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Abstract

In this paper, we present an experimental study of the normal stress differences that arise in non-

Brownian rigid fiber suspensions subject to a shear flow. While early measurements of the normal

stress in fiber suspensions in Newtonian fluids measured only N1 −N2, the recent work of Snook

et al. J. Fluid Mech. 758 486 (2014) and the present paper provide the first measurements of N1

and N2 separately. Snook et al perform such measurements with a gap that is very wide compared

with the fiber length, whereas the present paper explores the effects of confinement when the gap

is 4-10 times the fiber length. The first and the second normal stress differences are measured

using a single experiment which consists of determining the radial profile of the second normal

stress, along the velocity gradient direction, Σ22, in a torsional flow between two parallel discs.

Suspensions are made of monodisperse fibers immersed in a neutrally buoyant Newtonian fluid.

Two fiber lengths and three aspect ratios ar = L/d, and a wide range of concentrations have been

tested. N1 is found to be positive while N2 is negative and the magnitude of both normal stress

differences increases when nL2d increases, n being the number fraction of fibers. The magnitude of

N2 is found to be much smaller than N1 only for high aspect ratios and low fiber concentrations.

Otherwise, N1 and N2 are of the same order of magnitude. This is in contradiction with what

is often assumed (i.e. |N2| << N1) but consistent with the recent numerical work of Snook et

al. that includes contact interactions. The effect of confinement on N1 and N2 is studied and it

is shown that the more confined the suspension, the greater the magnitude of the normal stress

differences. At last, the surface properties of the fibers are changed and the impact on the normal

stress differences is discussed.

∗ elemaire@unice.fr
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I. INTRODUCTION

Fiber suspension rheology is involved in many industrial processes that make use of the

reinforcement of polymeric materials with short fibers. The question of fiber suspension

rheology is rather complicated since there is a strong coupling between the flow, the fiber

orientation and the rheological properties. Most theoretical approaches have considered

purely hydrodynamic interactions between particles [? ? ? ? ] that, in non-Brownian

fiber suspensions, would give rise to zero or weak normal stress differences [? ] thanks to

reversibility of the Stokes flow implying a symmetry of the fiber orientation distribution with

respect to the velocity gradient. Particle level simulations [? ? ? ] have shown that direct

mechanical contacts and Coulombic friction forces between fibers still give a linear scaling

of the suspension stress on the shear rate but perturb the symmetry of the orientation

distribution, thus leading to non-zero normal stress differences. The first normal stress

difference N1 has been found to be positive, while the second one, N2, is negative and its

absolute value is usually much lower than that of the first normal stress difference, at least for

fibers of high aspect ratio. Some semi-phenomenological theories have also been developed to

account for direct contacts between fibers by adding a diffusion term to the Jeffery equation

[? ] and have been able to correctly predict fiber orientation distribution in the semi-dilute

regime with an asymmetry induced by fiber-fiber collisions. In the weak diffusion limit,

such an approach predicts the first normal stress difference scales with a4r/ln(ar), where ar

is the fiber aspect ratio. However the experimental data from different authors (analyzed

in details in the paper of Zirnsak et al. [? ] scale much better with the prediction of

Carter [? ]: N1 ∼ a
3/2
r /ln(ar). Some authors [? ? ? ] have developed an analytical

model including short-range hydrodynamic interactions between fibers and their collision-

induced diffusion. They obtained both transient and steady-state responses for the difference

N1−N2. The model results fits at least semi-quantitatively to the measurements in parallel

plate geometry. However, the relative importance of the second normal stress difference

has not been reported. Besides mechanical contacts, fiber flexibility can also lead to non-

zero normal stress differences in non-colloidal fiber suspensions, as shown theoretically by

Keshtkar et al. [? ] and by particle level simulations [? ? ].

Besides these conceptual difficulties, experimental measurements of the normal stress

differences are tricky and these results are less documented in literature [? ? ? ? ?
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] than the measurements of shear viscosity. Actually, in most studies [? ? ? ], it is

the difference between the first and the second normal stress differences, N1 − N2, that

is measured. Indeed, usually a parallel plate geometry is used and N1 − N2 is directly

determined from the measurement of the net thrust force exerted on one of the disks. Then,

N2 is commonly assumed to be much smaller than N1 [? ? ], so that the measurement

of the thrust force is expected to give an estimate of N1. Nevertheless, recently, Snook et

al. [? ] have measured for the first time N1 and N2 independently, or more precisely the

two normal stress coefficients, α1 and α2 that are the ratios of N1 and N2 to the shear

stress. The values of α1 and α2 measured for aspect ratios comprised between 12 and 32

are deduced from the deformation of the free surface of fiber suspensions flowing in a tilted

trough and in a Weissenberg rheometer and have shown that the magnitude of the first

normal stress difference, which is positive, is only approximately twice that of the second

normal stress difference which is negative. These measurements were performed with a gap

that is very large compared to the fiber length whereas the present paper explores the effects

of confinement when the gap is 4-10 times the fiber length.

The present paper is indeed devoted to the measurement of the first and the second

normal stress differences in fiber suspensions using an alternative method based on a device

previously designed by Dbouk et al. [? ? ]. This device has been already used to measure

both N1 and N2 in concentrated suspensions of spherical particles. Note that, in contrast to

what had been obtained before for spherical particles [? ? ? ], Dbouk et al. [? ] measured

a positive first normal stress difference while, as in the previous studies, N2 was found to

be negative. Recently, the same qualitative behaviour has been reported by Gamonpilas et

al. [? ] (i.e. N1 & 0 and N2 < 0) and the authors have shown that the sign of the first

normal stress difference was very sensitive to the polydispersity of the spherical particles.

