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Purpose: Cortical bone supports and protects human skeletal functions and plays an important role
in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using
multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture
risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio,
presence of cortical pores, and structural complexity over the transition between trabecular and
cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in
vivo MD-CT imaging is presented and its performance and application are examined.
Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-
of-interest computation and (2) segmentation of cortical bone. After the first step, the following
sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow
space and possible pores, (2) computation of cortical bone thickness, detection of recession points,
and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation
of cortical bone. Effective generalizations of several digital topologic and geometric techniques are
introduced and a fully automated algorithm is presented for cortical bone segmentation.
Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical
bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when
compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass
correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to
describe gender differences in cortical bone properties. This study involved 51 female and 46 male
participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study
suggest that, on average after adjustment for height and weight differences, males have thicker cortex
(mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density
(mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females.
Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical
bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of
data from a pilot study demonstrated that the cortical bone indices allow quantification of gender
differences in cortical bone from MD-CT imaging. Application to larger population groups, including
those with compromised bone, is needed. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4923753]
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1. INTRODUCTION

Cortical bone is one of the two types of osseous tissue and
forms the cortex of individual bones and facilitates supporting
and protecting their function. Adult bone diseases, especially
osteoporosis, lead to increased risk of fracture associated with
substantial morbidity, mortality, and financial costs.1 Although
osteoporosis is defined by low bone mineral density (BMD),
BMD explains 60%–70% of the variability in bone strength,2,3

with the remaining variability due to the cumulative and
synergistic effects of other factors, including geometry and
microarchitecture of cortical and trabecular bones.2,4 Trying
to discern the relative contributions of trabecular and cortical
bones to load bearing during locomotion and falling has
been challenging.5–7 Several clinical studies have reported
that cortical bone thinning and high porosity are associated
with increased risk of osteoporotic low-trauma fractures.8–13

There is evidence in the literature indicating that age-related
bone loss for both men and women leads to reduced cortical
bone density as well as thinner cortex;14–17 however, the loss
is larger for women, especially after menopause.14,15 Several
researchers have studied effects of drug treatment in cortical
bone.18–21 In a study on postmenopausal women (N = 179),
Eastell and colleagues20 observed cortical bone volume in
the total hip and trochanteric regions increased (7% and 9%,
respectively) in the once-yearly zoledronic acid treatment
group versus placebo. Black et al.18 reported a similar finding
studying the effects of alendronate treatment in cortical bone.
Several studies have investigated degeneration of cortical
bone loss properties, such as bone content, thickness, and
porosity, under osteoporosis.22–24 Recently, a thorough review
in cortical bone assessed with computed tomography at the
proximal femur and its relation with fracture risk, aging,
and drug treatment have been reported by Johannesdottir
et al.25

Most of the existing cortical bone segmentation algorithms
at peripheral sites are dedicated to microcomputed tomog-
raphy (µ-CT)26,27 and high resolution peripheral quantita-
tive CT (HR-pQCT)19,22,28,29 imaging. Laib et al.30 applied
a semiautomated slice-by-slice hand contouring technique
for cortical bone segmentation on three-dimensional (3-D)
quantitative CT (QCT) images. Gelaude et al.31 incorporated
region growing and spline-fitting approaches in a deformable
model to develop a semiautomated cortical bone segmentation
method. Gomberg et al.32 combined region growing and
morphological operations with cortical edge detection on
locally orthogonal sample lines to develop a cortical bone
segmentation algorithm for magnetic resonance imaging
(MRI). Buie et al.27 presented a cortical bone segmentation
algorithm for µ-CT imaging using dual thresholding and
connective filters. Valentinitsch et al.29 developed a machine
learning based classifier algorithm to label cortical bone
voxels in HR-pQCT bone data. Treece et al.33 used a CT point
spread function to calculate femur cortex thickness and later
improved his method by assuming a fixed density value.34

A few algorithms have been dedicated for cortical bone
segmentation at femur using 3-D QCT imaging.33,35–38 Recent
advancements in multirow-detector CT (MD-CT) imaging

technologies have enabled a resolution that allows in vivo
segmentation of individual trabeculae and their microarchitec-
tural analysis at peripheral anatomic sites, e.g., distal tibia.39

A major advantage of bone CT imaging at a peripheral site
as compared to a central site, e.g., proximal femur is that
a peripheral bone CT requires significantly lower radiation
dose as compared to a femur CT—a few days of background
radiation for a peripheral bone CT versus two or three years
of background radiation for a bone CT at a central site. Thus,
peripheral bone CT imaging may be performed on low risk
individuals, while a bone CT at a central site on low risk
individuals may be difficult to justify. To maximally benefit
from MD-CT bone imaging at a peripheral site, it is important
to derive cortical bone properties and outcomes from such
images. A fully automated and thoroughly validated cortical
bone segmentation algorithm for MD-CT bone imaging at
a peripheral anatomic site has not yet been established.
The segmentation methods cited above were developed for
different image resolution regimes or for different anatomic
sites and may not work for cortical bone segmentation with
peripheral MD-CT imaging. In this paper, a fully automated
cortical bone segmentation algorithm is presented for in vivo
MD-CT imaging of human distal tibia. This algorithm will
advance the medical physics science by extending the role
of MD-CT imaging for assessment of bone quality at a
peripheral anatomic site. The accuracy of the method was
examined using in vivo MD-CT scans of the distal tibia in
young adults as well as high resolution micro-CT images of
cadaveric specimens. The reproducibility of the method was
evaluated using three repeat scans of cadaveric specimens.
The application of the algorithm was assessed in a human
pilot study that examined gender differences in cortical bone
properties.

