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Synopsis

We employ a particle-level simulation technique to investigate the rheology of non-Brownian,
flexible fiber suspensions in simple shear flow. The model incorporates a variety of realistic features
including fiber flexibility, fiber deformation, and frictional contacts. The viscosity of fiber
suspensions is strongly influenced by the fiber equilibrium shape, interfiber friction, and fiber
stiffness. The viscosity of the suspension increases as the fiber curvature, the coefficient of friction,
or the fiber stiffness is increased. The yield stress of fiber suspensions scales with the volume
fraction in a manner similar to that observed experimentally. Fiber suspensions that flocculate
exhibit a shear thinning regime that extends to shear rates lower than those observed for
homogeneous suspensions. ©2003 The Society of Rheology.@DOI: 10.1122/1.1566034#

I. INTRODUCTION

Suspensions of non-Brownian fibers are found in a variety of applications, such as
pulp and paper and fiber-filled composite processing. Fiber suspensions exhibit non-
Newtonian fluid characteristics similar to those of polymer melts and solutions, such as
the Weissenberg effect~i.e., rod-climbing! @Nawab and Mason~1958!; Mewis and
Metzner ~1974!#, shear thinning@Goto et al. ~1986!; Kitano and Kataoka~1981!#, and
viscoelasticity@Wahren~1964!; Thalén and Wahren~1964!#. Rheological properties, as
well as other macroscopic quantities, depend on the structure of the suspensions. The
structure is affected by such features as the fiber properties, interactions, suspending fluid
properties, and the flow field imposed. By understanding the relationships among these
features, the suspension structure and the macroscopic properties can therefore aid in the
design and optimization of processes and products. In this article, we employ a simula-
tion method to probe the relationships of fiber properties, interactions, suspension struc-
ture and the rheological properties of fiber suspensions in shear flow.

Adding fibers to a fluid can significantly alter its flow properties. Shear thinning of
long fiber suspensions~aspect ratior p [ L/d > 100, whereL andd are the fiber length
and diameter, respectively! was reported by Kitano and Kataoka~1981! for vinylon fibers
in silicone oil and by Gotoet al. ~1986! for nylon, glass, and vinylon fibers in glycerin.
Gotoet al.observed that shear thinning became more pronounced as the fiber aspect ratio
increased or the flexibility increased~flexibility } 1/EYI , where EY is the fiber’s
Young’s modulus andI is the area moment of inertia!. These researchers also reported
differences in first normal stress that were similarly influenced by the fiber aspect ratio.
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The rheology of short glass fiber suspensions (r p < 50) was investigated by Petrich
et al. ~2000!. The viscosity increased nearly linearly with the concentration, consistent
with predictions for noninteracting fibers from slender body theory@Batchelor~1970a!#.
Chaouche and Koch~2001! observed shear thinning for suspensions of short nylon fibers
in various silicone oils at very low shear rates. They attributed the shear thinning behav-
ior to adhesive contacts between fibers, and measured adhesive forces on the order of
0.01 mN. None of these researchers reported on the effect of fiber shape on rheological
properties. Glass fibers tend to be straight, while nylon and vinylon fibers often have
permanent deformation.

Meyer and Wahren~1964! proposed that sufficiently concentrated fiber suspensions
form networks of contacting fibers that exhibit viscoelastic properties. Thale´n and
Wahren~1964! measured the shear modulus of pulp suspensions and obtained results in
qualitative agreement with the simple network theory of Meyer and Wahren~1964!. A
sufficient force must be applied to the suspension to overcome the contact forces and
cause the suspension to flow, and this behavior is characterized by yield stress. The yield
stress of various wood and nylon fiber suspensions was measured by Benningtonet al.
~1990!. The yield stress (s0) scaled with the volume fraction~F! ass0 ; Fb, where
the exponentb varied from 2.5 to 3.5. This is consistent with the simple fiber network
theory of Meyer and Wahren~1964! which givesb 5 3. However, the measured values
of b varied with the fiber elasticity and aspect ratio, which is not predicted by simple
network theory. The dependence of yield stress on the fiber elasticity was significantly
different for suspensions of wood fibers and nylon fibers. Benningtonet al.suggested the
wood fibers have rougher surfaces than nylon which leads to different contact dynamics.
Kitano and Kataoka~1981! also measured yield stresses for suspensions of vinylon fibers
in silicone oil. The exponentb decreased as the aspect ratio increased, which was attrib-
uted to fiber interactions, increased apparent flexibility, and wall effects.

Suspensions of flexible fibers often flocculate and form heterogeneous structures
calledflocs that affect the flow characteristics of the suspension. Soszynksi and Kerekes
~1988! suggested that fiber flocs mainly form by mechanical contacts. They proposed a
mechanism for fiber flocculation called ‘‘elastic fiber interlocking’’ in which fibers be-
come locked in strained configurations due to their elasticity and friction forces at fiber
contacts which serve to strengthen the network. Chenet al. ~2002! measured the stress in
wood and polyethylene terephthalate~PET! fiber suspensions that were observed to floc-
culate. At low shear rates, the suspensions behaved as Newtonian fluids. As the shear rate
was increased, the suspensions would begin to flocculate, which corresponded to jumps
in shear stress. As the shear rate was increased further, the flocs began to disappear and
the fluid again exhibited Newtonian behavior.

