 

coverage of each base sequenced and fitting the resulting histogram.  Assuming 

an average genome size of 6 Mb and a desired coverage of 8X, the amount of 

sequence necessary to assemble the three most abundant genomes (roughly 50% 

of the community) in whale falls 1, 2 and 3 respectively are:  257 – 520 Mb, 270 – 

698 Mb, and 240 – 486 Mb.  Achieving sufficient coverage of all genomes 

present at an abundance of at least 2% in any sample would require 2.4 Gb of 

sequence. 

Functional annotation: 

All genomic sequences from soil, whale falls and acid mine drainage were 

analyzed by the program FGENESB from Softberry, which predicts genes and 

operons as well as functional RNAs (described at http://www.softberry.com).  

Analysis of Sargasso Sea sequences utilized the previously reported protein 

sequence predictions (S10).  Functional annotation of the predicted proteins 
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utilized an extended version of the COG database, covering 26201 protein 

families (orthologous groups) in 179 completely sequenced organisms as 

compared to 10740 orthologous groups in 73 organisms found in the current COG 

database (S11). The extension has been performed using an unsupervised 

procedure in the context of the STRING project (S12, 13).  As a result of the 

extension, additional members have been added to existing COGs, and novel 

orthologous groups have been created which are termed “non-supervised 

orthologous groups” (NOGs). The procedures used for extending the database 

were very similar to the original COG procedures (including a ‘COGNITOR’-

type protocol for extension of existing COGs, and full all-against-all similarity 

searches to define novel groups as triangles of reciprocal best hits; see the last 

chapter of the STRING documentation for details: http://string.embl.de/). The 

extended COGs used here are those of STRING version 6; they are transitional in 

that they will be replaced when updated versions of the original COG database are 

released. 

Predicted proteins from all environments, including those from unassembled reads 

and those annotated as ‘miscellaneous feature’ in the Sargasso Sea data, were 

compared to this extended COG database using BLASTP. Predicted proteins were 

assigned to one of the orthologous groups if they showed a similarity score of 60 

bits or better to any of the proteins in that group. BLASTP was run using the 

BLOSUM62 matrix and low-complexity filtering disabled (under these settings, 

60 bits corresponds to an e-value of roughly 10-8 in searches against nrdb). As is 

the case in the original COG database, a protein was allowed to map to several 

orthologous groups, provided all of these were detected above the 60 bits cutoff 

and overlapped by no more than 50% of the shortest assignment.  Based on the 

COG assignments, proteins were also assigned to operons and higher functional 

categories for further analysis (described below).  A separate BLASTP against the 

KEGG database was used to assign proteins to KEGG maps.  This was again done 

using BLASTP at a cutoff of 60 bits, but each environmental protein was mapped 

to at most one protein in the KEGG database. 
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When this procedure was applied to the environmental sequences, the predicted 

soil proteins mapped to 5467 distinct orthologous groups (3394 to the original 

COGs and 2127 to additional, automatically derived, non-supervised orthologous 

groups or NOGs), each whale fall library contained representatives of ~3600 

groups and each Sargasso Sea library contained representatives of ~4800 groups.  

The predicted AMD proteins, on the other hand, mapped to just 2244 groups, 

consistent with the limited diversity of this community. 

COG accumulation curves were generated by examining each read individually, 

in random order, and assessing the number of bases in the read and the number of 

previously unseen COGs assigned to that read.  This analysis utilized raw, 

untrimmed reads; for Joint Genome Institute data the number of quality bases 

determined with a Phred score 15 threshold is typically 64% of the raw read 

length.  Chao1 estimates of total COG content were obtained using EstimateS 

(Version 7, R. K. Colwell, http://purl.oclc.org/estimates). 

 

Two-way clustering analysis: 

To investigate whether independent samples taken from related environments 

show a similar functional profile in terms of encoded proteins, a two-dimensional 

cluster analysis was performed - akin to the clustering of microarray data (S14).  