In particular they compare the values of N1 and N2 obtained for two monodisperse and

two bidisperse non-Brownian suspensions for two particle concentrations, 0.4 and 0.5. N1

is found almost equal to zero for the bidisperse suspensions while it is positive for the

monodisperse suspensions even though much smaller than the values obtained by Dbouk et

al.

In the present paper, the measurements are carried out for neutrally buoyant suspensions

made of short rigid fibers dispersed in a Newtonian fluid for 2 fiber lengths, L, 3 aspect ratios,

ar = L/d, where d is the fiber diameter and for volume concentrations ranging from 0.03 to
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0.25. The measurement principle is described in Sec. ?? and details on fiber suspensions,

experimental device and measurement procedure are given in Sec. ??. Results are presented

and discussed in the last section of the paper where the fiber concentration dependence of

N1 and N2 is presented as well as the impact of the confinement and of the fiber surface

properties on the normal stress differences.

II. DETERMINATION OF THE MATERIAL FUNCTIONS IN PARALLEL-PLATE

GEOMETRY

A. Material functions

We consider a suspension of rigid rod-like particles immersed in a Newtonian fluid. The

viscosity of the suspension, ηs, depends on the fiber volume fraction, ϕ and on the fiber aspect

ratio, ar. The suspension is subjected to a shear stress Σ12 in a torsional flow between two

rotating parallel discs, the indices 1 and 2 denoting the direction of the shear velocity and

of the velocity gradient respectively.
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FIG. 1. Relative shear viscosity, ηr, versus shear rate for suspensions of fibers with an aspect ratio

ar = 18 and for different concentrations.

The variation of the relative viscosity ηr =
ηs(ϕ)

ηf
, where ηf is the viscosity of the sus-

pending fluid, with shear rate, γ̇, is shown in Fig. ??. First, we have to mention that the
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viscosity reported here is actually the apparent viscosity that is the ratio of the shear stress

at the rim to the shear rate the rim and not the true viscosity that should have been obtained

by deconvoluting the data with various shear stress and rates at the rim. Nevertheless, it

clearly appears that fiber suspensions are shear-thinning when the fiber concentration is high

enough. The higher the fiber concentration and aspect ratio, the more pronounced is the

shear-thinning behaviour (see, for instance, [? ]). Such a shear thinning behaviour has often

been reported [? ? ? ? ? ] whereas its origin has not received any clear explanation. Most

models either theoretical [? ? ] or numerical [? ? ? ] do not report such a shear-thinning

behaviour because the effect of short-range hydrodynamic forces and of direct mechanical

contacts that are all supposed to be proportional to the shear rate, leading to a linear scaling

of the shear stress with the shear rate. Shear thinning can only occur if a characteristic time

different from 1/γ̇ is involved in the dynamics of the suspension. In particular, this is the

case if the contacts are adhesive or if the friction is not Coulombic (i.e. a non-linear frictional

law). The ratio of the characteristic adhesive force F to the characteristic hydrodynamic

force can be evaluated [? ]:

N ≈ F

ηf γ̇d2
(1)

If N > 1, adhesive forces are dominant and are expected to play a role in the suspension

rheology while they can be neglected if N < 1. We deduce the critical shear rate value that

has to be applied for the suspension to behave as a viscous liquid:

γ̇c ≈
F

ηfd2
(2)

An order of magnitude for the adhesive force is given by Chaouche et al. [? ]:

F ≈ 10−9 − 10−8N for polyamide fibers with size close to that of the fibers used in the

present experiments. Thus, according to the values of the suspending liquid viscosity and of

the fiber diameter, we obtain the following estimate for the critical shear rate above which

there is no or slight shear thinning: γ̇c ≈ 10− 100s−1. This order of magnitude is consistent

with the measurements presented in Fig. ??.

In the following, the normal stress differences will be measured in the shear rate range

of approximately 20 to 50 s−1 and the residual shear-thinning will be described by a power

law:

Σ12 = K(ϕ)γ̇n (3)
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where n ≤ 1 is the shear-thinning index and K(ϕ), the consistency.

When the fiber concentration is high enough, anisotropic normal stresses, Σ11, Σ22 and

Σ33 arise [? ? ? ]. Then, two important quantities are introduced: the first and the second

normal stress differences, defined as :

N1(γ̇) = Σ11 − Σ22 , N2(γ̇) = Σ22 − Σ33 (4)

where the index 3 denotes the direction of the vorticity. Normal stress differences in fiber

suspensions are known to scale linearly with the shear stress [? ? ], even for shear thinning

suspensions, as can be observed in [? ]. Hence, we introduce the first and the second normal

stress coefficients α1(ϕ) and α2(ϕ) :

N1(γ̇) = α1(ϕ)Σ12 , N2(γ̇) = α2(ϕ)Σ12 (5)

The linear scaling of N1 and N2 with the shear stress will be rediscussed in Sec. ??.