The stress in a suspension of fibers is related to the distribution of fiber positions and
orientations. The bulk average stress^s& for a suspension of fibers in a Newtonian fluid
is @Batchelor~1970b!#

^s& . 2pd12h0E
`1^sp&, ~1!

wherep is an isotropic pressure,d is the identity tensor,E` is the rate of strain tensor of
the flow field imposed,h0 is the suspending fluid viscosity, and^sp& is the particle
contribution to average stress. The particle contribution to stress can be divided into two
parts: ~1! particle–fluid interaction and~2! particle–particle interaction which results
from nonzero hydrodynamic forces on the fibers. Batchelor~1970a! derived an expres-
sion for the particle stress using slender body theory for dilute suspensions of rigid,
straight fibers that interact only via hydrodynamic disturbances,
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^pp&dG :E`, ~2!

wheren is the number of fibers per unit volume,L is the fiber length, andp is the unit
fiber orientation vector. Slender-body theory can be used more generally to approximate
the particle stress for suspensions of hydrodynamically interacting fibers into the semi-
dilute regime (nL3 . 1),

^sp& 5
n

2 KE2,

, FspF~s!1sF~s!p2
2

3
@sp–F~s!#dGds1FHr1rFH2

1

3
~FH

–r !dL ,

~3!

whereFH is the net hydrodynamic force on a fiber,r is the fiber’s center of mass, and
F(s) is the hydrodynamic force per unit length that acts on the fiber at axial positions.
The quantityF(s) depends on the geometry of the particle, properties of the suspending
fluid, and the orientation of the fibers in the flow field. The integral in Eq.~3! represents
the purely hydrodynamic contribution to the particle stress@Mackaplow and Shaqfeh
~1996!#, and the remaining terms arise from nonhydrodynamic particle interactions
@Sundararajakumar and Koch~1997!#.

Particle-level simulations are a common method used to probe particulate suspensions
and, more specifically, to understand the relationships of particle properties and interac-
tions, the suspension microstructure, and macroscopic behavior@see, for example, Bossis
and Brady~1987!#. The equations of motion for each particle are solved numerically,
subject to the forces and torques identified, in order to evolve the particle positions and
orientations over time and thus predict the suspension microstructure. This method is
sufficiently general to allow the inclusion of a variety of features, such as elongated and
flexible particles, as well as various forces, such as hydrodynamic forces and interactions,
colloidal forces and friction, to name a few. The complexity of the physical model is only
limited by the computational resources required to evaluate the forces and torques and to
solve the equations of motion.

Numerous fiber suspension studies have focused on rigid, elongated bodies in New-
tonian fluids. Claeys and Brady~1993a, 1993b! modeled fibers as rigid prolate spheroids
~ellipsoids of revolution!. They developed a method for accurately evaluating the hydro-
dynamic forces and torques, including both the short-range hydrodynamic interactions
~lubrication forces! as well as the long-range, many-body hydrodynamic interactions.
Mackaplow and Shaqfeh~1996! employed slender-body theory to accurately evaluate the
long-range hydrodynamic interactions between prolate spheroids or cylinders. Like with
the method of Claeys and Brady, the calculations were so computationally demanding
that results for suspensions of long fibers in simple shear flow were limited to prescribed
suspension structures. Thus these methods were not employed to predict the suspension
structure resulting from flow. Simulations by Yamaneet al. ~1994! and by Fanet al.
~1998! employed approximations for the hydrodynamic interactions between rigid fibers.
These authors obtained good agreement with experimental results for the suspension
viscosity as a function of the concentration, but did not report shear thinning behavior
(nL3 & 50,r p & 30).

Sundararajakumar and Koch~1997! and Harlenet al. ~1999! simulated suspensions of
rigid, slender rods interacting via contact forces. They argued that for flowing suspen-
sions of fibers, lubrication forces cannot prevent fibers from contacting, and thus short-
range hydrodynamic interactions were neglected. Harlenet al. ~1999! simulated single
spheres falling through neutrally buoyant fiber suspensions to illustrate the importance of
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fiber–fiber contacts on the flow properties of fiber suspensions. For low concentrations,
interfiber contacts are rare and the flow behavior is dominated by long-range hydrody-
namic interactions. However, as the concentration is increased such that the fibers are in
frequent contact, the flow behavior is strongly influenced by the contacts. In fact, for
nL3 > 12 (r p 5 20), the drag on the settling sphere calculated by including long-range
hydrodynamic interactions and contact forces is indistinguishable from that calculated by
including contact forces alone@and in good agreement with experimental results reported
by Milliken et al. ~1989!#. Although the falling sphere influences the suspension struc-
ture, the authors did not report any tendency toward fiber flocculation.

Several studies have focused on simulating suspensions of flexible fibers. Yamamoto
and Matsuoka~1993, 1994! modeled flexible fibers as chains of rigid spheres connected
through springs, with potentials to mimic resistance to bending and twisting. Chain con-
nectivity is maintained by constraints, thus producing equations that must be solved
simultaneously with the equations of motion. Ross and Klingenberg~1997! modeled
flexible fibers as inextensible chains of rigid prolate spheroids connected through ball and
socket joints. This model eliminates the need for iterative constraints to maintain fiber
connectivity, and can represent large aspect ratio fibers with relatively few bodies. These
features help to reduce computations and facilitate simulation of concentrated suspen-
sions. Schmidet al. ~2000! extended this method by modeling flexible fibers as chains of
spherocylinders connected by ball and socket joints that interact via short-range repulsive
forces as well as friction forces. They demonstrated that the fiber equilibrium shape,
flexibility, and interfiber friction are important in determining the suspension microstruc-
ture, and in particular for predicting flocculation behavior.

In this work, we build on the method of Schmidet al. to investigate relationships
between fiber properties and interactions, and the resulting suspension rheological prop-
erties for simple shear flow. In Sec. II, we briefly describe the flexible fiber model and
simulation method. The model fiber consists of rigid spherocylinders connected by ball
and socket joints. The fibers interact with other fibers via short-range repulsive forces and
friction. Fiber and suspension characteristics such as the equilibrium shape, flexibility,
aspect ratio, friction, concentration, and suspending fluid characteristics have been shown
to impact the structure of fiber suspensions in simulations@Schmidet al. ~2000!; Switzer
~2002!#. Varying these parameters can result in dramatic changes to the suspension struc-
ture including the formation of heterogeneities~i.e., flocs!. In Sec. III, we show that
suspension rheological properties also depend sensitively on these features. The depen-
dence of the shear thinning behavior and first normal stress difference on the fiber aspect
ratio is similar to that observed in experiments. Calculated yield stresses exhibited scaling
with the concentration in agreement with network theory and experiment. Fiber suspen-
sions were also seen to flocculate under certain conditions, and this affected the shear
thinning behavior of the suspensions.