2. METHODS

Cortical bone segmentation for in vivo MD-CT imaging at
a peripheral site offers several challenges, including limited
image resolution, noise, presence of cortical pores, and struc-
tural complexity over the transition between trabecular and
cortical bones, which prohibits thresholding and conventional
morphological approaches to accomplish the task. In this
paper, we meet these challenges by using larger contextual
and topological modeling of the tibial bone through a new
generalization of the fuzzy distance transform (FDT)40,41 and
connectivity analysis (see the Appendix).42,43 A preliminary
version of this method was reported in a conference paper44

for image processing and pattern recognition community. The
overall method is completed in two major steps—(1) bone
filling, alignment, and region-of-interest (ROI) computation
and (2) segmentation of cortical bone. The purpose of the
first step is to fill the bone region providing a well-defined
periosteal surface and then to realign the axis of the distal
tibia with the coordinate z-axis. This step facilitates accurate
and robust identification of the distal tibial end-plateau as
well as location of subject-specific ROIs at different tibial
lengths.
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2.A. Bone filling, alignment, and ROI computation

This step begins with conversion of image CT numbers
into BMD values [Fig. 1(a)] using a calibration phantom.
A calibration CT phantom scan was acquired immediately
after each CT bone scan. The CT calibration curve describing
the relation between CT Hounsfield units (HU) and electron
density was separately computed for each bone CT scan from
its matching calibration phantom scan. The relation curve was
derived using the set of pairs each consisting of the average
CT number and the known material density corresponding
to a cylinder in the phantom. All subsequent operations are
applied on BMD images. The next task is to generate a
filled-in shape for the tibia after separating the tibia from
the assembly of other bones and soft-tissues. To accomplish
this task, first, a simple thresholding at 1233 mg/cm3 is
applied on the BMD image to isolate the bone structure from
marrow and other soft-tissues. The BMD threshold value of
1233 mg/cm3 was selected as the average of threshold values
manually selected by three independent users on five randomly
selected in vivo MD-CT images. Each user was asked to
select a threshold value to isolate bone from marrow and
other soft-tissues. The standard deviation and the range of
user specified BMD threshold values observed were 39 and
[1190, 1350], respectively. It may be noted that the constant
BMD threshold of 1233 mg/cm3 was applied to all MD-CT

ankle images used in this paper. Thus, the algorithm requires
no user interaction while applying it to individual images.
For a different MD-CT scanner or an imaging protocol with
moderately different kVp and mAs, the BMD characteristic
should not alter significantly. It is expected that the same
BMD threshold will work for such situations. However,
a different scanner or imaging protocol with significantly
different spatial resolutions or noise characteristics may
require a different BMD threshold and a similar experiment
should be performed to determine the optimum threshold for
such scanners or imaging protocols. In the current study,
all images were acquired at 0.2 mm slice thickness and
0.2×0.2 mm2 pixel-size, and at SNR of 23.4 computed over
the representative cortical bone cylinder in the CT image of
the density calibration phantom used in our experiments. On
the thresholded image, the largest component was computed
[Fig. 1(b)] to remove the fibula and other bones at the ankle
assembly. Let Sbone denote the set of bone voxels of tibia
and let Snonbone denote the set of nonbone voxels, including
marrow, soft-tissues, and the space outside the tibia. The filled-
in bone shape was computed using the following sequence of
operations:

(1) Computation of the distance transform (see the
Appendix) DTbone from Sbone providing the Euclidean
distance of a voxel from Sbone [Fig. 1(c)].

F. 1. Intermediate results of bone filling. (a) An axial slice from an in vivo MD-CT ankle image after converting CT intensity numbers into BMD values. (b)
The largest component (Sbone) of the thresholded BMD image of (a). (c) The FDT map from bone voxels in Sbone. (d) The fuzzy connectivity image on the FDT
map of (c) with seeds chosen at corner voxels of the image space. (e) Results of thresholding on the fuzzy connectivity image of (d) at the value barely avoiding
marrow cavity formation on the proximal-most axial slice. (f) The FDT map from the surrounding white region in (e). (g) The filled bone region derived by
thresholding the image of (f) at the same threshold as used for (e). (h) Bone volume fraction image within the filled bone region.
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F. 2. Bone alignment and ROI computation. (a) An original MD-CT image slice. (b) Filled bone region for the distal tibia. (c) Initial location of the distal
tibial end-plateau (white dot) and the shaded region used for bone alignment. (d) Final location of the tibial end-plateau and the ROI covering 8%–16% of the
tibia. Although, the process is applied in 3-D, 2-D illustrations are used for demonstration.