Each sample was treated independently, including each of the separate sample 

libraries from the Sargasso Sea; we chose to focus on samples 2, 3 and 4 because 

they were isolated from different locations utilizing the same sampling protocol, 

specifically the same size prefilter and collection filter. 

A two-dimensional matrix was constructed of environmental samples and 

orthologous groups, wherein each cell indicates how often genes of a particular 

orthologous group were seen within a particular environmental sample. To 

achieve optimal sensitivity and specificity, this was done based on assembled data 

wherever possible, correcting for the read-depth of the assembled contigs (a 

contig with a high read-depth is more frequently represented within the sample 

and correspondingly receives a higher count). Corrections for mated reads and 

contig sizes were also performed: mated reads do not constitute independent 
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observations, and large contigs are clearly covered by more reads than short 

contigs. Thus, final counts were expressed as number of independent clones per 

1000 base pairs of assembly, and those final counts were equally applied to all 

orthologous groups found within a contig. In a last step, we added to those final 

counts a small amount of pseudocounts, in order to suppress meaningless 

statistical fluctuations caused by very rare orthologous groups (the amount of 

pseudocounts added to each cell was the sum of all cells of that environment, 

divided by 10000). 

At this point, the matrix was normalized to account for the varying amounts of 

sequence acquired for each environmental sample, and for the varying overall 

frequency of orthologous groups. Normalization of the rows to unity (i.e. the 

environments) corrected for sequencing depth, and a subsequent normalization of 

columns to unity corrected for the overall frequency of orthologous groups (some 

groups such as unspecific methylases or dehydrogenases are generally very 

frequent in microbial genomes, and would dominate over less-frequent, but more 

specific groups without this last normalization). The matrix was then clustered 

independently in each dimension, using UPGMA clustering of Euclidian distances 

(PHYLIP package). Figure S6A shows the final matrix, rearranged according to 

the result of the clustering - whereby cells in the matrix are colored to indicate 

whether the orthologous group in that particular environment is seen more often 

than expected, or less often (colors represent log-ratios, i.e. observation divided 

by the unbiased expectation: two-fold overrepresentation is shown in full red, 

two-fold underrepresentation is shown in full blue, white color means observation 

is as expected). The matrix shown is truncated after 600 orthologous groups due 

to space constraints, but the clustering of samples is based on all available groups. 

The 600 groups shown are those with the overall largest deviation from the 

expectation (i.e. the product of their matrix cells is minimal). 

The above analysis was repeated for functionally binned genes (as opposed to 

single genes), in order to assess whether the resulting tree of environmental 

samples was robust, and to assess which functional systems differed most 

between samples. Grouping of genes was performed at two levels: at the level of 
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operons (averaging 4.5 genes per operon), and at the level of the functional 

process (as defined in the KEGG database (S15), averaging 15 genes per process 

and species).  

Not all bacterial operons are known, but a comprehensive list of presumed 

operons can be constructed by searching for repeatedly occurring gene 

neighborhoods in fully sequenced prokaryotic genomes. We have previously 

executed such a search (S16) and have extended it here to cover 179 fully 

sequenced genomes. In short, all orthologous groups in all genomes were assayed 

for neighboring occurrences or instances where two groups mapped to the same 

ORF (gene fusions). The resulting links between orthologous groups were scored 

according to frequency and specificity of the interaction, and then clustered to 

reveal entire operons. The procedure and cutoff applied here were essentially 

identical to those used previously (S16), except that neighborhood and fusion 

were considered but not the phylogenetic co-occurrence of genes across species. 

The resulting set of conserved operons consisted of 565 operons of at least three 

orthologous groups each. Of those, 394 operons were found within at least one of 

the environments. Note that this does not require the presence of multiple genes 

on a single contig – what is counted are still the individual orthologous groups (as 

in the above paragraph), but these are subsequently grouped according to their 

membership in known operons. Construction of the two-dimensional matrix and 

clustering were done as described above; pseudocounts were 1 in 10000, and full 

color is shown for enrichments of 1.5-fold or higher. 