B. Determination of the normal stress differences

Here we present the method to determine the values of the first and the second normal

stress differences. N1 and N2 are deduced from the radial profile of the normal stress along

the velocity gradient direction, Σ22, in a torsional flow between two parallel discs separated

by a distance h. The flow is generated by a torque, Γ, applied to the upper disc that rotates

with an angular velocity, Ω. The shear rate γ̇(r) =
∂vθ
∂z

depends linearly on r.

In this geometry, the components of the suspension velocity are:

vr = 0, vθ(r) = rΩ(z), vz = 0 (6)

and the shear rate is:

γ̇(r) =
Ωr

h
(7)

Starting from the equation of motion for Stokes flow in cylindrical coordinates [? ]:

r − component
∂Σ33

∂r
+

Σ33 − Σ11

r
= 0 (8)

θ − component
∂Σ12

∂z
= 0 (9)
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and expressing Σ11 and Σ33 in terms of N1, N2 and Σ22 and using Eq.(??), we obtain the

radial profile of the second normal stress Σ22:

∂Σ22

∂r/R
= Σ12(R)

(
α1 + (n+ 1)α2

( r

R

)n−1
)

(10)

where Σ12(R) is the shear stress at the rim. After integrating equation (??) and assuming

that at the air/suspension interface, Σ33(R) is the sum of capillary and atmospheric pressure:

Σ33(r = R) = PCap + Patm = Pref (11)

We obtain the expression of Σ22:

Σ22(r/R) = Σ12(R)

(
α1 + (n+ 1)α2

n

( r

R

)n

− α1 + α2

n

)
+ Pref (12)

where pref = pcap + patm is the reference pressure that is, as verified in [? ], independent of

the shear rate.

Eq. (??) shows that the radial profile of the second normal stress Σ22 is expected to be

proportional to the shear stress at the rim and to vary linearly when Σ22 is plotted against

(r/R)n. Then, from a linear combination of the slope, A, and the ordinate at the origin, B,

the values of the two normal stress coefficients α1(ϕ) and α2(ϕ) can be deduced.
α1(ϕ) = −A− (1 + n)B

α2(ϕ) = A+B

(13)

Note that for a non shear-thinning suspension (Σ12 ∝ γ̇, n=1),Eq. (??) reduces to the

formula previously reported by Dbouk et al. [? ]:

Σ22(r/R) = Σ12(R)
(
(α1 + 2α2)

r

R
− (α1 + α2)

)
+ Pref (14)

III. EXPERIMENT

A. Fiber suspensions

1. Suspending liquid

The suspending liquid is a Newtonian fluid made of a mixture of pure water, Zinc Bro-

mide (Sigma-Aldrich, France) and Ucon oil 75H90000 (Dow Chemical, France; density 1.09
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g/cm3, viscosity 30 Pas at 25◦C). According to the ratio of these three components in the

mixture, both its density and its viscosity can be controlled. The viscosity of the suspending

liquid is tuned by changing the fraction of Ucon oil in such a way that the viscosity of the

whole suspension is of the order of 1Pa.s, which, as explained in Sec. ??, allowed us to

measure normal stress differences under the best conditions. To achieve this whatever the

fiber concentration, the relative proportions of water and Ucon oil are varied in order to

obtain the desired suspending liquid viscosity that can vary from 0.1 to 1 Pa.s. (see Table

?? in Sec. ??). An appropriate amount of zinc Bromide is added into the mixture in order

to adjust the density of the suspending liquid to that of the fibers which is either 1.09 or

1.34 g/cm3 (see Table ??). Note that the viscosity of the suspending liquid does not change

with the shear rate in the studied shear rate range and that, as a consequence, the shear

thinning of the fiber suspensions reported in Fig. 1 does not come from the non-Newtonian

behavior of the solvent but rather from non-hydrodynamic interactions between fibers.

2. Fibers and concentration regimes

Four batches of monodispersed polyamide fibers provided by Société Nouvelle Le Flockage

were used in the experiments with three aspect ratios, ar = 10, 18 and 33, and two lengths,

L= 300 and 500 µm. The fibers are quite monodispersed. Their size distribution has

been measured by optical microscopy and has been found to be of the order of ±5 µm for

the length and lower than ±1 µm for the diameter, ±1 µm corresponding to our optical

measurement resolution. This estimation of the polydispersity has been conducted on about

80 fibers for each batch.

A series of fiber volume fractions was prepared in order to explore both the semi dilute

regime (nL3 > 1, nL2d < 1) and the concentrated regime (nL2d > 1) [? ]. In these two

regimes, fibers are expected to interact through both hydrodynamic and contact forces [?

? ]. The fiber volume concentrations ranged from 0.03 to 0.25 leading to concentration

parameter, nL2, comprised between 1 and 6, depending on fiber aspect ratio.

Fibers can be considered as rigid since the shear stress is much smaller than the critical

stress Σcrit at which the fibers may be expected to buckle under shear compression. Σcrit is
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given by [? ]:

Σcrit
∼=

Eb(ln2ar − 1.75)

2a4r
(15)

Eb is the bending modulus of the fibers of the order of 3.109 Pa for polyamide. Table ??

summarizes the characteristics of the fibers (length, diameter, density) and gives the values

of the fiber volume fraction that separate the different concentration regimes and the ratio

of the critical buckling stress to the maximum applied shear stress, Σmax.

