

NIH Public Access

Author Manuscript

Science. Author manuscript; available in PMC 2013 July 25.

Published in final edited form as:

Science. 2001 February 23; 291(5508): 1557–1560. doi:10.1126/science.291.5508.1557.

Taste Receptor Cells That Discriminate Between Bitter Stimuli

Alejandro Caicedo^{1,3,*} and Stephen D. Roper^{1,2,4}

¹Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA

²Program in Neuroscience, University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA

³Laboratorio de Biofísica, Centro Internacional de Física, AA 49480, Bogotá, Colombia

⁴Rocky Mountain Taste and Smell Center, Denver, CO 90262, USA

Abstract

Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells.

Recently, a large family of bitter taste receptors was identified in humans and rodents (1, 2). Although individual receptors were shown to respond selectively to a particular compound (3), taste cells expressed mRNAs for several receptors (1, 2). The findings were interpreted as showing that individual taste cells respond to several different compounds (1). However, behavioral and physiological studies in humans, monkeys, and rats indicate that bitter stimuli can be discriminated (4–8). Whether taste cells respond specifically to certain bitter stimuli is an unresolved issue. Unfortunately, our understanding of whether taste cells respond to multiple bitter compounds has depended on inferences from indirect studies [expression patterns of receptor mRNA (1, 2) and recordings from the afferent nerve (7) and cortical neurons (8)]. Here, we used Ca²⁺ imaging to measure direct activation of taste cells in situ to investigate how bitter taste stimuli are detected in taste buds (9). With this method, it is possible to view single taste cells in foliate slices in situ with a confocal microscope and record Ca²⁺ changes in intact taste buds (9–11) (Fig. 1). A series of representative compounds widely used in studies of bitter taste was selected for this study at concentrations that elicit behavioral responses in rats (12–20).

Cycloheximide (10 μ M) induced large transient intracellular Ca²⁺ increases in foliate taste cells that showed little if any adaptation or desensitization [mean peak amplitude of the relative fluorescence change $\Delta F/F$, 46.6 ± 6.5% (Fig. 2)]. This contrasts with the pronounced adaptation reported for the expressed murine cycloheximide receptor (3). Lowering extracellular Ca²⁺ concentration did not reduce cycloheximide responses in the cell bodies (Fig. 2D) (21) or apical processes. None of the cells that responded to cycloheximide (*n* = 16) responded to depolarization with 50 mM KCl, although neighboring

^{*}To whom correspondence should be addressed. acaicedo@chroma.med.miami.edu.

cells did (9). Thus, cycloheximide-induced Ca^{2+} signals did not appear to depend on Ca^{2+} influx through voltage-gated Ca^{2+} channels (22). Our results are consistent with studies showing that other bitter stimuli raise inositol trisphosphate levels and release Ca^{2+} from intracellular stores (23–26).

The other bitter stimuli that we tested induced smaller Ca²⁺ responses [mean peak amplitudes from 5.1 to 12.5% (Fig. 3A)]. In contrast to cycloheximide, denatonium, and quinine, sucrose octaacetate (SOA) and phenylthiocarbamide (PTC) responses were prolonged [up to several minutes (Fig. 3B)]. Responses to the five compounds tested showed concentration dependency and had different activation thresholds (Fig. 3C). The response thresholds for all five stimuli were strikingly similar to the behavioral thresholds in rats (27).

Only 18% of all cells tested (69 out of 374) showed responses to one or more of the test compounds when applied at or slightly above midrange concentrations (Fig. 3C). Responses to the compounds were observed in the percentage of taste cells as follows: cycloheximide (10 μ M), 14% of the taste cells (51 out of 374); quinine (300 μ M), 4.5% (17 out of 374); denatonium (100 μ M), 3.7% (14 out of 374); PTC (300 μ M), 2.4% (9 out of 374); and SOA (500 μ M), 1.6% (6 out of 374). The low incidence of the denatonium responses corresponds well with previous observations on rat taste buds (25, 28). The proportion of bitter-responsive cells per taste bud (average, 17.6 ± 2.8%) was similar to the proportion of bitter-sensitive cells within the entire taste cell population that we tested (18%). Thus, there was no clustering of responses in particular taste buds. The proportion (18%) and spatial pattern of the bitter-sensitive taste cells that we observed within the foliate papillae were similar to those reported for bitter receptor mRNAs [15 to 20% (1)].