II. SIMULATION METHOD

Flexible fiber suspensions are modeled as chains of neutrally buoyant, linked rigid
bodies immersed in a Newtonian liquid. The model includes realistic features such as
fiber flexibility, deformed equilibrium shapes, and mechanical contact forces between
fibers. The model and simulation method are similar to that employed by Schmidet al.
~2000! and is described in more detail elsewhere@Switzer ~2002!#.

Each fiber in the suspension is represented byNsegrigid cylinders~length 2,, radius
b! with hemispherical end caps, connected end-to-end by ball and socket joints~Fig. 1!.
The motion of the fiber segments is described by Newton’s laws of motion in which we
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neglect fiber inertia. The force balance on a fiber segmenti includes contributions from
hydrodynamic drag (Fi

hyd), mechanical contact forces (Fik
con), and forces at each joint

that keep the fiber at a constant length (X i ),

Fi
hyd1X i 112X i1(

k

NCi

Fik
con 5 0, ~4!

whereNCi
is the number of contacts on fiber segmenti. The torque balance on fiber

segmenti includes similar contributions with the addition of a restoring torque at each
joint (Y i ),

T i
hyd1Y i 112Y i1,pi3@X i 111X i #1(

k

NCi

@Gik3Fik
con# 5 0, ~5!

whereT i
hyd is the hydrodynamic torque,pi is the orientation vector of the segment, and

Gik is a vector from the center of segmenti to the point of contact with segmentk.
In this model, hydrodynamic interactions between fibers are neglected based on results

reported by Sundararajakumar and Koch~1997! and by Harlenet al. ~1999!, as previ-
ously explained. We also ignore hydrodynamic interactions between segments within a
fiber. These assumptions allow us to evaluate the hydrodynamic force and torque on a
segment as that on an isolated body,Fi

hyd 5 A i•@Ui
`2 ṙ i # and T i

hyd 5 Ci•@Vi
`2v i #

1H̃ i :E`, where the resistance tensorsA i , Ci , and H̃ i are approximated by the resis-
tance tensors of a prolate spheroid with an equivalent aspect ratio,r es

5 0.7r ps
@Schmid

et al. ~2000!; Switzer~2002!; Kim and Karrila~1991!#, wherer ps
is the aspect ratio of a

segment. The error associated with neglecting hydrodynamic interactions between seg-
ments is discussed in the Appendix. The ambient velocity, angular velocity, and rate of
strain tensor areUi

` , Vi
` , andE`, respectively, and only simple shear flows are simu-

lated @i.e., U` 5 (ġz,0,0)]. Thesegment translational and angular velocities areṙ i and
vi .

The restoring torqueY i describes the resistance of the elastic fibers to bending and
twisting. The bending and twisting components of this torque are assumed to be linear in

FIG. 1. Model fiber of rigid spherocylinders linked by ball and socket joints that experience mechanical contact
with other fibers in the suspension.
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the difference between the bending and twisting angles (u i and f i , respectively! and
their equilibrium values (u i

eq andf i
eq),

uY i u 5 kb~u i2u i
eq!1k t~f i2f i

eq!, ~6!

wherekb andk t are the bending and twisting constants of the fiber. The bending constant
is related to the fiber stiffnessEYI by kb 5 EYI /2,, whereEY is the Young’s modulus,
I [ pb4/4 is the area moment, and, is the half length of a fiber segment. The twisting
constant is set tok t 5 0.67kb in this study, equal to that of an elastic circular cylinder
with a Poisson ratio of 0.5. The fiber flexibility is characterized by a single parameter
which we call the effective stiffnessSeff [ EYI/h0ġL4, whereh0 is the suspending fluid
viscosity,ġ is the shear rate, andL is the total length of the fiber. The effective stiffness
characterizes the relative importance of fiber stiffness and hydrodynamic torque in deter-
mining the amount a fiber will bend in shear flow. AsSeff → 0, fibers behave like
completely flexible threads, whereas forSeff → `, fibers become rigid and retain their
equilibrium shape during flow.

The fiber length is kept constant by applying a constraint for each joint,

r i1,pi 5 r i 112,pi 11 , ~7!

wherer i is the position of the segment. These constraint equations allow the solution of
the constraint forces at each jointX i .

Fibers experience mechanical contacts with other fibers in the suspension. The force
that results from each contact is decomposed into two components—a force in the normal
direction of contact (Fik

N ) and a frictional force (Fik
fric) in the plane of contact. The purely

repulsive normal force exerted on segmenti by segmentk is modeled asFik
N

5 2F exp@2ahik#nik , wherehik is the separation between the surfaces of segmentsi
andk, nik is the unit normal vector directed from segmenti to k, F 5 900ph0,bġ is the
magnitude of the repulsive force, anda 5 20/b. The friction force is determined by the
constraint of no relative motion in the plane of contact,

SDuik–e1
loc

Duik–e2
loc

Fik
fric

–nik

D 5 0, ~8!

whereDuik is the relative velocity between segmentsi andk at the point of contact, and
the plane of contact is defined by the vectorse1

loc ande2
loc . The calculated friction force

is then subjected to a Coulombic friction law of the form

uFik
fricu < mstatuFik

N u⇒contact remains intact,

~9!