For the two-way clustering according to KEGG processes, the predicted 

environmental proteins were directly compared to proteins in the KEGG database 

(bypassing the COG-assignment).  The two-dimensional matrix was then 

constructed using entire KEGG-processes, each grouping the counts for several 

proteins. Filling and clustering of the matrix were done as above; pseudo-counts 

were 1 in 2000 (reflecting the larger size of KEGG processes), and full color was 

shown for enrichments of 1.3-fold or higher. 
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Specific enrichments (three way comparisons): 

 

Having established that similar environmental samples can be grouped together 

based on their gene content, the next task was to assess which genes were 

particularly enriched in each of the environments (hinting at functional 

differences among the microbial communities).  For this analysis, the three whale 

fall samples were pooled as one environment, as were the three Sargasso Sea 

samples #2, #3 and #4. The acid mine drainage sample was not considered here, 

because it is the least diverse sample and because it is from a relatively recent, 

man-made environment.  Samples 2-4 from the Sargasso Sea were chosen 

because they were independent samples utilizing identical sampling procedures.  

A triangular representation was chosen to display the specific enrichments of 

genes or functional processes in each of the environments (Figure 4, main text). 

Assessing the relative counts of orthologous groups, operons or KEGG processes 

was done exactly as described in the previous section (two-way clustering 

analysis). Additionally, as a fourth binning the assignment of orthologous groups 

to broad functional categories was used (categories were as defined in the COG 

database).  

For each item, one dot is shown within a triangle – the position of the dot signifies 

the relative enrichment of the item in one or several of the samples. Items that are 

equally frequent in all three environments appear in the middle of the triangle. 

Items that appear in one of the corners of the triangle are found primarily in one 

of the environments, and items that appear along one of the edges of the triangle 

are found primarily in two of the three samples, but are largely absent from the 

third. For each item, the relative counts for the three environments were 

normalized to add up to 1 (after addition of pseudocounts to select against rare 

items). This permitted the display of three-dimensional data in two dimensions 

(using three axes at 120 degree angles). In order to estimate the statistical 

significance of each observation, the data were compared to randomized data, as 

follows. 
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First, the actual items were binned into abundance classes. An observed relative 

enrichment is statistically more significant for an abundant item (e.g. a 

widespread orthologous group or a large operon) than for a rare item.  

Comparison of items to randomized data was done separately for each abundance 

class. Randomization was done by repeated sampling of items from reservoirs 

matching the size distributions of the three environmental samples. For each 

random sampling, the addition of pseudocounts and normalization were done in 

exactly the same way as for the actual data, and the position of the random dot in 

the triangle was noted. After at least 2·106 randomizations in each abundance 

class, the density of random dots in the triangle was assessed, on a grid spanning 

20 bins on each axis (i.e. 20 * 20 * 20 = 8000 gridpoints). This allowed the 

computation of p-values for each of the actual items, by checking the density of 

random dots at the position of the item: the p-value corresponded to the number of 

random dots in bins of equal or lower density, divided by the total number of 

randomizations. E-values were then computed by multiplying the p-values with 

the total number of items under consideration. For each of the triangles, dot 

positions and e-values of all items are available as flat files on request.  

 

Supplemental Data 

16S / 18S ribosomal RNA analyses: 

The bacterial 16S rRNA sequences from soil (1700 total) clustered into 847 

unique groups mapping to 18 different phyla when single-linkage clustering was 

performed with a 97% identity threshold.  The number of unique groups rose to 

1034 when this threshold was raised to 98%; at a 99% threshold, essentially the 

limit of the error inherent in the sequencing quality, 1467 unique sequences were 

identified.  Total diversity, based on the Chao1 estimator, was estimated to be 

more than 3500 phylotypes (at 97% threshold) but may be considerably more as 
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the estimate continued to increase with sequencing (Figure S1A).   Values of the 

alternative ACE (Abundance Coverage Estimator) estimate of total species 

richness were more stable and plateaued at 3000 phylotypes.     Most of these 

sequences were singlets, and the largest cluster contained 112 clones, or 6.6% of 