We next asked whether individual taste receptor cells could discriminate among the five bitter stimuli tested. Stimuli were applied consecutively, in random order that varied from experiment to experiment. Most bitter-sensitive cells (65%, 45 out of 69) responded to only one compound of the five tested, even though neighboring cells responded to other test stimuli (Fig. 4). Twenty-six percent (18 out of 69) of the cells responded to two stimuli, and only 7% (5 out of 69) responded to more than two stimuli. Multiple pairwise comparisons (Fisher's exact test, P < 0.005 to keep the overall risk of type I error equal to 0.05) showed that all responses were independent of each other; i.e., there was no association between any two stimuli in taste cells. Applying higher concentrations of denatonium (1 mM) and quinine (1 mM) did not recruit more taste cells (n = 134 taste cells; 5.2 versus 3.7% for denatonium responses at 1 mM and 100 μ M, respectively; 4.5 versus 4.5% for quinine responses at 1 mM and 300 μ M, respectively). Furthermore, higher concentrations of bitter stimuli did not increase the overlap of responses.

Our results argue against the suggestion that bitter-sensitive taste cells respond to a wide range of bitter stimuli. Instead, our findings indicate that most taste cells may be activated by a limited number of bitter compounds; i.e., individual taste cells can discriminate among bitter stimuli. The specificity of taste cells to bitter stimuli shown in the present study may give rise to the reported segregation of bitter responses into different gustatory nerve fibers (7). The existence and nature of any grouping of taste cells were not evident in the present study, but the number of test stimuli (n = 5) was small. Finally, it has yet to be established rigorously whether bitter compounds can be discriminated behaviorally. Human studies (29) suggest that there are different categories of bitterness, but the mechanism for this discrimination is not known. Results from nerve recordings and our findings on taste cells support the notion that bitter sensation does not occur through the activation of a single, homogeneous population of bitter-sensitive taste cells, but occurs through the activation of multiple, heterogeneous taste cells.

Acknowledgments

This work was supported by NIH grants DC00374 (S.D.R.) and DC04525-01 (A.C.) from the National Institute on Deafness and Other Communication Disorders.

