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Unilateral laryngeal paralysis leads to tension imbalance and hence to asynchronous movements
between the two vocal folds during phonation. In the current study, a computational model of
phonation that couples a two-mass model of the vocal folds with a Navier-Stokes model of the
glottal airflow, has been used to examine the dynamics of vocal fold configurations with tension
imbalance and its implications for phonation. The simulations show that tension imbalance
influences phonation onset, intensity as well as the fundamental phonation frequency. Distinct
non-linear effects such as period-doubling bifurcation and preferential frequency selection are also
observed. © 2010 Acoustical Society of America. [DOI: 10.1121/1.3458839]

PACS number(s): 43.70.Aj, 43.70.Bk, 43.70.Dn [DAB]

I. INTRODUCTION

Irregularities in human voice occur very often and these
usually manifest as breathy or hoarse voice (Colton and
Casper, 1996). It has been pointed out (Steinecke and Herzel,
1995; Belafsky et al., 2002) that vocal instability is induced
either by the denervation of the vocal fold or pathological
changes of the structure or the mechanical properties intrin-
sic to larynx. The former condition is referred to as vocal
fold paralysis whereas the latter is termed presbylarynx. The
disease usually effects one vocal fold (i.e., is unilateral),
leading to a significant imbalance of structural tension be-
tween the two vocal folds.

By electro-(EGG) and photoglottography (PGG), a vari-
ety of irregular vibratory patterns of the vocal folds have
been observed for cases associated with disordered voices,
such as laryngeal paralysis (Tanabe et al., 1972; Kelman,
1981; Zhang and Jiang, 2005; Schwarz et al., 2006). These
irregularities are thought to arise from the intrinsic nonlin-
earity of the vocal system and have been extensively exam-
ined by the theories of nonlinear dynamics. Indeed, subhar-
monics, bifurcations and low-dimensional chaos are common
observations in high-speed recording signals of the patho-
logical voice (Berry et al., 1996; Herzel et al., 1994; Wilden
et al., 1998).

In the last few decades, many different computational
models have been used to study the mechanisms underlying
voice disabilities. The well known two-mass model was first
developed by Ishizaka and Flanagan (1972) and then simpli-
fied by Steinecke and Herzel (1995) to focus on the oscilla-
tory characteristics of diseased vocal folds. A variety of flow
models have been coupled to these two-mass models and
these coupled models have provided results which are in
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general agreement with physiological data (Wong er al.,
1991; Pelorson et al., 1994; Jiang and Zhang, 2002). How-
ever, in most cases, the glottal aerodynamics is modeled via
the Bernoulli’s equation, which can either not model, or
model with a low level of fidelity, the effects of viscosity,
vortex dynamics, temporal flow variation, and flow gradients
in the lateral direction. In particular, the flow through the
glottis can exhibit significant asymmetry due to jet deflection
(often called the “Coanda effect”) and this could lead to
asymmetric aerodynamic force on the two vocal folds. Fur-
thermore, the supra-glottal jet vortex dynamics induces mix-
ing, which enhances the pressure loss. The complex vortex
dynamics associated with the jet also induces time-varying
aerodynamic loading on the superior portions of the vocal
folds and is expected to modify the bifurcations exhibited
during phonation (Jiang and Zhang, 2002). None of these
features can be produced with a Bernoulli equation based
flow model.

Recently, a computational model which combines the
two-mass vocal fold model with the Navier-Stokes equation
based model for the airflow was proposed (de Vries er al.,
2002; Tao er al., 2007). With this model, they successfully
predicted the self-oscillations of the vocal folds and captured
asymmetric glottal jet deflection during phonation. Com-
pared with models where both the airflow and vocal fold are
modeled as continuum (Alipour and Titze, 1997; de Oliveira
Rosa et al., 2003; Thomson et al., 2005; Tao et al., 2006;
Luo et al., 2008; Zheng et al., 2009; Luo et al., 2009), this
Navier-Stokes-two-mass model has the advantage of provid-
ing a good physical description of glottal aerodynamics at a
reduced computational cost.