(2) Computation of fuzzy connectivity, denoted as
FCmorpho, on the distance field DTbone with a set of
seed S preset at corner voxels of the image space. It
may be noted that these seed points are automatically
selected by the algorithm and no user interaction is
required. Marrow voxels inside the tibia are expected
to be disconnected from the background, so ideally
FCmorpho values at marrow voxels should be zero.
However, often, the cortex contains small leaks and
fuzzy connectivity paths (see the Appendix) sneak
through such leaks. Since such leaks are small holes
on the cortex with low values of DTbone(p), any path
through those holes possesses a low value of FCmorpho.
Thus, FCmorpho at marrow voxels are always small
because a path from the background to marrow has to
pass though one of those leaks on the cortex [Fig. 1(d)].
We refer to this unique connectivity on a distance
transform field as morpho-connectivity, because it can
be shown that, for any two object voxels p, q, their
morpho-connectivity determines the minimum scale of
a morphological erosion operator disconnecting p, q.

(3) Computation of dilated tibia by thresholding the
morpho-connectivity image FCmorpho at a threshold
value of thr barely avoiding marrow cavity formation
on the proximal-most axial slice; let Snontibia be the set
of voxels in the thresholded nontibia region [Fig. 1(e)].

(4) Computation of DT DTnontibia from Snontibia [Fig. 1(f)]
and selection of the filled-in tibia as the region
obtained by thresholding DTnontibia at the value of
thr determined in the previous step [Fig. 1(g)].

The filled-in representation of the tibial bone was used to
reorient the tibia and to identify the distal tibial end-plateau
defined as the most proximal location on the distal tibial
end plate after aligning the tibial axis with the coordinate
z-axis. Finally, the reoriented bone and the location of the
distal tibial end-plateau were used to determine the matching
ROIs in individual bones. The method works as follows. First,
a rough estimate of the distal tibial end-plateau location is
performed by analyzing cross sectional images of filled-in
tibial bone and the end-plateau is located just above the first
image slice containing a 2-D cavity in the filled-in bone while

tracing slices from proximal to distal [Fig. 2(c)]. In general,
such a 2-D cavity consists of multiple voxels; therefore, the
center of gravity of the cavity is used as the location of the
distal tibial end-plateau. After a rough estimate of the distal
tibial end-plateau, image slices above 8% of the tibial length
from the end-plateau are used to compute the tibial axis.
Also, a 40% peel is applied to this region to make it thinner
and easier to determine the axis [Fig. 2(c)]. The axis of the
tibia is computed as the best-fit line to the thinned region.
The bone is reoriented to align its axis with the image z-axis
[Fig. 2(d)] and, simultaneously, the image is interpolated at
150 µm isotropic voxel and the distal tibial end-plateau is
relocated using the same logic as before. Four adjacent axial
cylindrical ROIs, each covering 2% of the tibial length, were
located at 8%, 10%, 12%, and 14% proximal to the distal
endplate as shown in Fig. 2(d). All cortical bone segmentation
and analysis were applied within the axial cylindrical ROIs
covering 8% of the tibial length. Tibia length was acquired
from the MD-CT scout scans.

2.B. Cortical bone segmentation

Cortical bone segmentation is applied on the output of
the previous step with well-defined periosteum surface—the
outer cylindrical boundary of the filled tibia bone ROIs. The
algorithm works as follows. At a given periosteal voxel, the
cortical thickness is computed as the distance of the voxel
from the endosteum. Finally, the cortical bone region is
delineated as the set of all bone voxels whose distance from
some periosteal voxel is less than or equal to its thickness
value. Here, a major challenge emerges due to the presence
of cortical pores artificially reducing local thickness at nearby
periosteal voxels. This challenge is overcome by identifying
possible cortical bone pores through connectivity analysis
and then confirming actual pores by matching possible pores
with sudden recession points of cortical thickness along the
periosteal boundary. These steps are iterated until no more
cortical pores are confirmed. A workflow diagram of the
cortical bone segmentation algorithm is presented in Fig. 3
and three major tasks are identified as follows—(1) detection
of marrow space and possible pores (task blocks on the top
row), (2) computation of cortical bone thickness, detection of
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F. 3. Workflow diagram of the cortical bone segmentation algorithm after bone filling, reorientation, and ROI detection. See text for further discussion.

recession points, and confirmation and filling of true pores
(task blocks on the middle two rows), and (3) detection of
endosteal boundary and delineation of cortical bone (task
blocks on the bottom row).