. mstatuFik
N u⇒Fik

fric 5 mkinuFik
N u

Duik

uDuiku
,

where mstat and mkin are the static and kinetic coefficients of friction. For all of the
simulation results presented in this article, the kinetic coefficient of friction ismkin

5 0 ~i.e., no sliding friction!.
The equations of motion and the constraint equations for all of the fiber segments in

the suspension can be expressed as a system of differential algebraic equations~DAEs!
for the unknown coordinates and constraint forces,

q̇2F~q,l! 5 0,
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C~q! 5 0, ~10!

J~q,q̇,l! 5 0,

where the vectorq contains the generalized coordinates of each fiber segment~positions
and orientations! andl is the vector of constraint forces~X andFfric) in the suspension.
If the segment orientations are represented by Euler parameters@Wittenberg ~1977!#,
there are 7NfibNsegequations of motion to be solved. The inextensibility constraint@Eq.
~7!# represented by the vectorC is made up of 3Nfib(Nseg21) constraint equations that
depend on only the positions and orientations. The 3NC friction constraint equations@Eq.
~8!# are contained inJ whereNC is the total number of contacts in the system.

Simulations are performed by randomly placing fibers in their shape at equilibrium
into a simulation cell of size (zL)3 as illustrated in Fig. 2, wherez is the cell size scaling
factor (z 5 1.5– 4). A linear shear field is imposed and periodic boundary conditions are
applied with the Lees–Edwards modification for shearing systems@Allen and Tildesley
~1991!# to simulate an infinite suspension. Fiber motion is obtained by numerical solution
of the system of DAEs in Eq.~10!. An approximate solution method was developed to
solve this system, details of which are found in the work of Schmidet al. ~2000! and of
Switzer ~2002!.

The particle positions and orientations are postprocessed in order to calculate the
stress and other suspension properties. Using slender body theory, the extra particle stress
@Eq. ~3!# may be simplified to the form@Batchelor~1970a!; Switzer ~2002!#

^sp& 5
4pn,3h0

3 ln~2rp! K (
i 5 1

Nseg H E`
–pipi1pipi–E

`2pipipipi :E`2~pi ṗi1ṗipi !

1
3

,2 S Fd2
1

2
pipi G•~U`2 ṙ i !r i1r iFd2

1

2
pipi G•~U`2 ṙ i !D J L 1Yd,

~11!

whereY represents an isotropic contribution of no interest. Suspensions were sheared for
at least 500 strain units after reaching steady state. The particle stress for particular runs
was averaged over all configurations that were saved after steady state was reached. Most
data reported in Sec. III are for single runs. Some runs were replicated with different
initial conditions; uncertainties estimated from the replicates are indicated by error bars in
the figures.

FIG. 2. Example of the starting configuration of fibers randomly placed in a periodic simulation cell.
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III. RESULTS AND DISCUSSION

A. Effects of fiber shape and friction

Here we investigate the effects of fiber shape and static friction on the shear viscosity
of fiber suspensions. Simple shear flow was simulated for suspensions of U-shaped fibers
(r p 5 75,Seff 5 0.05) at various concentrations and for several different equilibrium
bending angles and coefficients of friction. U-shaped fibers with different equilibrium
bending angles are illustrated in Fig. 3.

The specific viscosityhsp [ h/h021 (h [ szx/ġ is the suspension viscosity! is
plotted as a function of the concentration (nL3) in Figs. 4~a! and 4~b! for suspensions of
U-shaped fibers. Results are presented for simulations of flexible fibers (Seff 5 0.05,r p
5 75,Nseg5 5) with ueq 5 0, 0.1, and 0.3, as well as for straight, rigid fibers (r p
5 75,Nseg5 1). Results for simulations without friction (mstat 5 0) are represented by

open symbols, and results for simulations with friction (mstat 5 20) are represented by
closed symbols. Figure 4~b! illustrates data over wider ranges of concentrations and
specific viscosities than those presented in Fig. 4~a!. The data points indicate individual
simulation runs in which the average value is computed from at least 500 steady state
configurations. Uncertainties~95% confidence interval! estimated from replicate simula-
tions with different initial configurations are indicated by error bars.

Consider first the effect of fiber flexibility in the absence of friction in these simula-
tions, illustrated by the results for suspensions of rigid, straight fibers~open circles! and
the results for suspensions of flexible, straight fibers~open squares! in Fig. 4~a!. For both
systems,hsp is small, and increases roughly linearly with the concentration in agreement
with previous simulations at relatively small concentrations@Sundararajakumar and Koch
~1997!#. The linear dependence of the viscosity on concentration is consistent with the
predictions of slender body theory for dilute fiber suspensions. For an ambient flow field
U` 5 (ġz,0,0), the slender body theory prediction for the specific viscosity in a dilute
suspension of rigid rods is@Batchelor~1970a!#

hsp
sb 5 nL3

p

6 ln~2rp!
^px

2pz
2&21. ~12!

FIG. 3. Examples of U-shaped fibers (feq 5 0,r p 5 75) for various values ofueq.
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For suspensions of noninteracting particles, the orientation distribution is approximately
constant which suggestshsp

sb } nL3. Petrich et al. ~2000! also observed this type of
behavior in experiments of very stiff and straight glass fibers (Seff ' 1) with an aspect
ratio r p 5 72 at approximately the same concentration range as our simulations~illus-
trated in Fig. 4!.

The differences between the results for suspensions of straight, rigid fibers and sus-
pensions of straight, flexible fibers are very small, approximately equal to the uncertain-
ties. This is not unexpected, since the flexible fibers in this case are actually quite stiff.
For these simulations, the average deviation of the bending angles from the equilibrium
value is ^uu i2uequ& 5 631024. Indeed, the degree of deformation for all the runs
depicted in Fig. 4 is quite small, and thus the results appear to represent the behavior of
stiff fibers (̂ uu i2uequ& 5 4.631023 for ueq 5 0.1 and^uu i2uequ& 5 1.631022 for
ueq 5 0.3). The effects of flexibility for suspensions of more flexible fibers are discussed
in Sec. III B.