Aspect ratio Length Diameter density Concentration regime limits Σcrit
Σmax

L(µ) d(µm) g/cm3 ϕ
′
= π/(4a2r) ϕ

′′
= π/(4ar)

18 500± 5 28± 1 1.09 0.0024 0.044 440

18 300± 5 17± 1 1.09 0.0024 0.044 220

10 300± 5 30± 1 1.09 0.0079 0.079 1400

33 500± 5 15± 1 1.34 7.2 10−4 0.024 22

TABLE I. Characteristics of fiber suspensions studied in our experiments. ϕ
′
= π/(4a2r) and

ϕ
′′
= π/(4ar) denote the characteristic volume fractions that separate the dilute regime from the

semi dilute and the semi-dilute regime from the concentrated one, respectively. Σcrit is the critical

shear stress at which fibers are expected to buckle and Σmax, the maximum applied shear stress

in our experiment.

3. Preparation of the suspensions

Before preparing the suspensions, fibers are washed out with distilled water and put in

an ultrasonic bath for a few minutes in order to eliminate the coating on their surface.

The fibers are then placed in an oven at 35oC for 12 hours in order to be dried. This

washing procedure was applied to all suspensions except those whose rheology is described

in Appendix A.

Then, fibers are added to the suspending liquid and the suspension is gently mixed with

a spatula. The suspension is then placed in a centrifuge for a few tens of minutes and in an

ultrasonic bath for a period of 2 to 4 hours, in order to remove air bubbles. After that, they
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are again gently mixed in order to resuspend, if necessary, the particles without including

air bubbles.

B. Measurements

1. Experimental device

FIG. 2. Experimental device used to measure the radial profile of Σ22. The lower disc is equipped

with four flush pressure transducers placed at different radial positions: (r1 = 1.2 cm, r2 = 2.5 cm,

r3 = 3.4 cm and r4 = 4.3 cm).

The normal stress difference measurements are conducted using a controlled-stress

rheometer HAAKE MARS II in parallel plate geometry. The suspension is placed be-

tween two parallel discs of radius R = 5.5 cm separated by a h = 2.5 mm gap. The

lower disc is equipped with four flush mounted differential pressure transducers (ATM ± 25

mbar, STS) and placed at different radial positions as shown in Fig. ??. These pressure

transducers allow us to measure the radial profile of Σ22 and then the two normal stress

coefficients, α1 and α2, as explained in Sec. ??. The transducers have to be placed right

at the surface of the lower disc in order to avoid hole pressure effects that would lead to

extra pressure coming from flow perturbation. To this purpose, all transducers are placed

slightly below the level of the surface of the lower disc (about 50 to 100 µm) and topped

with a paraffin layer. The transducer responses are tested by measuring the hydrostatic

10



pressure of a liquid column and also, as detailed in [? ], the inertial pressure generated by

the torsionnal flow of a Newtonian liquid, even at low Reynolds number.

2. Flow regime

In our experiment, we consider only the case of laminar flow and, for each studied suspen-

sion, we check that for the highest angular velocity, Ω, the Reynolds number, NRe remains

small:

NRe =
ρΩRh

ηs
/ 0.1 (16)

Furthermore, fibers are large enough for hydrodynamic forces to dominate Brownian

forces as it is determined by the Péclet Number, NPe, that is very large [? ]:

NPe =
η0γ̇πL

3

3kBT ln(ar)
∼ 109 ≫ 1 (17)

3. Experimental procedure

 

t 

Tshear 

Trest 150s 

FIG. 3. A series of torques is applied during the same period Tshear in the clockwise and counter-

clockwise directions. The suspension was left at rest during a time interval, Trest, between rotations

in the two opposite directions.

To begin our experiment, we carefully put the suspension on the lower disc taking care

not to trap any air bubble, then we place a drop of the suspension on the upper disc and

bring it down slowly toward the lower plate until a gap of 2.45 mm is reached. When the

suspension has completely spread across the gap, the extra suspension is carefully cleaned

up and the upper disc is raised by 50 µm. After that, all the transducers are set to zero

(Pref = 0 in eq. (??)). Regarding the effect of slightly raising the gap width, it was observed

that the suspension/air interface was more stable as well as the pressure signals. In addition,
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a slight increase of the gap width guaranties that no suspension remains outside the gap

which could eventually lead to fiber migration in this region of low shear rate.

The experimental protocol is shown in Fig. ??. We apply a series of torques Γ in the

clockwise and counter-clockwise directions with a duration Tshear, separated by a rest period

Trest = 150 s. It is necessary to apply such a complicated protocol since, due to the large

diameter of the discs, even very slight parallelism defects lead to extra pressures that can

be of the same order of magnitude as the pressure we aim to measure. In our experiment,

the out of roundness of the rotating disc leads to variation of the gap of about 50 µm. If

not corrected, this gap width variation would generate a pressure error, evaluated by [? ]:

δp ≃ ηΩR2 δh

h3
= Σ12

δhR

h2
≃ 0.4 Σ12 (18)

Fortunately, as discussed in [? ], this error cancels when pressure signal are averaged

over one revolution of the upper disc in clockwise and in counter-clockwise directions. That

is why it is necessary to apply the torque in both directions. By the way, this requirement

to average the pressure signal over long time periods prevent us from measuring transient

response of the normal stress differences that would, however, be very interesting!

Since we are doomed to only measure the steady normal stress differences, the torque has

to be applied during a period, Tshear, long enough for the fibers to achieve a steady orientation

state even at the position of the most central transducer. The characteristic orientation time

for fibers is expected to be of the order of the Jeffrey period, TJ =
2π

γ̇
×

(
1
ar

+ ar

)
[? ].