2.B.1. Connectivity analysis and detection
of possible pores

First, bone structures are isolated by thresholding the BMD
image at 1233 mg/cm3. Possible cortical pores are detected

in the thresholded image as follows. Let Stibia denote the set
of all voxels in the filled and reoriented tibia within the target
ROI [Fig. 4(a)] and let fBMD(·) give the BMD value at each
voxel in Stibia. Also, let Sbone ⊂ Stibia denote the set of bone
voxels and Snonbone = Stibia− Sbone be the set of marrow and
cortical pore voxels [Fig. 4(c)]. Let Speriosteum denote the set
of voxels forming the periosteum which fall outside Stibia but
26-adjacent to it; thus, the periosteum Speriosteum [Fig. 4(c)]
wraps around the ROI Stibia. The set of voxels outside
Stibia∪ Speriosteum, denoted by Sbackground, is excluded from all

F. 4. Results of intermediate steps during cortical bone segmentation. (a) ROI volume and an image slice chosen for illustration. (b) BMD image on the chosen
slice. (c) Marrow space (marked), possible cortical pores (marked by the gray circle), and the periosteal boundary (outlined). (d) The FDT map from marrow
space and possible cortical pores; a possible cortical bone pore and the matching thickness are marked with a circle. (e) Same as (d) after filling the confirmed
cortical pore. (f) The generalized FDT from the periosteum with the negative of local thickness value initialized at each periosteal voxel; see text for explanation.
(g) Cortical bone segmented as the region with nonpositive FDT values in (f). (h) Segmented trabecular bone region. (i) Overlaid cortical bone region on the CT
image.
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subsequent processing. Nonbone voxels Snonbone ⊂ Stibia inside
the tibia are further classified into confident marrow (green)
and possible cortical pore (blue) voxels; let Smarrow and Spore
denote these two sets. The set Smarrow is computed as the
largest 6-component of Snonbone and Spore= Snonbone−Smarrow.

2.B.2. Computation of cortical bone thickness,
detection of recession points, and confirmation
and filling of true pores

Here, the overall goal is to confirm and fill true cortical
pores and to refine local cortical thickness values at individual
periosteal voxels, which works as follows. Cortical pores
are confirmed by identifying sudden recessions in thickness
values along the periosteum and then linking such recession
points with possible pores. Initial thickness values at periosteal
voxels are computed as their FDT values from the set of
marrow or possible pore voxels, i.e., Smarrow∪ Spore. Sudden
recession points of computed thickness appear along the
periosteal border due to the presence of cortical pores. On a
given image slice, a periosteal boundary is represented as a
four-path, say, p0, p1,. . ., pi−1, pi, pi+1,. . ., pN−1. A given voxel
pi on the periosteum is a recession voxel if the computed
thickness value at pi is smaller than half of the average of
the thickness values at voxels pi± j, where j = L, L+1,. . ., H .
Let o denote the center of gravity (c.g.) of the tibia on the
given image slice. The values H and L were chosen such that
the three points pi, o, and pi+L create an angle of 5◦ while
the points pi, o, and pi+H represent an angle of 10◦. After
a recession voxel pi is detected, the nonbone voxel, say q,
nearest to pi is identified. Finally, if q is a possible pore voxel,
i.e., q ∈ Spore, then the 6-component Cq of Spore containing q
is confirmed as a true cortical pore. To fill the true pore Cq,
the set Snonbone of nonbone voxels is reduced to Snonbone−Cq

while the set Sbone of bone voxels is augmented to Sbone∪Cq.
After all recession voxels are identified and matching pores
are filled, the cortical bone thickness is recomputed along the
periosteal boundary and the process continues until no new
true pores are confirmed. For all images used in this paper,
the process converged in three or fewer iterations. It may be
worth mentioning that, at the current MD-CT resolution, it is
not possible to identify small pores. In this paper, we do not
aim to analyze cortical pore morphology. Instead, the method
described here aims to detect all cortical pores surviving
at the current resolution so that the artificial reduction in
cortical bone thickness at the vicinity of a cortical pore is
reverted. Once, the correct measure of cortical bone thickness
is obtained, the method of segmenting the cortical bone region
is described in Sec. 2.B.3. Also, it should be clarified that the
pore filling process fills the pore cavities in a topologic sense
only and no increase in actual BMD values takes place. Thus,
the pore filling process does not artificially inflate cortical
bone measures.

2.B.3. Detection of endosteal boundary
and delineation of cortical bone

The goal of this step is to delineate the cortical bone
region, which is accomplished using the cortical thickness

distribution along the periosteum computed in the previous
step. Let τ(p) denote the cortical bone thickness at a periosteal
voxel p ∈ Speriosteum, which is computed as the FDT value from
the marrow space after filling all cortical pores as described in
the previous step. The cortical bone region Scortex is computed
as the set of all voxels whose distance from some periosteal
voxel p is less than its cortical thickness τ(p) and this task is
accomplished using the generalized FDT (see the Appendix).
At each voxel p ∈ Speriosteum, the FDT value is initialized as
−τ(p), the negative of the cortical bone thickness at p. A large
value is initialized at each voxel inside Sbone. Finally, the path
propagation is confined to the set of voxels Sbone∪ Speriosteum.
Thus, each bone voxel, which is closer to a periosteal voxel
than its cortical thickness, gets a generalized FDT value
greater than or equal to zero. Finally, the outer layer Souter-cortex
on cortex is defined as the set of cortex bone voxels, which are
6-adjacent to Speriosteum. Results of cortical bone segmentation
on a sagittal and a coronal image planes are shown in Fig. 5,
which show the continuity of the endosteal boundary in the
Z-direction.