the total (Figure S2A).  As a result of the single-linkage clustering, however, 

some sequences within the cluster were as little as 95% identical; at a higher 

identity cutoff of 98% the cluster broke into several smaller clusters, the largest of 

which contained 81 (4.8%) of the clones.  At a 99% identity cutoff, the cluster 

essentially disappeared.  The 58 archaeal clones formed just seven clusters, all 

within two major euryarchaeal branches (Figure S2B), and the 106 eukaryotic 18S 

sequences analyzed fell into 35 distinct groups in at least 8 different phyla, 

primarily fungi and unicellular eukaryotes.  33 partial 16S rRNA sequences were 

found in the soil genomic data, representing 31 distinct bacteria, one archaeon and 

one chloroplast; one eukaryotic 18S sequence was also found. 

Each whale fall bacterial 16S library contained 17-37 unique sequences mapping 

primarily to the Proteobacteria and Bacteroidetes.  In contrast to soil, more than 

half of the sequences were distributed among the top few clusters (Figure S3A).  

The archaeal 16S sequences from the two Pacific samples fell into a limited 

number of clusters, primarily within the Methanomicrobia and, for the mat 

sample, the C1 archaea.  The eukaryotic 18S sequences from the mat sample were 

all from the same deeply branching eukaryote while those from the bone derived 

mainly from two alveolates; singlet representatives of a cercozoan and a fungus 

were also found in this library.  We found partial 16S rRNA sequences in 74, 36 
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and 64 clones from the three whale fall libraries respectively, all of which were 

bacterial.  Comparing these to the sequences found in the PCR clone libraries 

revealed that for each sample, the same phyla (and proteobacterial classes) were 

typically represented in the two types of libraries (Supplementary Figure 2D). 

Comparison of assembled acid mine drainage biofilm genomes with unassembled 

reads: 

Automated annotation was applied to the assembled genomic scaffolds from the 

acid mine drainage biofilm as well as to all unassembled reads from the same 

sample.  In the five genome “bins” assembled from the acid mine drainage 

sequence data, a total of 7173 distinct proteins were predicted in 1629 different 

COG categories.  In the complete set of unassembled reads, 77685 proteins were 

predicted in 1824 different COG categories (of 144771 total predicted ORFs), 

including all but 8 of the categories predicted in the assembled genomes.  203 

additional COGs were predicted in the unassembled data that were not predicted 

in the assembled genomes, of which slightly more than half (107) were predicted 

in reads that were discarded because they did not form large contigs.  More 

stringent methods for assigning proteins to COGs, such as requiring multiple hits 

to the same category in different organisms, did not substantially change the 

number of apparent false positives or false negatives. 

Sample-specific enrichments: 

Beyond the gene content variations described in the main text, numerous 

differences in distribution of functional proteins across samples were observed, 

both expected and unexpected.  Several of these, labeled with numbers on Figure 
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4, are 1) COG5524 – Bacteriorhodopsin. 2) COG4338 – uncharacterized protein 

conserved in bacteria. 3) COG3046 – uncharacterized protein related to 

photolyase. 4) COG1292 – Choline-glycine betaine transporter.  5) COG3459 – 

Cellobiose phosphorylase. 6) COG3903 – Predicted ATPase domain of unknown 

function. 7) ABC-type proline/glycine betaine transport system. 8) Ribosomal 

subunit operon. 9) Phosphonate transport and metabolism. 10) Na+-transporting 

NADH:ubiquinone reductase. 11) Nitrous oxide reductase. 12) Nitric oxide 

reductase. 13) Nitrate reductase. 14) Osmosensitive, active K+-transport system. 

15) DNA double strand break repair system (NHEJ-type). 16) Uncharacterized, 

soil-specific operon. 17) Type IV secretion systems. 18) Photosynthesis. 19) Type 

I polyketide biosynthesis (antibiotics). 20) Translation. 21) Nucleotide transport 

and metabolism. 22) Eukaryotic RNA-processing and modification. 23) Defense 

mechanisms. 24) Signal transduction mechanisms.   