And, since the shear rate at the most central transducer is equal to : γ̇(r1) =
r1
R
γ̇R with

r1 = 1.2 cm and R = 5.5 cm, at this radial position, fibers are expected to reach their steady

orientation state after a period equal to TJ(r1) ≃ 5 × TJ(R). Thus, we use the criterion:

Tshear >
10π

γ̇R
×
(

1
ar

+ ar

)
. Then, after this transient period, the pressure signals are recorded

and it is checked that both the shear viscosity and the axial normal stress do not change

anymore and have reached their stationary values.

4. Operating conditions

First, we have to define the shear rate range in which the measurement of the normal

stress differences will be performed. According to the criterion on the minimum run time

fixed in Sec. ?? to ensure that a stationary orientation of the fibers has been reached,
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the shear rate should be as large as possible. In addition, greater is the shear rate, less

pronounced is the shear-thinning, meaning that adhesion forces between fibers are more

and more negligible and that our suspensions are really representative of non-colloidal fiber

suspensions. Nevertheless, the shear rate cannot be increased too much since the Reynolds

number has to remain small as well as the inertial pressure that arises from the secondary

radial flow, even at low Reynolds number. The inertial pressure scales as the square of the

shear rate [? ]:

pi = 0.15ρh2γ̇2
R

((ri
R

)2

− 1

)
(19)

Hence, the inertial pressure has to be negligible with respect to Σ22 that arises from

normal stress differences. Considering eq.(??) and Σ22 ' 10Pa, this leads to: γ̇R / 60 s−1.

Second, the accuracy of the measurements will depend on the suspensions viscosity. As

explained in Sec. ??, the suspending liquid is a mixture of distilled water, Ucon oil and Zinc

bromide and according to the relative fractions of water and Ucon oil, its viscosity can be

tuned from 10−3 to about 30 Pa.s. The choice of the viscosity is dictated by a compromise

between two contradictory requirements. On one hand, since the normal stress differences

are expected to be proportional to the shear stress, the suspending liquid viscosity should

be as high as possible. On the other hand, if N2 is negative, an instability that manifests

itself by an edge fracture of the sheared medium appears when the magnitude of N2 is

larger than a critical value [? ] that is of the order of the capillary pressure: N2c ≈ 5γ/h

where γ is the surface tension of the suspension. Taking for γ a typical value of 50mN.m−1,

N2c ≈ 100Pa. Thus the viscosity of the suspending liquid should not be too large. A

rather good compromise is to choose the viscosity of the suspending liquid in such a way

that the viscosity of the whole suspension is of the order of 1 Pa.s. This limitation in the

maximum applicable shear stress is unfortunate since it implies that, for the highest fiber

concentrations, the normal stress measurements have to be carried out in a shear stress

range where the suspensions are shear-thinning, which complicates data analysis. For each

aspect ratio, fiber length and concentration, Table ?? summarizes the range of the applied

shear rates at the rim, the viscosity of the suspending liquid, the shear thinning index, n

and the consistency. The shear thinning index and the consistency have been measured in

a shear rate range that extends from the smallest shear rate at the most inner transducer

(i.e. about five times lower than the smallest shear rate at the rim) to the largest shear rate

at the rim and we checked that, within this range, the shear rate-shear stress relation could
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be adequately represented by a power law.

5. An example of Σ22 profile determination

Fig. ?? shows an example of the recorded pressure signals that, due to parallelism defects,

are quite noisy. Despite the poor quality of the pressure signals, axial normal stress Σ22

is obtained for different values of the applied shear stress, Σ12 upon averaging the pressure

signal, once the steady state is reached, over several revolutions in the clockwise and counter-

clockwise directions. Fig. ?? shows an example of the radial variation of the measured Σ22

for ϕ = 0.21, ar = 10 and for four different values of the shear stresses. The error bar

calculation accounts for the standard error of the recorded signal and of the inaccuracy of

the pressure measurement that is evaluated to about ±2.5 Pa.
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FIG. 4. An example of recorded signals provided by the transducers situated at different radial

positions ri. This measurement has been performed for a suspension with ar = 10 and nL2d = 2.7.

As expected from Eq. (??), when Σ22 is plotted against (r/R)n, the profiles are linear

and Fig. ?? indicates that, when Σ22 is normalized by the shear stress at the rim Σ12(R), all

profiles collapse onto a single curve. In particular, this collapse, which is obtained whatever

the fiber aspect ratio and concentration, means that normal stress are proportional to the

shear stress. This result, first shown by Carter [? ] for suspensions which do not shear-thin,
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fiber type ϕ nL2d γ̇R range (s−1) ηf (Pas) n K/ηf (s
n−1)