2.C. Experimental methods

This study was designed to accomplish the following
milestones—(1) evaluation of the accuracy of the cortical
bone segmentation algorithm in terms of its agreement
with manual outlining, (2) evaluation of repeat MD-CT
scan reproducibility of different cortical bone measures, and
(3) assessment of the method’s ability to detect gender
differences in cortical bone properties. All images were
obtained at the distal tibia site. To examine the accuracy
of the method, two experiments were conducted. The first
experiment was aimed to assess the performance of the
segmentation algorithm, which was achieved by comparing
the results of automated cortical segmentation with the

F. 5. Results of cortical bone segmentation on a coronal (a) and sagittal (b)
MD-CT image planes. It illustrates the continuity of the endosteal boundary
in the Z -direction.
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manual outlining of cortical bone on matching in vivo
MD-CT images. The second experiment was designed to
examine the accuracy of cortical bone segmentation at MD-
CT imaging resolution. It was accomplished on a cadaveric
ankle study where MD-CT-based automated cortical bone
segmentation results were compared with the results of
manual outlining on postregistered high resolution micro-CT
images. To evaluate the method’s reproducibility, three repeat-
scan MD-CT images were obtained on human cadaveric
ankle specimens. Also, MD-CT scans of the distal tibia
were obtained for the human pilot study. Different materials
and methods for these applications are described in the
following.

2.C.1. Cortical bone thickness and density measures

Each MD-CT image was processed through the following
cascade of steps: (1) computation of the BMD image, (2) bone
reorientation, interpolation, and ROI selection, (3) application
of cortical segmentation of the ROI image data, and (4)
computation of cortical measures. MD-CT image numbers
in the HU were converted to BMD (mg/cm3) values using
a calibration phantom. The INTable™ Calibration Phantom:
Solid Calcium Hydroxyapatite Design (Image Analysis, Inc.,
Columbia, KY) was used for all cadaveric specimen scans
which were acquired before human scans. Later, the Gammex
RMI 467 Tissue Characterization Phantom (Gammex RMI,
Middleton, WI) was obtained and used for all in vivo scans.
The Gammax RMI 467 phantom was preferred and adopted
for in vivo scans because it has calibration cylinders with high
material density suitable for characterization of the relation
between CT numbers and electron density for materials
similar to bone. To reduce any phantom-induced density
bias, a correspondence was established between the density
values of the INTable and the RMI calibration phantoms using
their CT images and cadaveric images were recalibrated with
the RMI phantom.

Following Sec. 2.A, four axial tibial sections, namely,
T8−10, T10−12, T12−14, and T14−16, covering 8%–16% of the tibia
were used as ROIs. Also, the section of 8%–16% of the tibia
was subdivided into four angular sections,19 namely, Alateral,
Aanterior, Amedial, and Aposterior, using the reference line joining
the centers-of-gravity of the cross sections of the tibia and
fibula (Fig. 6). Cortical bone thickness and density measures
were computed over each ROI using the following equations:

CBTh=
|Scortex|

|Souter-cortex| , (1)

CBDensity=


p∈ScortexBMD(p)

|Scortex| . (2)

2.C.2. Cadaveric specimens

Fifteen fresh-frozen human cadaveric ankle specimens
were obtained from 11 body donors (age at death: 55–91 yr).
Bodies were obtained under the Deeded Bodies Program, The
University of Iowa, Iowa City, IA, and the ankle specimens

F. 6. Illustration of angular ROIs Alateral, Aanterior, Amedial, and Aposterior
using the reference line joining the center of gravity (c.g.) of the tibia with
that of the fibula. Each angular section covers 90◦ of the angular space.

were removed at the midtibia region. Exclusion criteria for
this study were evidence of previous fracture or knowledge
of bone tumor or bone metastasis. These ankle specimens
were kept frozen until the performance of MD-CT imaging
following the protocol described in Sec. 2.C.3.