References and Notes

- 1. Adler E, et al. Cell. 2000; 100:693. [PubMed: 10761934]
- 2. Matsunami H, Montmayeur JP, Buck LB. Nature. 2000; 404:601. [PubMed: 10766242]
- 3. Chandrashekar J, et al. Cell. 2000; 100:703. [PubMed: 10761935]
- Pfaffmann, C. Handbook of Physiology, Section 1, Neurophysiology. Field, J., editor. Vol. 1. American Physiological Society; Washington, DC: 1959. p. 507-533.
- 5. McBurney DH, Smith DV, Shick TR. Percept Psychophys. 1972; 11:228.
- 6. Bartoshuk LM, Cleveland CT. Sens Processes. 1977; 1:177. [PubMed: 887948]
- 7. Dahl M, Erickson RP, Simon SA. Brain Res. 1997; 756:22. [PubMed: 9187310]
- 8. Scott TR, Giza BA, Yan J. J Neurophysiol. 1999; 81:60. [PubMed: 9914267]
- 9. Caicedo A, Jafri MS, Roper SD. J Neurosci. 2000; 20:7978. Tongues were removed from 46 Sprague-Dawley rats (150 to 200 g) and immersed in cold Tyrode's solution [135 mM NaCl, 5 mM KCl, 8 mM CaCl₂, 1 mM MgCl₂, 10 mM Hepes, 10 mM glucose, 10 mM Na pyruvate, and 5 mM NaHCO3 (pH 7.4, 320 to 330 milliosmol)]. Calcium Green-1 dextran (CaGD) [MW 3000, dissociation constant $K_d = 259$ nM Molecular Probes, Eugene, OR] was injected iontophoretically (5 mM in H₂O; -3.5 μ A; 10 min) through a glass micropipette (20- μ m tip) into the foliate papillae. Next, the tongues were sliced (100 μ m) on a Vibroslicer (Campden Instruments, Leicester, UK). CaGD-loaded cells were excited at 488 nm by using an argon laser attached to an Olympus Fluoview scanning confocal microscope. Confocal images were collected at 5-s intervals, and changes in CaGD fluorescence over time were then analyzed with Fluoview software. We expressed the fluoro-metric signals as relative fluorescence change, $\Delta F/F = F - F_0/F_0$, where F_0 is the resting fluorescence level. All chemicals were applied in a bath at room temperature. [PubMed: 11050118]
- 10. Data are most likely recorded from mature receptor cells (9). Similar procedures labeled afferent innervation to taste bud cells [R. F. Krimm, D. L. Hill, *J. Comp. Neurol.* **398**, 13 (1998); M. C. Whitehead, J. R. Ganchrow, D. Ganchrow, B. Yao, *Neuroscience* **93**, 931 (1998)]. This also supports the idea that iontophoretically labeled cells are mature innervated receptor cells. Furthermore, the incidence of bitter-responsive dye-labeled cells (18%) is remarkably close to the incidence of cells expressing candidate bitter receptors [15 to 20% (1)], suggesting that dye-labeled cells are representative taste receptor cells.
- 11. Ca²⁺ signals presumably indicate physiological activation and presage neurotransmitter release. However, the absence of Ca²⁺ signals does not necessarily indicate that the cell has not been affected (for example, if a stimulus inhibits the taste cell).
- 12. Richter CP, Clisby KH. Am J Physiol. 1941; 134:157.
- 13. Patton HD, Ruch TC. J Comp Psychol. 1944; 37:35.
- 14. Koh SD, Teitelbaum P. J Comp Physiol Psychol. 1961; 54:223. [PubMed: 13757562]
- 15. Tobach E, Bellin JS, Das DK. Behav Genet. 1974; 4:405. [PubMed: 4433315]
- 16. Iwasaki K, Sato M. Chem Senses. 1981; 6:119.
- 17. Glendinning JI. Physiol Behav. 1994; 56:1217. [PubMed: 7878094]
- 18. Thaw AK. Chem Senses. 1996; 21:189. [PubMed: 8670697]
- 19. Dess NK. Physiol Behav. 2000; 69:247. [PubMed: 10869590]
- 20. Bath application of cycloheximide (0.1 to 300 μ M), denatonium benzoate (3 to 3000 μ M), quinine HCl (10 to 3000 μ M), SOA (10 to 1000 μ M), and PTC (10 to 1000 μ M) induced transient Ca²⁺ responses in taste cells in 83% of foliate taste buds tested (43 out of 52 taste buds). At the concentrations used, none of the compounds interfered with fluorescence intensity.
- Lowering extracellular Ca²⁺ appeared to increase intracellular Ca²⁺ transiently in many cells (Fig. 2D), consistent with previous findings in catfish taste cells [M. M. Zviman, D. Restrepo, J. H. Teeter, *J. Membr. Biol.* 149, 81 (1996)].

- 22. Quinine- and denatonium-responsive taste cells (n = 2 for each) also did not show Ca²⁺ increases when depolarized by 50 mM KCl [see also (25)].
- 23. Hwang PM, Verma A, Bredt DS, Snyder SH. Proc Natl Acad Sci U S A. 1990; 87:7395. [PubMed: 2217172]
- 24. Spielman AI, et al. Am J Physiol. 1996; 270:926.
- 25. Akabas MH, Dodd J, Al-Awqati Q. Science. 1988; 242:1047. [PubMed: 3194756]
- 26. Ogura T, Mackay-Sim A, Kinnamon SC. J Neurosci. 1997; 17:3580. [PubMed: 9133381]
- 27. The response thresholds versus the behavioral thresholds, respectively, were as follows: 0.1 to 0.3 μ M (Fig. 2F) versus 0.2 to 2 μ M for cycloheximide (15); 10 to 30 μ M (red circles, Fig. 3C) versus 8 to 20 μ M for quinine (13, 14, 17, 18); 3 to 10 μ M (gray triangles, Fig. 3C) versus ~1 μ M for denatonium (16, 17); 100 to 300 μ M (blue triangles, Fig. 3C) versus 20 to 600 μ M for PTC (12, 15); and 30 to 100 μ M (green squares, Fig. 3C) versus 100 to 200 μ M for SOA (19).
- 28. Bernhardt S, Naim M, Zehavi U, Lindemann B, Physiol J. 1996; 490:325.
- Delwiche, JF.; Buletic, Z.; Breslin, PAS. paper presented at the XII International Symposium on Olfaction and Taste/XIV Biennial Congress of the European Chemoreception Research Organisation; Brighton, UK. 20 to 24 July 2000;
- Leinders-Zufall T, Shepherd GM, Greer CA, Zufall F. J Neurosci. 1998; 18:5630. [PubMed: 9671654]

Fig. 1.