In current research, a similar composite phonation
model is developed to simulate and study irregular vocal fold
vibrations as well as the aerodynamics in an asymmetric con-
figuration designed to model a unilaterally paralyzed larynx.
The objective of the study is to gain insights into the under-
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lying physical mechanisms of irregularities induced by left-
right vocal fold tension imbalance, with particular focus on
the implications that vocal fold asymmetry has on the ability
to phonate. The asymmetry in the vocal folds is varied sys-
tematically, and we examine a number of features associated
with the VF vibration and glottal flow. The current work may
be considered complementary to the work of Steinecke and
Herzel (1995); whereas Steinecke and Herzel (1995) model a
large number of cases which allows them to explore the non-
linear dynamics, the current work examines fewer cases (due
to the higher computational expense associated with the
Navier-Stokes flow model) but is able to focus on the dy-
namics of the glottal flow in an asymmetric larynx, and its
implications for phonation.

Il. METHOD

In this section, we describe the laryngeal model that is
employed in the current study. This includes the model for
the glottal airflow, a dynamical model for the vocal folds and
an appropriate coupling procedure between these two.

A. Glottal airflow modeling

Based on the assumption of viscous incompressible air-
flow, the governing equations are the two-dimensional, un-
steady, viscous, incompressible Navier-Stokes equations
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where v; are velocity components in two directions, p is
pressure, and p and v are flow density and kinematic viscos-
1ty.

The equations are discretized using a cell-centered, non-
staggered arrangement of the variables and integrated in time
using the fractional-step method. A second-order Adams-
Bashforth scheme is employed for the convective terms
while the diffusion terms are discretized using an implicit
Crank-Nicolson scheme which eliminates the viscous stabil-
ity constraint. A line-SOR scheme is used to solve the
advection—diffusion equation and an alternating—direction
geometric multigrid with a line—-SOR smoother is used to
solve the pressure Poisson equation (Mittal et al., 2008).

The solver employs a sharp-interface immersed-
boundary method (IBM), which is well suited for the simu-
lation of complex and moving boundary problems on a Car-
tesian grid. Further details of this immersed boundary
method can be found in Mittal et al. (2008). In the context of
laryngeal modeling, this solver has been employed previ-
ously by Luo et al. (2008,2009) and Zheng et al. (2009).

In this study, the vocal tract (shown in Fig. 1) is repre-
sented by a 12 cm X2 cm straight channel. The vocal folds
extend from x=2 cm to x=3.8 cm. The glottal length is 0.3
cm and both the inferior and superior glottal gaps are
0.17857 cm, which correspond to the model of Tao et al.
(2007). The medial surface of the vocal folds is attached to
the lateral boundaries by two curves which together with the
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medial surface represent the total surface of the vocal fold
exposed to the airflow. Both curves are smooth 5th-order
polynomials. The outline of each vocal fold is represented by
200 uniformly arranged Lagrangian marker points (shown in
Fig. 1(b)), whose displacement and velocity are obtained via
linear interpolation from the displacement and velocity of
two masses. Details regarding the fluid-structure interaction
will be given later.

The outlet pressure is fixed at zero gage and the inlet
subglottal pressure, P, is varied in the current study. No-
penetration and no-slip boundary conditions are applied on
the vocal tract walls.

B. Two-mass model of vocal fold

The two-mass model is a classical model for the dynam-
ics of the vocal folds. The model employed here is based on
the two-mass model of Ishizaka and Flanagan (1972), which
represents each vocal fold as a system of two-masses con-
nected by springs. Taking the left vocal fold as an example,
Fig. 1(b) shows a schematic structure of the two-mass model,
in which my, k; and r; represent the mass, spring constant
and damping coefficient respectively of the lower part of the
vocal fold, and m,, k, and r, the corresponding values of the
upper portion. The two masses are coupled by a spring with
stiffness k.. As is typical for these models (Steinecke and
Herzel, 1995; Ishizaka and Isshiki, 1976; Jiang et al., 2001),
the two masses are only allowed to move in the lateral di-
rection.

The differential equations corresponding to this two-
mass model system are:

xl =V, (3)

] 1

v1=m_(P1Ld1—rlvl_klxl_kc(xl_xz))’ )
1

xZ=U2’ (5)
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where x; and v; are the displacement and velocity of mass m;
in the two-mass system. d; is the thickness of the mass,
where d;=0.25 cm and d,=0.05 cm. P; is the average aero-
dynamic pressure applied on mass m;. The index i denotes
the upper and lower masses. L=1.4 cm is the depth of the
glottis in the third direction,

The differential equations are solved with a fourth-order
Runge-Kutta method. The parameters in the lumped model
are set at values that are considered typical of physiological
conditions (Ishizaka and Flanagan, 1972; Tao et al., 2007)
and are listed in Table I. Contact between the two vocal folds
is modeled by enforcing a minimum glottal gap of 0.001 cm,
which is a small fraction of the maximum glottal gap.