2.C.3. Multirow-detector CT imaging

High resolution MD-CT scans of the distal tibia were
acquired at the University of Iowa Comprehensive Lung
Imaging Center on a 128 slice SOMATOM Definition Flash
scanner (Siemens, Munich, Germany) using the following
CT parameters: single tube Spiral acquisition at 120 kV, 200
effective mAs, 1 s rotation speed, pitch factor: 1.0, nominal
collimation: 16×0.3 mm, scan length of 10 cm beginning at
the distal tibia end-plateau, and total effective dose equivalent:
170 µSv≈ 10 days of environmental radiation in the U.S. One
AP projection scout scan of the entire tibia was acquired to
locate the field of view (FOV) for the CT scan as well as
to determine the tibial length. Tibial length was determined
by locating the distal and proximal tibial plateaus in the AP
projection MD-CT scout scan of the entire tibia. For cadaveric
specimens, gender-specific average tibia lengths, computed
from in vivo scans, were used. High resolution MD-CT scan
mode: The Siemens Flash scanner has 2×64 rows of 0.6 mm
detectors under two x-ray guns allowing operation in both
single and dual source scan modes. The highest resolution
single gun scan mode was used, which activated 16 of the
most central detectors to maximize beam quality. Siemens
double z sampling allowed for a dual sampling of the 0.6 mm
detectors, splitting the signal so that each detector created
a 0.3 mm slice in the z plane.45,46 As specified by the
manufacturer, the z-UHR scan mode within the Siemens
Flash scanner enabled high spatial resolution with 14.0 line-
pairs/cm at 10% modulation transfer function (MTF). Images
were reconstructed at 0.2 mm slice thickness and 0.2×0.2
in-plane resolution using a normal cone beam method with
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a special U70u kernel achieving high structural resolution.
Three repeat MD-CT scans of each distal tibia specimen were
acquired after repositioning the specimen on the CT table
before each scan.

2.C.4. Micro-CT imaging

Following MD-CT repeat scans, six randomly chosen
cadaveric ankle specimens were further scanned on a Micro-
cat II (Siemens Pre-Clinical, TN) cone beam micro-CT
scanner after removing soft-tissue and dislocating the tibia
from the ankle joint to fit the specimen in the scanner. The
following micro-CT parameters were used: 100 kV, 200 mAs,
720 projections over 220◦, exposure 1 s/projection, and 2 mm
Al filter for beam hardening. The images were reconstructed
using filtered back-projection: image size 1536×1536 and
1024 slices at 28.8 µm isotropic voxel size.

2.C.5. In vivo pilot studies

In vivo MD-CT distal tibia bone scans were obtained for 46
healthy males and 51 healthy females (age: 19–20 yr) as part of
the ongoing Iowa Bone Development Study (IBDS). MD-CT
scans were obtained on the left lower leg following the same
protocol used for cadaveric specimens (Sec. 2.C.3). Tibial
length was determined by locating the distal and proximal
tibial plateaus in the AP projection MD-CT scout scan of
the entire tibia. All human scans were acquired following the
protocol approved by the IRB at the University of Iowa.

2.C.6. Image processing and statistical analysis

For the first experiment examining the accuracy of the
new segmentation algorithm, the computerized segmentation
results of the cortical bone region were compared with the
results of manual outlining on 20 axial image slices from
each MD-CT image. Among the 20 slices, 5 consecutive
slices were randomly chosen from each of the four tibial
sections T8−10, T10−12, T12−14, and T14−16. Segmentation of the
periosteal boundary is straight-forward and easily obtained by
thresholding and region growing.47 Therefore, we restrained
ourselves from manual delineation of the periosteal boundary
and considered computerized segmentation of the periosteum
as the ground truth. On every target image slice, the endosteal
boundary was manually outlined and was linked with the
computerized segmentation of the periosteum to generate the
ground truth for cortical bone mask. Manual outlining of the
endosteal boundary was performed by an independent expert
using the - software.48 Let Strue

cortex be the set of voxels
falling inside the true segmentation of the cortical bone region
and let SMD-CT

cortex denote the computerized segmentation for the
same. The Jaccard index (JI) was used to characterize the
accuracy of a computerized segmentation result as follows:

JI=
Strue

cortex∩SMD-CT
cortex

Strue
cortex∪SMD-CT

cortex
. (3)

Also, the Dice coefficient was computed as another accuracy
index. Further, Type I error of cortical bone segmentation was
computed as the over segmentation or false positive error as
compared to the known truth. Similarly, Type II error was
computed as the under segmentation or false negative error.
Both Type I and Type II errors were normalized by the volume
of the known truth for the cortical bone region.

For the second accuracy experiment, each MD-CT image
was registered onto the matching micro-CT image using the
rigid transformation registration toolkit inside the 
12.0 software, AnalyzeDirect, Inc., Overland Park, KS. The
automatically segmented cortical bone mask was mapped onto
the micro-CT image by applying the same rigid transformation
used for registration. A 1 cm axial section of the micro-CT
image, scanned between 10% and 14% of the tibia of each
specimen, was used in this experiment. Two subregions, each
consisting of five contiguous slices, were randomly selected in
each micro-CT image. Manual outlining of cortical bone was
performed by an expert user on each selected micro-CT image
slice, which was used as the ground truth for this experiment.
Finally, the Jaccard index and Dice coefficient as well as Type
I and Type II errors were computed to assess the accuracy of
the MD-CT-based cortical bone segmentation results.