Next we consider the effect of fiber shape in the absence of friction, illustrated by the
results for straight, rigid and flexible fibers~open circles and squares, respectively!, and
U-shaped, flexible fibers (ueq 5 0.1, open triangles! in Fig. 4~a!. The specific viscosities
of the suspensions of U-shaped fibers are significantly larger than those of the suspen-
sions of straight fibers. AtnL3 5 40, hsp for the U-shaped fibers is approximately twice

FIG. 4. Steady state specific viscosity as a function of the concentration for suspensions with fibers of different
shape and coefficients of friction.
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as large as that for the straight fibers. We note that forueq 5 0.1, the fiber shape is nearly
straight~see Fig. 3!. Thus a small amount of curvature can have a significant effect on the
suspension viscosity.

The results presented in Fig. 4 also illustrate the impact of interfiber friction on the
shear viscosity. For suspensions of straight, rigid fibers, adding static friction (mstat

5 20) does not alter the shear viscosity. For suspensions of straight, flexible fibers,
adding static friction produces a small increase in the specific viscosity. The effect of
static friction is much more pronounced for the U-shaped fibers. FornL3 * 30, adding
static friction more than doubles the specific viscosity. In addition, the concentration
dependence changes from a linear dependence in the absence of friction to a higher-order
dependence withmstat 5 20.

The viscosity of fiber suspensions is thus significantly influenced by both the fiber
shape and static friction. Furthermore, there is also an additional synergistic effect of
these features, because friction influences the viscosity of suspensions of U-shaped fibers
more than it influences the viscosity of suspensions of straight fibers. The effects of fiber
shape and friction are explored in more detail below.

The effect of shape on the specific viscosity of suspensions of U-shaped fibers is
further illustrated in Fig. 5, in which all other suspension properties are held constant
@(Nseg,r p ,nL3,Seff,feq,mstat)(5,75,20,0.05,0,20)#. The specific viscosity gradually in-
creases as the fiber curvature increases (ueq increases!. At a certain curvature,ueq

5 0.5 for the conditions listed above, the specific viscosity undergoes a large jump in
value. This corresponds to the formation of fiber flocs in the suspension. Further increases
in the equilibrium bending angle also result in a flocculated suspension and a gradual
increase inhsp. The effect of flocculation on rheological properties is discussed further
in Sec. III D.

Deviation of fiber shape from perfectly straight can influence the stress in the suspen-
sion in several ways. Consider first dilute suspensions in which the fiber rotation dynam-
ics are similar to those of isolated fibers. U-shaped fibers have a smaller period of rotation
than straight fibers of the same aspect ratio, and thus spend a larger fraction of time out

FIG. 5. Specific viscosity as a function of the equilibrium shape of U-shaped fibers after shearing forg
5 1500; (Nseg,r p ,nL3,Seff,feq,mstat) 5 (5,75,20,0.05,0,20).
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of the plane of shear. In addition, for U-shaped fibers, some fiber segment orientation
vectorspi will always have nonzero components normal to the plane of shear~except in
the rare situation in which the plane of the ‘‘U’’ lies within a shearing plane!, in contrast
to straight fibers that spend most of the time nearly aligned with the flow and contribute
little to the suspension viscosity. These features directly affect the hydrodynamic contri-
bution to the stress represented by the integral term in Eq.~3!. Fiber shape can also
influence the nonhydrodynamic contribution to stress@represented by the terms that con-
tain products ofFH and r in Eq. ~3!# by impacting the frequency of contact between
fibers. Interfiber contacts result in nonzero hydrodynamic forcesFH, and thus more
frequent contacts are expected to increase the time-averaged stress. The contacts also
affect the fiber segment orientation distribution, and indirectly influence the hydrody-
namic contribution to the stress. Fiber curvature indeed leads to an increase in the number
of contacts. For the simulation runs depicted in Fig. 5, the average number of contacts per
fiber at steady statênc&ss increases from 0.03 forueq 5 0 to 1.12 forueq 5 0.3.

The increase in the number of contacts per fiber as the fiber curvature increases arises
from two features. The shorter rotation period of U-shaped fibers compared to that for
straight fibers of the same aspect ratio leads to more opportunities for fiber contacts.
U-shaped fibers also tend to sweep out a larger volume as they rotate, further increasing
the probability of contact with other fibers. These effects of shape on the number of
contacts per fiber should hold for any type of deviation from straight shape~e.g., U
shaped, helical, etc.!.

Figure 6 demonstrates the effect of changingmstat on the specific viscosity of fiber
suspensions with two different equilibrium shapes@U shaped: (ueq,feq) 5 (0.1,0); and
helical: (ueq,feq) 5 (0.8,0.7)] with all other parameters held constant
@(Nseg,nL3,r p ,Seff) 5 (5,20,75,0.05)#. The specific viscosity of suspensions of
U-shaped fibers first increases asmstat increases, and then approaches a constant. The
helical fiber suspensions show a more substantial change in specific viscosity asmstat

increases. This may be attributed in part to an increase in the number of contacts. For a
value ofmstat 5 5, the number of contacts per fiber at steady state for the U-shaped fibers
is ^nc&ss 5 0.08, while for the helical fiberŝnc&ss 5 2.3. The helical fibers also floccu-

FIG. 6. Specific viscosity as a function of the static coefficient of friction for suspensions of fibers that are U
shaped (ueq 5 0.1,feq 5 0) and helical (ueq 5 0.8,feq 5 0.7) after shearing forg 5 1500 with all other
parameters constant; (Nseg,nL3,r p) 5 (5,20,75).
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late for mstat> 5; flocculated suspensions show different rheological behavior than ho-
mogeneous suspensions as will be described in Sec. III D.