0.08 1.8 [29.3 : 44.1] 1.15 0.99 2.5

0.10 2.3 [35.1 : 44.9] 1.15 0.96 2.7

0.11 2.5 [34.2 : 45.0] 0.335 0.96 3.9

ar = 18, 0.12 2.75 [31.2 : 44.7] 0.355 0.92 4.1

L=500 µ 0.13 3.0 [25.3 : 44.0] 0.355 0.93 4.7

0.14 3.2 [29.3 : 45.7] 0.355 0.90 8.1

0.15 3.4 [27.4 : 44.6] 0.173 0.87 9.3

0.10 2.3 [23.5 : 38.5] 0.324 0.95 4.0

0.11 2.5 [21.5 : 35.2] 0.324 0.94 5.36

0.12 2.75 [15.3 : 25.8] 0.324 0.90 6.9

ar = 18, 0.13 3.0 [16.3 : 35.4] 0.324 0.89 8.5

L=300 µ 0.14 3.2 [19.4 : 32.4] 0.324 0.91 10.9

0.15 3.4 [14.8 : 26.3] 0.324 0.70 29.4

0.16 3.7 [15.0 : 21.7] 0.324 0.76 37.6

0.17 3.9 [27.4 : 44.6] 0.324 0.76 41.5

0.10 1.3 [30.3 : 41.3] 1.15 0.99 2.2

0.11 1.4 [28.2 : 38.2] 1.15 0.97 2.5

0.12 1.5 [24.6 : 35.1] 1.15 0.95 3.4

ar = 10, 0.13 1.65 [24.9 : 36.2] 1.15 0.97 3.7

L=300 µ 0.15 1.9 [27.1 : 38.7] 0.334 0.95 4.8

0.17 2.2 [32.8 : 41.5] 0.334 0.93 7

0.19 2.4 [35.7 : 42.7] 0.334 0.90 10.7

0.20 2.5 [17.9 : 30.9] 0.164 0.86 15.2

0.21 2.7 [26.2 : 40.5] 0.334 0.89 17.8

0.23 2.9 [16.1 : 25.8] 0.324 0.73 36.5

0.25 3.2 [25.9 : 43.4] 0.324 0.61 71.6

0.03 1.3 [31.8 : 40.7] 1.067 0.99 1.8

0.05 2.1 [27.9 : 43.7] 1.067 0.99 2.1

0.07 2.9 [25.1 : 33.3] 1.067 0.95 2.2

ar = 33, 0.085 3.6 [23.6 : 39.4] 1.067 0.99 2.8

L=500 µ 0.10 4.2 [33.2 : 46.0] 0.282 0.87 12.9

0.11 4.6 [19.3 : 39.4] 0.282 0.82 13.1

0.12 5.0 [25.8 : 39.8] 0.282 0.75 19.4

0.13 5.5 [42.9 : 61.5] 0.282 0.7 30.4

0.14 5.9 [26.4 : 49.6] 0.282 0.64 70.0

TABLE II. For each aspect ratio, fiber length and concentration, the range of applied shear rate

at the rim γ̇(R), the viscosity of the suspending liquid, ηf , the shear thinning index, n and the

consistency divided by the suspending fluid viscosity are given. The shear thinning index and the

consistency have been measured in a shear rate range that extends from the smallest shear rate at

the most inner transducer (i.e. about five times lower than the smallest shear rate at the rim) to

the largest shear rate at the rim.
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for a fiber suspension with nL2d = 2.7 and ar = 10 (ϕ = 0.21). Within the error bars, all the

four normalized profiles collapse, meaning that the normal stress differences are proportional to

the shear stress.

is expected on a theoretical basis to occur in a purely Coulombic frictional force scenario

where both shear and normal stresses are proportional to the viscous stress. And it is

important to verify that it also holds in the shear thinning case where another force scaling

arises. From this curve, we calculate the mean slope, A, and the mean origin ordinate, B,

from which, according to Eq.(??), we deduce α1 and α2. The uncertainty in A and B is
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evaluated from the slope and the origin ordinate of the straight lines that pass through the

extremities of the errorbar data.

IV. RESULTS

A. Fiber concentration dependence of α1 and α2

For three aspect ratios, two fiber lengths and many fiber concentrations, the first and the

second normal stress differences α1 and α2 are extracted from the mean normalized profiles

of the axial normal stress that have been obtained for a gap width, h = 2.5 mm. This

information is actually important since we will see in the next section that the magnitude

of normal stress differences depends on the confinement. The results are given in Fig. ??

and Fig. ?? where α1 and α2 are plotted against the concentration parameter nL2d. α1 is

found to be positive and α2 is negative. This result (N1 > 0 and N2 < 0) has already been

obtained by Snook et al.[? ]. Clearly both α1 and α2 increase in magnitude when nL2d

increases. In addition whatever the length or the aspect ratio of the fibers, α1 appears to be

almost a function of only nL2d, at least for not too high concentrations (nL2d . 3), whereas

for a given value of nL2d, the magnitude of N2(ϕ) decreases as the aspect ratio increases.

1 2 3 4 5 6
−0.5

0

0.5

1

1.5

 

 

nL2d

α 1

a
r
=10; L=300 µm 

a
r
=18; L=500 µm

a
r
=18; L=300 µm

a
r
=33; L=500 µm

FIG. 7. First normal stress coefficient α1 as a function of nL2d as a function of nL2d for three

aspect ratios and two fiber lengths.