To assess the reproducibility of the method, intraclass
correlation coefficients (ICC) of bone measures were
computed from three repeat MD-CT scans of 15 cadaveric
ankle specimens.

In vivo statistical analysis investigated gender differences
in cortical measures for healthy young adults (IBDS cohort).
Descriptive statistics for cortical thickness and density
measures for male and female participants for four tibial
sections and four angular ROIs were calculated. Gender
differences in cortical bone thickness and density measures
were tested by first fitting a simple linear regression model
with only gender included, and then fitting a multivariable
linear regression model that included height and weight as
covariates.49 The difference in gender-specific least-squares
means was compared and the effect size was estimated as the
difference between the gender-specific least-squares means
standardized by

√
MSE, where MSE is the mean square error

from the corresponding regression model.

3. RESULTS

Results of intermediate steps during cortical bone
segmentation on an in vivo MD-CT image are illustrated
in Fig. 4. Final results of cortical bone delineation are visually
satisfactory. Results of accuracy, reproducibility, and in vivo
experiments are presented in the following.

3.A. Accuracy of cortical bone segmentation

The first accuracy experiment was conducted on in vivo
MD-CT images of distal tibia for ten randomly chosen IBDS
cohort members (5 M, 5 F). As described in Sec. 2.C.6,
the accuracy was computed by comparing computerized
segmentation with manually outlining of cortical bone regions
on 20 axial image slices from each MD-CT image. A visual
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F. 7. Comparison between computerized segmentation and manual outlining of cortical bone regions on a MD-CT image. The figure on the left shows the
slice locations of (a)–(d) along the tibial axis. The area of agreement between the two segmentation results along with Type I and Type II errors in mismatch
areas are marked. Zoomed in panels of Type I and Type II errors are displayed in (c) and (d).

comparison of between computerized and manual segmenta-
tions of cortical bone on in vivo MD-CT image slices of distal
tibia is presented in Fig. 7. An average accuracy of 95.1% with
a standard deviation of 1.0% was observed from data for the
ten randomly chosen in vivo MD-CT images. Considering the
challenges of cortical bone segmentation at the relatively low
resolution of MD-CT imaging, the observed accuracy results
are encouraging. Also, the Dice coefficient was computed for
cortical bone segmentation results by the new algorithm and
the coefficient value was 97.5%. Type I and Type II errors in
overlapping areas of automated cortical bone segmentation, as
compared to manual outlining on MD-CT images, are plotted
in Fig. 8. Here, each data point represents the results from
one subregion consisting of five axial MD-CT image slices.

The second accuracy experiment was performed on
MD-CT and micro-CT images of six cadaveric ankle
specimens. MD-CT-based computerized segmentation and
micro-CT-based manual outlining results of cortical bone
are qualitatively compared in Fig. 9. For each cadaveric
specimen, two subregions, each consisting of five consecutive
axial micro-CT image slices, were used for the accuracy
analysis. An average accuracy of 88.5% in terms of area of
overlap with the manual outlining of micro-CT images was
found. The distribution of Type I and Type II errors as a
function of cross-sectional area is presented in Fig. 10. Each

F. 8. Type I and Type II errors in mismatch areas between computerized
segmentation and manual outlining of cortical bone regions on matching
MD-CT image slices. Note that Type I and Type II errors represent the over
segmentation and under segmentation errors, respectively.

data point in Fig. 10 represents the data from one subregion
consisting of five axial micro-CT image slices. The observed
Dice coefficient of MD-CT-based automated cortical bone
segmentation as compared to manual outlining on micro-CT
images was 93.8%.

3.B. Repeat-scan reproducibility of cortical bone
segmentation in cadaveric ankle specimens

To assess reproducibility of the cortical bone segmentation
algorithm, repeat-scan ICC were computed for each of the
two cortical measures CBTh and CBDensity over each of
the eight ROIs, namely, T8−10, T10−12, T12−14, T14−16, Alateral,
Aanterior, Amedial, and Aposterior. The observed ICCs for both
cortical bone thickness and density measures were high for
each of the eight ROIs (Table I). The mean and standard
deviation of ICCs over different ROIs were 0.982 and 0.015,
respectively, for cortical bone thickness and 0.979 and 0.099,
respectively, for cortical bone density. Observed results of
repeat-scan reproducibility of cortical bone measures were
highly satisfactory, confirming the repeatability of cortical
bone segmentation and the resulting measures.

F. 9. Comparison between MD-CT based computerized segmentation of
cortical bone region and manual outlining on postregistered micro-CT image
slices. The area of agreement between the two segmentation results along
with Type I and Type II errors in mismatch areas are marked. [(a) and (b)]
Comparative results on micro-CT image slices with thin (a) and thick (b)
cortical bones.
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F. 10. Type I and Type II errors in mismatch areas between MD-CT based
computerized segmentation of cortical bone region and manual outlining on
postregistered micro-CT image slices.