As has been done in previous studies (Steinecke and
Herzel, 1995) a tension imbalance parameter « is introduced
to describe the asymmetric activity of the cricothyroid
muscle. We assume that the left vocal fold remains normal
while the right one is subject to reduced tension. Following
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FIG. 1. (a) The geometric model of larynx. “LVF” represent left vocal fold and “RVF” represent the right vocal fold. The drawing is to scale and all
dimensions are in centimeters. (b) View of the vocal-folds with a schematic of the two-mass model and the Lagrangian marker points corresponding to the
vocal fold surface. k;, r; and d; are the spring constant, damping constant and thickness of mass m; (i=1,2), respectively and k.. is the stiffness of the coupling
spring between two masses. (c) Zoom-in view of the glottis. Points “11” and “Ir” represent two bottom points on the left and right vocal folds respectively,

while “21” and “2r” represent the two corresponding points on the top.

Steinecke and Herzel (1995) the parameter a modifies the
parameters of the right vocal fold as follows: k;=ak;, c;
=acyy, m;=my/ a, for i=1,2 and k.= ak_,, where the index 0
denotes the standard parameter set for the left vocal fold.

C. Fluid-structure interaction

Interaction between the vocal folds and the airflow takes
place at the surface of the glottal wall. The fluid-structure

TABLE 1. Parameter values for the two-mass model used in the current
study.

Parameter Symbol Value
Lower mass m 0.125 g
Upper mass ny 0.025 g
Lower spring constant ki 80 kdyn/cm
Upper spring constant ky 8 kdyn/cm
Coupling spring constant k. 25 kdyn/cm
Lower damping constant r 20 g/s
Upper damping constant ) 20 g/s
Lower mass thickness d, 0.25 cm
Upper mass thickness d, 0.05 cm
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interaction is implemented through an explicit coupling be-
tween the IBM flow solver and the two-mass model solver
wherein the two are solved sequentially in each time-step.
The IBM flow solver gets the boundary locations and bound-
ary velocities from the two-mass model system through the
maker points (shown in Fig. 1). The aecrodynamic force act-
ing on the two masses (denotes as P, and P,) is computed by
integrating the pressure on the vocal fold p(y) as follows:
3.0+d,

p(y)dy,

3+d+d,

Py=— p(y)dy.

P1=_
d2 3+d;

dl 3.0

lll. RESULT AND DISCUSSION

The study focuses on a systematic variation of two pa-
rameters: the tension imbalance parameter « and the subglot-
tal pressure P,. For a, we employ the values 0.4, 0.5, 0.7 and
1.0, where the lower values denote higher tension imbalance
and a value of 1.0 denotes no imbalance, i.e., normal vocal
folds. For each of the above values of tension imbalance, we
also apply the following subglottal pressures (P,): 0.1, 0.3,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0 kPa (gage). This parameter signi-
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FIG. 2. (Color online) A time sequence of spanwise vorticity contours in the
asymmetric and symmetric models for one full vibration cycle. The first row
represents the symmetric model and the second row corresponds to the
asymmetric model with @=0.4. In both of the cases, P;=1.0 kPa. Zoom-in
view in each figure shows the vocal fold configuration at each time-instance.

fies the effort expended during phonation, with high levels of
P, denoting a higher effort level. Thus, the above set of
simulations should allow us to gain insights into the interplay
between tension imbalance and phonation effort. We use a
variety of data including flow vortex dynamics, frequency
spectra, and glottal flow rate to draw conclusion regarding
the effect of tension imbalance on phonation onset, effort and
quality.

All of the simulations are performed on a non-uniform
289 X 289 Cartesian grid where higher resolution is provided
in the glottal region. The current grid is based on our past
experience in simulating these flows and has been subjected
to grid refinement analysis in previous studies (Luo et al.,
2008; Zheng et al., 2009). The simulations employ a small
time-step corresponding to about 3.5 microseconds, which
results in 1500-4500 time-steps per vibration cycles. Simu-
lations are run for over 10 cycles until a stationary state is
achieved and all results presented here correspond to this
state. Each simulation takes 300-500 h of CPU time on a
single processor 2.01 GHz AMD Opteron computer.