B. Effects of aspect ratio and stiffness

Suspensions of flexible, U-shaped fibers in simple shear flow were simulated at a fixed
volume fraction,F 5 0.003, with three different aspect ratios,r p 5 75, 100, and 150
(nL3 5 21.5, 38.2, and 85.9, respectively!, and for various values of the dimensionless
stiffness Seff 5 EYI/h0ġL4. All other parameter values were fixed at
(Nseg,u

eq,feq,mstat) 5 (5,0.1,0,20). The steady state specific viscosity is plotted as a
function of the dimensionless shear rateh0ġ/EY in Fig. 7~a! for the various values ofr p .
All suspensions show shear thinning behavior over the range of dimensionless shear rates
investigated. As the aspect ratio increases, the shear thinning behavior becomes more
pronounced. At large shear rates, or for sufficiently flexible fibers, the specific viscosities
exhibit a much weaker dependence on the aspect ratio than that observed at low shear
rates. Figure 7~b! shows the difference in first normal stress normalized by the fiber’s
Young’s modulusN1 /EY as a function ofh0ġ/EY for the same fiber aspect ratios
discussed above. The first normal stress difference also increases with increasing aspect
ratio, and the increase is more noticeable at lower shear rates. The dependence of the
rheological properties on the fiber aspect ratio and shear rate observed in the simulations
is consistent with the experimental results of Gotoet al. ~1986! for nylon fibers in glyc-
erin and of Kitano and Kataoka~1981! for vinylon fibers in silicone oil.

The simulation results presented in Fig. 7~a! suggest that increasing the fiber flexibility
~decreasingEY) will lead to smaller suspension viscosity. This apparently contradicts the
experimental results of Gotoet al. ~1986! which demonstrate that nylon fiber suspensions

FIG. 7. ~a! Specific viscosity and~b! normalized first normal stress differenceN1 /EY as a function of the
dimensionless shear rateh0ġ/EY for fibers of various aspect ratios after shearing forg 5 1500;
(Nseg,r p ,F,ueq,feq,mstat) 5 (5,75,0.003,0.1,0,20).
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(EY ' 2 GPa) have larger viscosities than glass fiber suspensions (EY ' 75 GPa) at the
same aspect ratio (r p 5 300) and concentration (F 5 0.005). This discrepancy may be
explained by examining the equilibrium shapes of the nylon and glass fibers depicted by
Gotoet al.The glass fibers appear to be nearly straight at equilibrium, whereas the nylon
fibers have permanent deformation at equilibrium. As described in Sec. III A, the differ-
ences in the rheological properties of the glass and nylon fibers observed by Gotoet al.
may be attributed to differences in fiber shape as well as differences in fiber stiffness.

We also performed simulations for suspensions of fibers with aspect ratior p 5 35 in
order to compare with the experimental results of Chaouche and Koch~2001! for nylon
fibers in silicone oil (r p 5 36,h0 5 12.2 Pa s). For this system at a shear rate ofġ
5 9.8 s21, the effective stiffness isSeff ' 0.8. Under these conditions, the suspensions

appeared to be essentially Newtonian. Simulation results for the steady state specific
viscosity as a function of the concentration for suspensions of fibers of various shape are
compared with the experimental results of Chaouche and Koch~2001! in Fig. 8. The
results for suspensions of rigid rods@(Nseg,S

eff,ueq,feq,mstat) 5 (1,̀ ,0,0,20)# agree
reasonably well with the experimental measurements, with deviations becoming more
apparent as the concentration increases. As described in Sec. III A, friction does not
significantly affect the results for straight fibers in the concentration range reported. If the
fibers are made flexible and inherently straight with a dimensionless stiffness similar to
that of the experimental system@(Nseg,S

eff,ueq,feq,mstat) 5 (5,0.7,0,0,20)#, there is
only a slight improvement in the prediction of the specific viscosity at large concentra-
tions. Simulations with slightly U-shaped, flexible fibers@(Nseg,S

eff,ueq,feq,mstat)
5 (5,0.7,0.1,0,20)# overpredicthsp by nearly an order of magnitude. These results

suggest that the small discrepancy between the experimental results and the predictions
for suspensions of straight fibers may be accounted for by a very small deviation of the
shape~from perfectly straight! of the fibers employed in the experiments.

FIG. 8. Specific viscosity as a function of the concentration for shorter fiber suspensions (r p 5 35), using
rigid fibers @(Nseg,Seff,mstat) 5 (1,̀ ,20)#, straight flexible fibers @(Nseg,Seff,ueq,feq,mstat)
5 (5,0.7,0,0,20)#, and slightly deformed flexible fibers@(Nseg,Seff,ueq,feq,mstat) 5 (5,0.7,0.1,0,20)#

compared with the experimental data of Chaouche and Koch~2001!.
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C. Yield stress

Fibers in suspension can form networks if the concentration is sufficiently large that
each fiber experiences multiple contacts with other fibers. The networks exhibit mechani-
cal strength and viscoelastic behavior@Wahren~1964!; Thalén and Wahren~1964!#. The
network strength is controlled by the cohesive nature of the contact points. Kerekeset al.
~1985! proposed that the cohesive force that imparts strength to the network is caused by
friction generated by normal forces at points of contact between elastically bent fibers.
Benningtonet al. ~1990! derived an expression for the yield stress of a suspension of
elastically interlocked fibers,

s0 5 aF3, ~13!

wheres0 is the yield stress and the coefficienta is a function of the fiber’s Young’s
modulus and aspect ratio. Benningtonet al. measured the yield stress for a variety of
suspensions of wood and synthetic fibers, and found that the yield stress scaled with the
volume fraction ass0 ; Fb whereb ranged from 2.5 to 3.5, in reasonable agreement
with their model.