 Ca^{2+} response to the bitter compound cycloheximide (10 μ M). Three sequential confocal images of a lingual slice showing individual taste cells loaded with CaGD in adjacent foliate taste buds (outlined, tb1 to tb3). Only one cell (arrow) responds to the stimulus. Apical processes extend to and converge at the taste pore (asterisks). Scale bar, 20 μ m. Color palette shows the intensity mapping (range, 0 to 4095; 12-bit data).

Fig. 2.

Cycloheximide-induced Ca^{2+} responses in single taste cells. (A) The Ca^{2+} response to cycloheximide (10 µM) appears 20 s earlier in the apical tip (red trace) than in the cell body (black trace) of the same taste cell. There is a secondary Ca^{2+} increase in the apical process that is coincident with the larger Ca²⁺ transient in the cell body. This may represent diffusion of Ca²⁺ from the cell body (i.e., backflow). Bars under traces denote the application of taste stimuli in (A) through (E). (B) Repetitive stimulation with cycloheximide did not decrease the amplitude of the response. (C) Prolonged application of cycloheximide (10 μ M) resulted in only a small decline in response (adaptation) in the apical tip (red trace) and cell body (black trace), which may be due to depletion of the intracellular Ca^{2+} stores. (**D**) Cycloheximide responses were not abolished by lowering the Ca^{2+} concentration in the bath solution to a nominal 0 mM. Changing the Ca^{2+} concentration in the bath solution induced changes in intracellular Ca^{2+} (21). (E) Concentration dependency of cycloheximide-induced Ca²⁺ responses in the apical tip (red trace) and the cell body (black trace). The apical tip was more sensitive than the cell body. The differences in sensitivity and time course of the responses between the apical process and the cell body suggest that these regions constitute distinct physiological compartments, as reported for olfactory receptor neurons (30). (F) Concentration-response relations for peak responses to cycloheximide in the apical process (red triangles) (n = 5 taste cells) and the cell body (black circles) (n = 9). Not all concentrations could be tested in every cell. Responses were normalized to the average response at $10 \,\mu\text{M}$ (apical process) and $30 \,\mu\text{M}$ (cell bodies). Data were curve-fitted with SigmaPlot 5.0 (SPSS, Chicago, Illinois). Error bars indicate SEM.

Fig. 3.

 Ca^{2+} responses elicited by five representative bitter compounds in cell bodies of single taste cells. (A) Averaged responses (mean ± SEM, shown by error bars) evoked by cycloheximide (10 µM; n = 10 cells) (black), quinine (300 µM; n = 7) (red), denatonium (100 µM; n = 9) (gray), PTC (300 µM; n = 7) (blue), and SOA (500 µM; n = 6) (green). (B) Responses as in (A), but with normalized amplitudes. (C) Concentration-response relations show different sensitivities for the five stimuli. Responses are from at least three taste cells. Responses were normalized to the means of the largest responses. Data were curve-fitted as described in Fig. 2F. Error bars indicate SEM. Bars under traces in (A) and (B) denote application of taste stimuli.

Fig. 4.

Chemical specificity of taste cells. (A) Sequential stimulation with five bitter stimuli induced different responses in three different taste cells in one taste bud. One cell responded to quinine ($300 \mu M$) and cycloheximide ($10 \mu M$) (top), one cell responded only to quinine (middle), and one cell responded only to cycloheximide (bottom). (B) Summary of the response profiles of 69 bitter-sensitive taste cells (out of 374 imaged cells) as shown in (A). Each column indicates responses to a different bitter compound. Each row represents data from an individual taste cell. The number of cells is indicated on the left. Most taste cells responded to only one stimulus of the five tested (black). Other taste cells responded to two (blue), three (green), and four stimuli (red).