A. Qualitative features

In Fig. 2, we present a time sequence of spanwise vor-
ticity contours in the vocal tract during one vibration cycle
for two extreme cases: a=1.0 and a=0.4. For both these
cases, P;=1.0 kPa, which corresponds to a nominal physi-
ological condition. The motion and conformation of the
vocal-folds are also shown for both the cases. The figure
clearly indicates that the vibration pattern is highly asymmet-
ric for the case with tension imbalance, whereas the vibration
is quite symmetric for the balanced VF case. We also note
that the imbalanced vocal folds do not exhibit complete clo-
sure during the vibration cycle, a fact confirmed by past stud-
ies (Ishizaka and Isshiki, 1976; Story and Titze, 1995).

Despite the large difference in the vibratory patterns, the
two cases have a glottal jet vorticity pattern that is qualita-
tively quite similar. In both cases, the glottal jet vortices
show a deflection from the centerline. The deflection of air-
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FIG. 3. The history of glottal flow rate for cases with varied « value and
fixed P, at 1.0 kPa. Each curve has been offset along the ordinate and
horizontal dashed lines represent the datum for each curve.

flow is found to be random from cycle-to-cycle and this phe-
nomenon has been described in detail by Zheng et al. (2009).
However, the deflection of airflow is more significant in the
asymmetric case due to the significant tension imbalance.

B. Glottal flow and implications for phonation

It is well known that the phonation is essentially an
energy-transfer process through the interaction of airflow and
tissue. During the phonation, a pulsatile jet flow is generated
through the glottis by the sustained oscillations of the human
vocal folds and this jet is directly responsible for the sound
production (Story, 2002). Figure 3 shows the history of glot-
tal volume flow rate for cases with P, fixed at 1.0 kPa and «
varying from 0.4 to 1.0. This plot shows interesting behavior
indicative of a significant effect of tension imbalance on
voice. First, the tension imbalance clearly affects the fre-
quency of phonation, with the highest frequency occurring
for the normal case. Second, as the tension-imbalance in-
creases, the time-variation of the glottal flow rate transits
from a purely periodic behavior to a more complex quasi-
periodic variation. For example, at @=0.5, the history of flow
rate starts to show alternating low and high peaks, which
implicate the presence of a subharmonic in the flow.

Since the glottal flow-rate is the primary determinant of
phonatory sound, we examine this quantity further to better
understand the implications of tension imbalance phonation
onset, effort and quality. In Fig. 4(a), we plot the root-mean-
square fluctuation of the glottal volume flow rate Q,,,. which
is a measure of the intensity of the fluctuation in the glottal
flow-rate. This plot indicates that for the cases with a=1 and
0.4, the intensity of the glottal flow fluctuations increase rap-
idly beyond a subglottal pressure of 0.5 kPa, whereas the
other two cases only show substantial increase in glottal flow
fluctuation for subglottal pressures above 0.7 kPa. This
would seem to imply, somewhat counter-intuitively, that the
case with the tension imbalance, i.e., «=0.4, phonates in a
manner similar to the normal symmetric case. However, the
following discussion indicates that this is not the case.

Noting that the monopole sound strength of the glottal
jet is directly related to the time-rate of change of the flow

Xue et al.: Effect of vocal-fold asymmetry on phonation 821



®
—s— «=04 ,/
- -4~~~ a=05 7
8 e a=07 4]
R --emms a=10 ;o
&= of
£
N
e
.
2k
1
L
(b)
0.008
——a— =04 A
== - -- a=0.5 P
sy @207 40
— 0006 -~ o~~~ a=1.0 /t \"/‘-
» S
~
£
N
-§0_004 o
3
&/ 0.002
%

FIG. 4. (Color online) Comparing the important flow parameters affecting on the sound quality in both the asymmetric and symmetric cases. (a) The
fluctuation amplitude of volume flow rate, which represents the strength of the vocal fold vibration. (b) The time-rate of change of the volume flow rate, which
is related to the monopole sound strength. (c) The mean value of volume flow rate which is indicative of the flow impedance. (d) The leakage, which is the

average of minimum volume flow rate over cycles, reveals the glottal gap size.