We performed simulations in simple shear flow to determine the yield stress of fiber
suspensions at various volume fractions with (Nseg,r p ,ueq,feq,mstat)
5 (5,75,0.1,0,20). The stiffness was varied to obtain the dimensionless shear stress

(szxL
4/EYI ) as a function of the dimensionless shear rate (1/Seff } ġ), which is plotted

for different volume fractions in Fig. 9~a!. The data exhibit roughly Bingham-like behav-
ior, with the shear stress varying linearly with the shear rate and a nonzero intercept. The
apparent dimensionless yield stress at each volume fraction was determined by fitting the
data to a straight line and equating the intercept at 1/Seff 5 0 to the dimensionless
~dynamic! yield stress. The yield stresses obtained in this manner are plotted as a function
of volume fraction in Fig. 9~b!. The simulated yield stress scales with the volume fraction
as s0 ; F2.7560.8, and thus the exponent is in the same range as the values obtained
experimentally by Benningtonet al. ~1990!.

The predicted value ofa does not agree as well with that obtained experimentally.
Using the parameter values for nylon fibersr p ' 76, EYI ' 3.5310210 N m2, andL
' 3.45 mm @Bennington et al. ~1990!#, the simulations predict a value ofa ' 6

3106 N/m2, whereas Benningtonet al. measureda ' 105 N/m2. The discrepancy be-
tween the simulated and experimentally measured values ofa may be explained by a
variety of effects. The fiber shapes and values of the coefficients of friction employed in
the simulations certainly differ from those of the experimental systems and, as discussed
in Sec. III A, we expect the stress to depend fairly sensitively on these parameter values.
Unfortunately, the fiber shapes and coefficients of friction for the systems employed in
the experiments were not reported.

The network model of Benningtonet al. ~1990! suggests that the yield stress should
vary linearly with the fiber’s Young’s modulus. The same conclusion is obtained for the
simulations reported here, since the yield stress scaled by the Young’s modulus is ob-
tained by extrapolating the dimensionless shear stress to 1/Seff → 0. The dimensionless
yield stress is thus independent of the Young’s modulus, and the dimensional yield stress
varies linearly with the Young’s modulus. Benningtonet al., however, did not observe
this scaling in their experiments. This discrepancy may also be related to the fiber prop-
erties. Benningtonet al.obtained results for different fiber Young’s moduli by employing
different types of wood and synthetic fibers. Inspection of the fiber images presented in
their paper reveals that the fiber shapes varied, sometimes quite significantly, from one
system to another. Thus the variation of yield stress from one system to another may be
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due to differences in fiber shape as well as to differences in Young’s moduli, and thus the
predicted scaling with stiffness alone is not expected to hold.

D. Rheology in flocculated suspensions

Under the appropriate conditions, fiber networks subjected to shear flow develop into
a heterogeneous or flocculated state. Flocculation can occur when the fibers are suffi-
ciently stiff and interact with a sufficiently large coefficient of friction, even in the
absence of attractive interfiber forces@Schmid et al. ~2000!, Switzer ~2002!#. Fibers
within flocs are caught in elastically strained configurations due to fiber bending and
friction forces at the contact points. A flocculated state in a simulated fiber suspension can
be characterized by the pair distribution function,g(r ), wherer is the separation between
fiber centers of mass. Pair distribution functions for two fiber suspensions after shearing
to steady state~straing 5 1500) are plotted in Fig. 10~a!. The parameter values for the
two simulations are the same@(Nseg,r p ,nL3,Seff,ueq,feq) 5 (5,75,15,0.05,0.8,0.7)#,
except for the values of the coefficient of friction (mstat 5 1 and 20!. For mstat 5 1,
fibers have an equal probability of having their centers of mass at any separation. This
resulting suspension structure is homogeneous, as illustrated in Fig. 10~c!. For suffi-
ciently large values ofmstat, the suspension flocculates@Fig. 10~b!# and there is a high
probability of finding the fiber centers of mass at small separations.

FIG. 9. ~a! Shear stress (sxz) as a function of the shear rate for simulations of fiber suspensions at different
volume fractions, and~b! the extrapolated apparent yield stress (s0) from ~a! as a function of the volume
fraction; (Nseg,r p ,ueq,feq,mstat) 5 (5,75,0.1,0,20).
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Flocculation changes the rheological properties of a suspension. Figure 11 shows the
specific viscosity as a function of 1/Seff ( } ġ) for fiber suspensions with the same con-
centration and aspect ratio (nL3 5 15 and r p 5 75), but with different shapes and
coefficients of friction. Results labeled~A! are for simulations with helical fibers
@(ueq,feq) 5 (0.8,0.7)# with mstat 5 20, results labeled~B! are for simulations with the
same helical fiber shape andmstat 5 1, and results labeled~C! are for runs with U-shaped
fibers@(ueq,feq) 5 (0.1,0)# andmstat 5 20. Systems~B! and~C! remain homogeneous
for all values ofSeff. The specific viscosity exhibits a low shear rate plateau, with shear
thinning behavior as 1/Seff increases. The value ofhsp at small values of 1/Seff is larger
for system~B! than for system~C!, because the fiber equilibrium shapes in system~B!
deviate more from perfectly straight. Thus, fiber segments in system~B! are never all

FIG. 10. Pair distribution function for the fiber centers of mass for a flocculated suspension (mstat5 20) and
a homogeneous suspension (mstat5 1) after shearing for g 5 1500; (Nseg,r p ,nL3,Seff,ueq,feq)
5 (5,75,15,0.05,0.1,0).

FIG. 11. Specific viscosity vs the reciprocal of the stiffness for suspensions of equivalent concentration
(nL3 5 15) and aspect ratio (r p 5 75) in which ~A! flocculates and~B! and ~C! remain homogeneous:~A!
(ueq,feq,mstat) 5 (0.8,0.7,20);~B! (ueq,feq,mstat) 5 (0.8,0.7,1);~C! (ueq,feq,mstat) 5 (0.1,0,20).

774 SWITZER AND KLINGENBERG



aligned with the flow direction, which leads to a larger hydrodynamic contribution to
stress compared to the slightly deformed fibers in system~C! which can approximately
align with the direction of flow. The helical fibers also experience more interfiber con-
tacts, further increasing the stress.