At the COG level, there are several uncharacterized genes displaying extreme bias 

toward particular environments; for example, COG4338, COG3046 and 

COG4240 are found almost exclusively in the Sargasso Sea; COG3903 is heavily 

skewed towards soil and COG3550 is primarily observed in whale falls.  Several 

putative genes categorized as NOGs are also quite unevenly distributed. 

Among the operons, there were a number of apparent variations in systems other 

than transport.  In terms of available electron acceptors, the deep sea whale falls 

share much in common with soil, including an enrichment of all three types of 

nitrate respiration processes (i.e. subunits of nitrous oxide reductase, nitrite oxide 

reductase, and nitrate oxide reductase).  We also observe a strong enrichment (e-
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value < 0.05) in the soil of a small operon recently shown to encode a prokaryotic 

double-strand break (DSB) repair system (Figure 4, upper right)(S17). This 

suggests that the resident microbes may have had a higher chance of suffering a 

DSB, or greater difficulty repairing it via recombinational repair, possibly because 

of factors such as larger genome sizes, slower growth, desiccation or attack from 

DSB-inducing genotoxins. 

One of the most prominent overrepresentations among the KEGG maps was an 

abundance of proteins involved in Type IV secretion systems in the whale fall 

samples; evidence of this was also apparent in the COG, operon and higher 

functional category analyses.  Chemotaxis and flagellar assembly pathways were 

also prominent in this exotic environment, providing potential clues to the 

processes involved in its colonization. 

As mentioned in the main text, the differences among higher functional categories 

seem to suggest differences in genome size and/or phylogeny.  Signal 

transduction genes, known to be more common in large genomes, are 

overrepresented in soil and whale falls while housekeeping functions like 

translation are overrepresented in the smaller genomes of Sargasso sea organisms 

(Figure 4, lower right)(S18, 19).  The greater prevalence of RNA processing 

genes in the Sargasso Sea is indicative of a significant eukaryotic component in 

these samples (S10). 
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Figures and legends 

Figure S1:  Rarefaction curves for 16S phylotypes observed (blue triangles), Chao1 total 

richness estimator (blue line), and ACE total richness estimator (dotted blue line) for soil. 
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Figure S2:  rRNA analysis of soil.  A) Rank-abundance curve for bacterial 16S rRNA 

sequences.  B) Phylogenetic distribution of soil 16S rRNA sequences from PCR clone 

library (solid) and genomic library (hatched).  C and D) Allocation of C) archaeal 16S 

and D) eukaryotic 18S rRNA sequences into phyla. 
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Figure S3:  Rarefaction curves for 16S phylotypes observed (triangles), Chao1 total 

richness estimator (lines), and ACE total richness estimator (dotted lines) for 3 whale 

falls.  Whale fall 1, dark green; whale fall 2, bright green, whale fall 3, light green. 
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Figure S4:  Rank-abundance curves for whale fall bacterial 16S sequences.  A) 

Assignment of 16S rRNA sequences to bacterial phyla for both PCR clone libraries (solid 

bars) and genomic libraries (hatched bars).  B) Whale fall 1, Santa Cruz bone; C) Whale 

fall 2, Santa Cruz microbial mat; D) Whale fall 3, Antarctic bone.  
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Figure S5:  Functional accumulation curves for all samples.  Number of unique hits in 

the A) COG and B) Pfam database as a function of sequence depth.  The y-axis 

maximum is set to the total number of categories in each database. 
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Figure S6:  Two-way clustering of data based on A) COGs and B) operons. 
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Figure S7:  Sample tree based on 10 Mb of unassembled sequence from each sample.  

Total hits to each of 4873 COGs were taken as components of a COG vector; Euclidean 

distances were calculated among the vectors to create a distance matrix.  Tree was 

generated using Phylip (University of Washington, 

http://evolution.genetics.washington.edu/phylip.html) and visualized with Phylodendron 

(University of Indiana, http://www.es.embnet.org/Doc/phylodendron/treeprint-

form.html). 
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