rate, Q.m, of the jet (Zhao et al., 2002; Zhang er al., 2002)
we plot the root-mean-square fluctuation intensity of this
quantity in Fig. 4(b). This plot shows a number of interesting
features with direct implications for phonation onset and in-
tensity. First, the plot shows that the case with normal, sym-
metric vocal fold has the lowest threshold pressure and starts
to show significant magnitude of this quantity at a subglottal
pressure of 0.5 kPa. Note that this is different from the be-
havior seen in Fig. 4(a) which shows a more rapid and sus-
tained increase in glottal flow rate fluctuation for the case
with the highest level of asymmetry. The two cases with «
=0.5 and 0.7 require the highest subglottal pressures (ap-
proximately 0.7 kPa) to produce noticeable magnitudes of
O,ns fluctuations, indicating a higher effort for phonation
onset. Interestingly, the case with the highest tension imbal-
ance shows phonation onset which, although slightly de-
layed, is initially very similar to that for the normal case.
This indicates that the effect of tension imbalance on phona-
tion onset is quite non-linear, and that phonation onset pres-
sure does not increase monotonically with tension imbal-
ance.

The plot in Fig. 4(b) also provides insights into the in-
crease in phonation intensity with effort. The usual way to
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increase the intensity of sound in phonation is to increase the
subglottal pressure, which leads to increase in vibratory am-
plitude of the vocal folds and thence to increase in phonatory
sound intensity. Given this, we note that the Figure 4(b) in-
dicates a rapid and monotonic increase in phonation intensity
with subglottal pressure for the normal (symmetric) vocal
folds. The case with slight tension imbalance (@=0.7) also
shows a similar increase in phonation intensity with subglot-
tal pressure, but this increase happens at higher pressures due
to delay in phonation onset.

The two cases with higher tension imbalance (@=0.5
and 0.4) show a trend that is qualitatively different from
these other two cases. Both of these show an initial rapid
increase in phonation intensity with subglottal pressure fol-
lowed by a transition where the rate of increase of sound
intensity reduces and stays at this reduced level over the
range of subglottal pressures investigated in the current
study. The subglottal pressure at which this transition occurs
reduces with increasing tension imbalance, which suggests
that the effort required to raise phonation intensity increases
with tension imbalance. A comparison of Fig. 4(a) and 4(b)
also shows that while the cases with the highest symmetry
vibrate with the larger amplitudes than the symmetric case

Xue et al.: Effect of vocal-fold asymmetry on phonation
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FIG. 5. The Fourier spectrum corresponding to displacement of the two lower masses and the glottal volume flow rate for cases with P,=1.0 kPa. The vertical
dash-dot lines represents the two natural frequencies of left (normal) vocal fold and the dash line represents two natural frequencies of right (soft) vocal fold.
x;; and x,; represent the locations of the lower masses on the left and right vocal folds respectively. (a) a=1.0, (b) a=0.7, (c) a=0.4. Plots have been offset

in the ordinate.

for large subglottal pressure, the corresponding phonation
intensity (as shown in Fig. 4(b)) is in fact significantly lower
than the symmetric case. This indicates that the sound inten-
sity is severely limited in a paralyzed larynx even though the
vocal folds could be undergoing larger vibrations.

Next we analyze the data to examine what we can learn
regarding the effect that tension imbalance has on the quality
of sound that is produced. In order to do this, we plot two
quantities related to the volume flow rate; Fig. 4(c) shows the
mean volume flow rate Q and Fig. 4(d) shows the leakage
flow rate Qj.qqg.- The mean flow rate is simply the time-
mean of the flow through the glottis. The leakage flow on the
other hand is the time-mean of the minimum flow during
each cycle of vocal fold vibration. It is a measure of the flow
that leaks through the glottis at a phase where the glottal gap
is at its minimum and nonzero values are indicators of in-
complete glottal closure. The implication of these quantities
on the quality of sound produced during phonation can be
understood by noting that during regular breathing, both of
these quantities have high values, especially relative to the
fluctuation intensity of the flow rate. Thus, high values of
both these quantities are indicative of a “breathy” quality in
the voice.