System~A! remains homogeneous at large values of 1/Seff ~high shear rates!, but for
1/Seff & 400 the suspension flocculates at steady state@following Schmidet al. ~2000!,
we define a suspension as flocculated wheng(r 5 0.01L) > 3]. Shear thinning behavior
is observed over the entire range of 1/Seff. The specific viscosity is also much larger in
the flocculated state at small values of 1/Seff because there are many frictional contacts
that give the network mechanical strength. Chenet al. ~2002! observed large jumps in the
shear stress for wood and nylon fiber suspensions when they flocculated at small shear
rates. The simulation results depicted in Fig. 11 do not exhibit large jumps in shear stress
over the range of dimensionless shear rates investigated, but may do so at smaller shear
rates.

At large values of 1/Seff, all of the systems described in Fig. 11 approach the same
value forhsp, where the suspension structures are homogeneous. This is consistent with
the results of Chenet al. ~2002! in which they observed that suspensions dispersed from
a flocculated state as the shear rate increased. Gotoet al. ~1986! also reported that fibers
of various Young’s moduli and shape tended to approach the same viscosity at high shear
rates ~for equivalent concentrations!, where the suspensions behaved essentially like
Newtonian fluids. This is consistent with the simulation results reported here, and corre-
sponds to a limiting state where viscous forces dominate over fiber elasticity and inter-
fiber forces.

IV. CONCLUSIONS

We have employed particle-level simulations to probe the effects of various features of
flexible fibers and their interactions on the rheology of fiber suspensions in simple shear
flow. The fibers are modeled as linked, rigid spherocylinders connected by ball and socket
joints. The fiber segments are acted upon by short-range repulsive forces and interfiber
static friction, but hydrodynamic interactions are ignored. Since we were primarily inter-
ested in situations where there are significant numbers of interfiber contacts, hydrody-
namic interactions are likely of secondary importance@Sundararajakumar and Koch
~1997!; Harlen et al. ~1999!#. Comparisons with previous simulations and experiments
show reasonable agreement.

The viscosity of fiber suspensions is influenced strongly by the particle shape and
interfiber friction. Relatively small deviations in particle shape from perfectly straight can
haveO(1) effects on the specific viscosity. Interfiber friction impacts the viscosity more
for suspensions of nonstraight fibers than for suspensions of straight fibers. These results
suggest that these features should be quantified in experimental studies.

Fiber flexibility results in shear thinning behavior. This is caused by competition
between between hydrodynamic forces~which attempt to deform the fibers! and fiber
elasticity ~which attempts to retain the equilibrium fiber shape!, characterized by a di-
mensionless effective stiffness,Seff 5 EYI/h0ġL4, whereEY is the Young’s modulus of
the fiber material,I is the cross-sectional area moment,h0 is the suspending fluid vis-
cosity, ġ is the shear rate, andL is the fiber length; 1/Seff can be interpreted as a
dimensionless shear rate. Shear thinning proceeds from a low shear rate plateau to a
shape-independent high shear rate limit. The height of the low shear rate plateau depends
on the fiber shape and the coefficient of friction.
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The behavior predicted at large shear rates is expected to be only qualitative, since
deviations of the bending and twisting angles from their equilibrium values can become
sufficiently large such that the Hookean model for bending and twisting torque in the
hinges is suspect~e.g., in the most extreme case,^uu2uequ& 5 0.086 for the simulations
with h0ġ/EY 5 331027, r p 5 150 in Fig. 7!. Furthermore, one would expect that
fibers composed of relatively few rigid segments could not accurately represent the pre-
cise shapes exhibited by real fibers at large values of 1/Seff.

Suspensions that flocculate show shear thinning over wider ranges of shear rates.
However, the high shear rate behavior of these systems is the same as that of suspensions
that do not flocculate~at the same volume fraction!. Results for the concentration depen-
dence of the apparent yield stress agree reasonably well with experiments. The effects of
fiber shape and friction make quantitative comparison with existing experimental data
difficult.
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APPENDIX

Here we investigate the error associated with neglecting hydrodynamic interactions
between segments within a fiber by comparing the Jeffery orbit periods of straight, rigid
cylinders in simple shear flow predicted from the model employed in this article with that
predicted by Cox~1971!.

Cox ~1971! employed theoretical analysis and comparison with experiments to obtain
the Jeffery orbit period of straight, rigid cylinders in shear flow,

T 5
2p

ġ Sre1
1

re
D, ~A1!

where the equivalent aspect ratio of the cylinder is given by

re 5 1.24
r p

Aln rp

. ~A2!

These equations reproduced well experimental data reported by Anczurowski and Mason
~1968!.

Results for the orbit periods of straight, isolated fibers composed of linked spherocyl-
inders predicted by the simulations in which hydrodynamic interactions between seg-
ments are ignored are compared with the results of Cox~1971! in Fig. 12, where the
dimensionless periodTġ is plotted as a function ofNsegfor different overall fiber aspect
ratios r p . The simulations were performed for sufficiently large values ofSeff such that
the orbit periods did not vary with further increases inSeff. The solid lines in Fig. 12
represent the results given by Cox~1971!.

The results presented in Fig. 12 illustrate fair agreement between the simulation model
and theory, at least for the range of parameters explored. Most simulations reported in
this article employr p 5 75, Nseg5 5, for which the error in the orbit period is 0.5%.
The error increases with an increase inr p , and reaches 11% forr p 5 150, Nseg5 5.
This suggests that ignoring hydrodynamic interactions between segments does not have a
significant impact on fiber dynamics. In principle, the equivalent aspect ratio of a seg-
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ment, r es
, could be adjusted to provide exact agreement, but this does not seem war-

ranted given the other approximations employed~e.g., replacing a flexible fiber with
linked, rigid segments!.
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