A quite surprising result is that α2 is not negligible compared to α1 in contrary to what

is often assumed [? ? ]. To highlight this point that will be discussed in detail in Sec. ??,
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the ratio −α2/α1 is plotted against the concentration parameter nL2d in Fig.??. It clearly

appears that the ratio −α2/α1 increases as the fiber aspect ratio decreases and that α2 is

much smaller than α1 only for high aspect ratios (r = 33 in the present study) and low

concentrations.
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FIG. 9. Ratio −α2/α1 as a function of nL2d for 3 aspect ratios and 2 fiber lengths. The gap width

was fixed to 2.5 mm. α2 is found to be much smaller than α1 only for the highest aspect ratio

(ar =33) and the lowest concentrations (nL2d . 3)
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B. Effect of the confinement

We aim to highlight that, as shown in the recent numerical work of Snook [? ], normal

stress differences are very sensitive to confinement. Indeed, we carried a systematic study of

the effect of the gap width on the resulting values of α1 and α2. We performed experiments

for two fiber aspect ratios, ar = 10 and ar = 18, for one fiber length L = 300µm, and

for two fiber concentrations. For each aspect ratio, concentration and gap width, we have

determined the shear-thinning index n which reveals that the shear-thinning behaviour of

the fiber suspension increases when the confinement parameter, h/L, increases. Fig. (??)

reports the values of α1 and α2 for different values of the confinement parameter, h/L. It

clearly appears that α1 increases with confinement (i.e. when h/L decreases). Furthermore,

comparing the results obtained for ar = 10 and ar = 18 at the same nL2d, the effect

of confinement on α1 is more pronounced for the lower aspect ratio ar = 10. The same

tendency is observed for α2, even though it is a little bit less clear. It is surprising that for

gap widths as large as 8L or 10L, confinement still plays a role.

V. DISCUSSION

Experimental results on normal stress differences available in the literature [? ? ? ? ]

mostly deal with relatively low concentrated suspensions (i.e. nL2d ≤ 3). At last, except

for Snook et al., all the authors mentioned above performed experiments using parallel plate

geometry and obtained the combination N1 −N2 from the measurement of the total thrust

force, Fc. Fig. ?? displays the variation of (N1−N2)/ηf γ̇ with nL2d that have been obtained

by different authors for fibers with aspect ratios of the same order than the ones used in

the present study under roughly the same confinement conditions. A first comment on Fig.

?? is that, contrarily to what is presented in [? ], there is a poor agreement between the

results of Petrich et al. [? ] and those of Ferec et al. [? ]. Indeed, in the figure 8 of [? ],

the normal stresses measured by Petrich et al. [? ] are normalized by ηf γ̇ while the results

obtained by Ferec et al. [? ] are normalized by Σ12. Then, when correctly normalized,

results displayed in Fig.?? show a significant scatter even for comparable aspect ratios,

meaning that new measurements are needed in order to clarify if these large discrepancies

come from experimental error or, more likely, from involvement of other parameters such as
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FIG. 10. Effect of the confinement h/L on the magnitude of α1 a) and α2 b) for ar = 10, nL2d =2.5

and 2.9. Effect of the confinement h/L on the magnitude of α1 c) and α2 d) for ar = 18, nL2d =2.5

and 3

contact forces between fibers that, according to the numerical works of Snook et al. [? ]

and Sundararajakumar et al. [? ], are expected to be a key parameter controlling normal

stress differences. Note that the results of Snook that are presented here are numerical

results obtained using a model which considers hydrodynamic drag forces on each particle

and utilises a short-range repulsive force to maintain the excluded volume [? ]. It was not

possible to display the associated experimental results [? ] since they have been obtained
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for non confined flows. Indeed, Snook et al. determined the normal stress differences upon

measuring the deformation of the free surface of the suspensions in a tilted through and in

a Weisenberg rheometer that are both wide gap geometries. The typical dimensions of the

flow were 30 to 50 times the fiber length and the authors showed that, in such a non-confined

flow, the magnitudes of normal stress differences are much smaller than those expected in

a bounded flow. More precisely, Snook compared the values of the normal stress differences

obtained from either periodic or confined geometry simulations [? ] and showed that the

variation of the gap from 3L to 5L does not greatly change the values of N1 and N2 which

were, however, quite different from the results obtained with a periodic geometry (infinite

gap). Furthermore, the method of free surface flow deformation used by Snook et al. [? ]

only gives the ratio of N1 and N2 to the shear stress (i.e. α1 and α2) while the viscosity of

the suspensions has not been measured by the authors. The values of α1 and α2 measured

by Snook et al. are, as expected from the effect of the confinement, much smaller than ours.

For instance, to fix ideas, for r=32 and nL2d =3, they obtained α2 = 0.01 ± 0.01 and (as

for all aspects ratios and concentrations) α1 ≈ −2α2 while we measured α1 = −0.33± 0.06

and α2 = 0.08± 0.05 for r=33.

The numerical work of Snook et al. [? ] also shows that direct mechanical contacts

are responsible for an increase of α2 and that, in such a case of direct contact between

fibers, the magnitude of N2 is not much smaller than N1 but of the order of N1/2. This is

in qualitative agreement with our findings that α2 is much smaller than α1 only for small

values of nL2d and for high aspect ratios (ar = 33 in our study). On the opposite, for

ar = 10 and nL2d > 2, N2/N1 = O(1) (see Fig.??), while the numerical results of Snook [?

] give the same order for the values of the ratio −α2/α1, they do not show the same trend,

i.e. an increase of −α2/α1 when nL2d increases and ar decreases but they rather show an

almost constant ratio whatever ar and nL2d (see Table ??).

The experiments of Snook et al. [? ] give a ratio −α2/α1 of approximately 0.5 for nL2d

comprised between 1.5 and 3 and aspect ratios between 12 and 32.