Figure 4(c) clearly shows that for all subglottal pres-
sures, the normal vocal fold case has the lowest mean flow
rate and that the mean flow rate increases monotonically with
tension imbalance at any given subglottal pressure. Figure
4(d) however shows a more complex behavior of the leakage
flow with subglottal pressure and tension imbalance. For all
cases, the leakage flow initially increases with subglottal
pressure. We note that the rate of increase of this quantity
with subglottal pressure is lowest for the normal symmetric
case, and increases monotonically with tension imbalance.
However, as the subglottal pressure is increased further and
the glottal vibration amplitude increases to what we consider
to correspond to phonation onset, there is a sharp drop in the
leakage flow. For the normal, symmetric vocal fold case, for
higher values of the subglottal pressure, we find that the
leakage flow essentially stays at zero, indicating full glottal
closure during each cycle. For a=0.5 and 0.4, the leakage
flow never becomes zero and in fact, starts to increase slowly
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with subglottal pressure indicating that high amplitudes of
vocal fold vibrations are accompanied by nonzero leakage
flow. For the a=0.7, the leakage flow remains high for the
entire range of subglottal pressure studied here. The above
analysis therefore indicates that the cases with tension imbal-
ance will have a “breathy” voice quality. In contrast, post
phonation onset, the normal symmetric vocal fold case
settles into a vibration mode that ensures full glottal closure
during each vibration cycle and would thus produce a clearer
voiced sound.

C. Fundamental phonation frequency

Previous work (Titze, 1976; Herzel et al., 1994, 1995)
has pointed out that during normal phonation, the oscillations
of the two vocal folds are entrained to the same frequency,
which is governed by the natural frequencies of vocal folds.
However, it is not clear if such entrainment occurs when one
fold is affected by the paralysis. In this case, the natural
frequencies of the paralyzed vocal fold deviate from the nor-
mal vocal fold and this can effect the vibration of both vocal
folds as well as the dynamics for the flow. To gain a better
understanding of the effects of tension imbalance on the pho-
nation frequency, we consider four specific cases in which
the subglottal pressure is fixed at 1.0 kPa and a changes
from 0.4 to 1. The Fourier spectrum corresponding to the
displacement of the lower masses of the two vocal folds and
the glottal flow rate are shown in Fig. 5. The natural frequen-
cies of vocal folds obtained via an eigen-analysis of the two-
mass system are also plotted, with the dash-dotted line rep-
resenting the two natural frequencies of the left (normal) side
and the dashed line representing the two natural frequencies
of right (soft) side.

Figure 5(a), shows the frequency spectra for a healthy
phonation case. The plot indicates a fundamental phonation
frequency of approximately 165 Hz and an overtone fre-
quency of approximately 330 Hz. Note that the fundamental
phonation frequency is between the two eigenfrequencies,
and is indicative of an entrainment between the two eigen-
modes. However, as « reduces below 1, more complex vi-
bratory behaviors are observed. Figure 5(b) shows the fre-
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FIG. 6. The displacement history of the two lower masses of the left and right vocal folds for cases with P,=1.0 kPa. (a) «=0.7, (b) a=0.4.

quency spectra for the a=0.7 case which has a slight level of
tension imbalance. For this case, we find that both vocal
folds as well as the glottal flow show a dominant peak at
about 140Hz and overtones of relatively reduced magnitudes
at 280Hz and 420Hz. The fundamental phonation frequency
for this case coincides with the second eigenfrequency of the
softer vocal fold and due to this mode entrainment, the peak
in this case is much sharper than that observed for the normal
case.

To provide a detailed description of the vibratory en-
trainment pattern of the left and right vocal folds for this
case, a plot of the displacement history of the two lower
masses of vocal folds is shown in Fig. 6(a). This result indi-
cates that the two vocal folds are entrained at the same fun-
damental frequency and the normal (left) vocal fold precedes
the soft (right) side. A similar phenomenon was also ob-
served in one of the cases of Steinecke and Herzel (1995).
However, there is an interesting difference that in our case
the greater amplitude happens on the normal side while in
Steinecke & Herzel’s case it happens on the soft side. This
difference may be due to a number of factors including the
asymmetric effect associated with the vortical flow through
and beyond the glottis or due to the different contact models
employed in these two studies.