Thus, for the ratio N2/N1, our results are in qualitative agreement with those of Snook

et al. [? ] but the respective values of α1 and α2 are much larger here than in [? ]. As

proposed by Snook et al. [? ] and depicted in Sec. ??, this discrepancy should be explained
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Snook (2015) Present work

ar nL2d = 2.5 nL2d = 3 ar nL2d = 2.5 nL2d = 3

11 0.91 0.87 10 1.2 1

20 0.78 0.87 18 0.61 0.42

30 0.80 0.75 33 0.05 (nL2d =2.1) 0.24

TABLE III. Ratio of the magnitude of α2 to α1 for a confinement 5:1. The ratios obtained in the

present work are of the same order as those obtained numerically by Snook [? ]. Nevertheless,

while we observe that the ratio −α2/α1 increases when nL2d increases and when the aspect ratio

decreases, the numerical results of Snook [? ] do not show such trends but display a ratio whose

value does almost not depend neither on nL2d nor on ar.

by the confinement that is different in Snook’s experiments and in ours. Actually, Snook

et al. determined the normal stress differences upon measuring the deformation of the free

surface of the suspensions in a tilted through and in a Weissenberg rheometer that are both

wide gap geometries where the confinement is very weak (the typical dimensions of the

geometries are several tens larger than the fiber length). On the opposite, we carried out

experiments where the typical confinement is of the order of 5:1 to 8:1. As reported in our

experimental study (see Fig. (??)) and shown by the numerical results of Snook [? ], the

magnitude of N1 and N2 increases as the ratio of the gap width to the fiber length decreases.

It is worth mentioning that confinement still plays a role for gap with as large as 9 times the

fiber length. This point should be kept in mind when measuring normal stress differences

which are expected not to depend on characteristic flow dimension only for very wide gaps.

It would have been interesting to further increase the gap in our experiment, in order to

check if α1 and α2 tend to the values obtained by Snook et al. [? ] without confinement.

Unfortunately, we were unable to increase the gap width more than h = 11L because the

suspension is maintained between the disks by the capillary forces that have to be strong

enough to prevent the suspension from flowing out of the gap. On the other hand, it was

difficult to explore more confined situations since decreasing the gap increases pressure error

due to parallelism defects (see equation (??)).
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our results with those obtained from the measurement of the thrust force in rotating parallel plate

geometry [? ? ? ] and with the numerical results of Snook [? ].

VI. CONCLUSION

In this work we have presented an experimental method to determine the two normal

stress differences N1 and N2 independently for suspensions of non-Brownian fibers dispersed

in a Newtonian fluid. Both the first and second normal stress differences have been measured

for a large range of aspect ratios and fiber concentrations so that semi-dilute and concen-

trated regimes have been explored. The results show that N1 is positive and N2 negative,

and both increase in magnitude with nL2d. Unlike what is often assumed in the literature,

we measure a non zero value of N2 and α2 is negligible with respect to α1 only for large

aspect ratios and low fiber concentrations. For aspect ratios smaller than or equal to 20,

α1 and α2 are found to be of the same order of magnitude. This is in qualitative agreement

with the experimental results of Snook et al. [? ]. Nevertheless, we measured much more

larger values of α1 and α2 than these authors. We show that confinement can explain these

differences since α1 and α2 measurements depend on the ratio of the gap width to the fiber

length even for ratios as large as 8 or 10. The comparison of our results with most previous

measurements of N1 −N2 obtained from the thrust force exerted on the rotating disks in a

torsionnal flow is rather good.
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Appendix: Effect of fiber surface properties on normal stress differences

In this appendix, we would ike to present very preliminary results on the effect of fiber

surface properties on the normal stress differences. Indeed, most theoretical or numerical

studies have focused on the role played by the hydrodynamic interactions (long range or

lubrication forces) between fibers in the rheological behaviour of fiber suspensions but, a

few studies [? ? ? ] have shown that direct mechanical contacts between fibers play a

crucial role in fiber suspension rheology. In particular, direct contacts are responsible for an

increase of the frequency of rotation of fibers in the shear flow as nL2d becomes O(1) that, in

turn, increases both the viscosity and the normal stress differences. To verify experimentally

these numerical results it would be worth modifying the solid contacts between fibers. A

possible way to do this is to modify the fiber surface. Since the fibers we used are flock

fibers, they have been subjected to a finishing process and are coated. Even though very

little is known about the process they underwent, according to the information given by

the manufacturer, washing the fibers before adding them to the suspending liquid should

modify their surface properties and, subsequently their mechanical contacts.

We have conducted experimental measurements of α1 and α2 for four fiber concentrations,

nL2d = 4.2 4.6, 5.5 and 5.9 (ϕ= 0.10, 0.11, 0.13 and 0.14) for the highest aspect ratio,

ar = 33. In Fig. ?? and ??, we report the comparison of the results of α1 and α2 obtained

either with washed or unwashed fibers. The magnitude of α1 is higher for the washed fibers

than for the unwashed ones and the difference increases as nL2d increases. On the contrary,

within the error bars, α2 is the same for washed or unwashed fiber suspensions even though
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the magnitude of α2 is always slightly higher for washed than for unwashed fibers.

To interpret in a conclusive way the increase of the magnitude of the normal stress

differences by enhanced contact forces, it would be worth measuring fiber-fiber interaction

in both cases of washed and unwashed fibers. Petrich et al. [? ] and Chaouche et al. [?
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] proposed experimental methods to measured both normal and frictional forces between

contacting fibers. These methods should be used to explore quantitatively the relationship

between contact interactions and normal stress differences.
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