Figure 5(c) is for the a=0.4 case and this case is inter-
esting in that it shows the present of a strong overtone. The
fundamental phonation frequency is about 70Hz and the
dominance of this frequency for the softer (right) vocal fold
clearly indicates that this frequency is a result of 1:1 entrain-
ment of the two eigenmodes of the soft vocal fold. However,
the spectra for the left (normal) vocal fold shows an overtone
frequency of about 140Hz which has an amplitude compa-
rable to the amplitude at the fundamental frequency. It
should be noted that this is one case where the overtone
frequency lies within a range bracketed by the two eigenfre-
quencies of the normal vocal fold. This suggests the possi-
bility that the overtone might be associated with an entrain-
ment of the two eigenmodes of the normal vocal fold,
although other scenarios which involve mode-entrainment
between the two vocal folds are also possible. This overtone
also appears quite strongly in the glottal flow signal and
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would therefore be evident in the sound. Thus, while the
fundamental phonation frequency seems to be dominated by
the dynamics of the soft vocal fold, the normal vocal fold
does have a direct impact on the sound production. It should
be noted that Steinecke and Herzel (1995) also concluded
that the flow is mainly governed by the soft vocal fold
whereas the normal vocal fold influences the intensity of
harmonics in the frequency spectrum. The displacement his-
tory of lower masses of two vocal folds for this case is
shown in Fig. 6(b). A 1:2 locking ratio of the number of the
peak of x;, and x;; can be clearly observed. This suggests
that the strong overtone appearing on the left (normal) vocal
fold is in fact the result of 1:2 mode entrainment between the
two vocal folds.

We summarize the dependence of phonation frequency
(i.e., frequency corresponding to the glottal airflow) on sub-
glottal pressure and tension imbalance in Fig. 7. Also plotted
in the figure with dash-dot-dot lines are the eigenfrequencies
of the soft vocal fold. Given the linear spring model used in
the current study, both these lines are straight lines. In addi-
tion to the phonation cases, we also plot one pre-phonatory at
a low subglottal pressure of 0.1 kPa. The small scale glottal
flow oscillation for this case occur at a frequency corre-
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FIG. 7. (Color online) Comparing the fundamental frequencies of glottal
airflow and natural frequencies of two vocal folds in both asymmetric and
symmetric cases.
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P,=0.9 kPa, (c) P,=1.0 kPa.

sponding to the lower eigenmode of the soft vocal fold, in-
dicating that in the linear, pre-phonatory regime, the vocal
fold vibrations are governed primarily by the dynamics of
the soft vocal fold.

For higher subglottal pressures, where large-scale pho-
natory vocal fold vibrations occur, we find that in general,
the fundamental phonation frequency lies between the two
eigenfrequencies of the softer vocal folds. This indicates that
the dynamics of the vibration are determined by an entrain-
ment of the two eigenmodes associated with the soft vocal
fold. Furthermore, there is no clear trend in terms of fre-
quency change with subglottal pressure for the various cases.

Interestingly, the case with a=0.7 is different from all
the other cases and violates both these trends. The fundamen-
tal phonation frequency is significantly skewed toward the
higher eigenfrequency so much so that the frequency for the
P,=1.0 kPa case coincides exactly with frequency of the
second eigenmode of the soft vocal fold. Furthermore, for
this tension imbalance, the phonation frequency also does
not show a strict monotonic increase with subglottal pres-
sure. The singular behavior of this case can be explained by
noting that this is the only case among those studied here,
where there is an overlap region, extending from 120Hz to
140Hz, between the entrainment regions of the two vocal
folds. This common entrainment zone between the two vocal
folds serves as a basin of attraction for the system, and drives
the vibration to a frequency which lies within this zone. Con-
sequently, this particular case defies the general trends ob-
served in this study. Furthermore, this is yet another mani-

festation of the indirect effect of the normal vocal fold on the
vibratory dynamics and the phonation frequency.

D. Period-doubling bifurcation

Period-doubling, which refers to a bifurcation wherein a
system undergoing periodic limit-cycle oscillations changes
to a state where the cycle has two peaks, is a ubiquitous
phenomenon in non-linear dynamics. Thus, period-doubling
is associated with the appearance of a subharmonic in the
frequency spectra. Past studies of the dynamics of asymmet-
ric vocal folds which have employed simple structural and/or
flow models have indicated that period-doubling bifurcations
can occur in such configurations (Steinecke and Herzel,
1995). Subharmonics have also been detected in sound spec-
tra (Herzel et al., 1995; Omori et al., 1997; Wilden et al.,
1998) which might be indicative of period-doubling bifurca-
tions. Strong subharmonics might also be implicated in
diplophonia. It is therefore of interest to examine if such
bifurcations are observed in the current study. The presence
of a temporally and spatially complex aerodynamic forcing
on the vocal-folds that occurs with the current full Navier-
Stokes model, could possibly act to modify the bifurcation
phenomena.

Examination of the computed cases shows that period-
doubling does occur for the case with a=0.5. Figures
8(a)-8(c) display the frequency spectra for this configuration
for three subglottal pressures: P,=0.8, 0.9 and 1.0 kPa. Fur-
thermore, Fig. 9 shows phase-plane plots for the correspond-
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FIG. 9. The phase portraits of x,,-x,, planes for cases at @=0.5. (a) P,=0.8 kPa, (b) P,=0.9 kPa, (c) P,=1.0 kPa.
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ing cases. For P;=0.8 kPa, the spectra is dominated by a
fundamental frequency and its superharmonics. This, along
with the corresponding phase-plane plot in Fig. 9(a) indicates
that the system is undergoing a fairly periodic, limit-cycle
oscillation.

As the pressure is increased to 0.9kPa, there is a signifi-
cant change in the dynamics of the system. While there is
still a dominant fundamental frequency, the spectrum is
noisier, and clear superharmonics can no longer be distin-
guished. There is also a roughly two-orders of magnitude
increase in the energy at frequencies lower than the funda-
mental frequency. The corresponding phase-plane plot in
Fig. 9(b) also shows that the limit-cycle that was present at
the lower pressure has now devolved into a more complex
orbit which consists of two loops with significantly cycle-to-
cycle variability. As we will see presently, this case repre-
sents the onset of the period-doubling bifurcation and the
observed dynamics are indicative of this transitional state. In
fact, the cycle-to-cycle variations in Fig. 9(a) are indicative
of the fact that even the lower pressure case shows some
transitional features.

Further increase of P, to 1.0kPa completes the period-
doubling bifurcation and results in a new stable state. The
spectra for this case show the clear presence of a subhar-
monic frequency and the spectra is dominated by the funda-
mental frequency, the subharmonic and linear combinations
of the two. The phase-plane plot in Fig. 9(c) shows the clas-
sical double loop that is characteristic of a system that has
undergone a period-doubling bifurcation and this behavior is
similar to that observed by Steinecke and Herzel (1995) for a
similar value of the tension imbalance parameter.

E. Conclusions

A computational model, which combines the Navier-
Stokes equations and a two-mass vocal fold model, has been
used to study the effect of vocal fold asymmetry associated
with tension imbalance on phonation. The vibratory dynam-
ics of the asymmetric vocal fold configuration are studied in
the presence of complex glottal flow effects, which are en-
abled by the high fidelity Navier-Stokes based flow model
employed here. The data from the simulations is analyzed in
order to yield insights into the effects of tension imbalance
on vocal-fold vibration and glottal jet dynamics and their
implications for voice.

The simulations show that tension imbalance delays
phonation offset to higher subglottal pressure and also in-
creases the effort required to increase the intensity of sound.
The simulations also suggest that for vocal folds with tension
imbalance, incomplete glottal closure is one factor that is
responsible for the “breathy” quality of voice usually associ-
ated with this type of pathology. The fundamental frequency
of phonation is found to be governed by the properties of the
soft vocal fold and usually results from the entrainment of
the two fundamental eigenmodes of this vocal fold.

A variety of non-linear effects associated with tension
imbalance are manifested in these simulations. Frequency
ranges that overlap the entrainment regions of both vocal
folds, act as basins of attractions and produce behavior that is

826  J. Acoust. Soc. Am., Vol. 128, No. 2, August 2010

different from cases where these overlap ranges do not exist.
Increasing subglottal pressure is also found to result in a
period-doubling bifurcation in one case with significant ten-
sion imbalance, indicating that such bifurcations occur de-
spite the complicating effects of asymmetric flow and pres-
sure in the glottis as well as the supraglottal region. Our
future work in this arena is focusing on more realistic three-
dimensional models with continuum based vocal-fold mod-
els.
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