3.C. In vivo pilot study results

IBDS participants were 19–20 yr old and included 51
females (height mean± SD = 165.2± 6.8 cm and weight
67.9± 21.0 kg) and 46 males (height 180.4± 8.0 cm and
weight 83.6±14.8 kg). Cortical bone thickness and density
measures for male and female participants for four tibial
sections and four angular ROIs are described in Table II.
Males showed significantly higher height-weight-adjusted
cortical bone thickness than females, specifically in the
anterior region (region with the highest cortical thickness)
(F-statistic p-value < 0.01), and significantly lower height-
weight-adjusted cortical bone density across all regions (F-
statistic p-value < 0.01) with large effect sizes (average effect
size across T8−10−T14−16 was−1.31), which could demonstrate
adaptation of longer and wider bones to bending. The reduced
bone density may also be an adaptation toward maintaining
lightness needed for mobility.

4. DISCUSSION

Our studies showed that this new cortical bone segmen-
tation algorithm worked fully automatically, i.e., it required
no user intervention when applied to individual images, both
cadaveric and human, from our study. The algorithm runs
on a standard desktop computer, requiring 15–20 min to
compute cortical measures for each MD-CT image including
preprocessing, bone alignment, ROI selection, and cortical

T I. Mean, standard deviation (SD), and intraclass correlation coefficient
(ICC) for cortical bone measures over eight ROIs computed from MD-CT
repeat scans of the 15 cadaveric ankle specimens mentioned in Sec. 2.C.2.

CBTh (mm) CBDensity (mg/cm3)
ROI Mean ± SD ICC Mean ± SD ICC

T8−10 1.16 ± 0.36 0.97 1599.0 ± 91.5 0.98
T10−12 1.33 ± 0.39 0.98 1653.8 ± 78.1 0.98
T12−14 1.44 ± 0.43 0.99 1684.8 ± 68.8 0.98
T14−16 1.57 ± 0.49 0.99 1710.0 ± 65.9 0.99
Alateral 1.38 ± 0.40 0.98 1675.5 ± 71.7 0.98
Aanterior 1.37 ± 0.47 0.97 1650.0 ± 83.0 0.97
Amedial 1.38 ± 0.45 0.97 1648.2 ± 79.7 0.98
Aposterior 1.37 ± 0.44 0.99 1673.9 ± 74.3 0.99

bone segmentation steps. The algorithm requires only one
imaging protocol-specific parameter—the BMD threshold,
which can be optimized using an independent observer
experiment described in Sec. 2.A.

Major challenges in segmentation of cortical bone regions
in in vivo MD-CT imaging emerge from limited image
resolution, partial voluming, noise, nonuniformity of cortical
bone thickness, presence of cortical pores, and structural
complexity over the transition between trabecular and cortical
bones. These challenges were effectively dealt with using this
approach that is based on larger contextual and topological
modeling of the tibial bone through a generalized fuzzy dis-
tance transform and connectivity analysis on the distance field.

A Dice coefficient of 97.5% was observed for the new MD-
CT-based computerized cortical bone segmentation results
as compared to manual outlining on matching MD-CT
images. On the other hand, a Dice coefficient of 93.8% was
observed for the MD-CT-based computerized results when
compared with the results obtained using manual outlining on
postregistered high resolution micro-CT images. Both Dice
coefficients observed for the new method were higher than the
Dice coefficient of 90.4% reported by Valentinitsch et al.29

Further, it should be clarified that the accuracy results reported
by Valentinitsch et al. were derived from an experiment where
automated segmentation results were compared with manual
outlining on the same image avoiding the challenges of
cross-modality validations such as resolution difference and
registration errors.

The distribution of Type I and Type II errors in both
accuracy experiments is reported in Figs. 8 and 10. It is
observed in these figures that there is a small bias in our
computerized algorithm toward over segmentation, i.e., larger
Type I errors as compared to Type II errors. This bias is
diminished for cortical bones with larger cross-sectional areas.
Generally, a small cross-sectional area of cortical bone occurs
at a distal location of the tibia where the interconnection
between trabecular and cortical bones is high, and some of
the small marrow holes near the endosteal boundary may
be misjudged as cortical pores. Despite this challenge, the
performance of the current method is better than that of the
previously reported cortical bone segmentation methods29,50

on HR-pQCT.
The ICC values of computed cortical bone thickness and

bone mineral density in repeat MD-CT scans, reported in
Table I, suggest that the method is reproducible. Unlike the
results reported in Table II for young adults, the observed
cortical bone thickness values at different angular sections in
cadaveric specimens were mostly uniform. A probable reason
behind this observation is that the specimens were collected
from cadavers who died at older ages. At an older age,
the bone-muscle biomechanical interaction is significantly
reduced causing diminished localized angular variations in the
cortical thickness. Also, the observed BMD for the cadaveric
specimens was low, i.e., increased porosity as compared to
the results reported in Table II for young adults. To compare
our cortical bone thickness results with the HR-pQCT based
results, reported by Burghardt et al.,50 the cortical bone
thickness was computed from cadaveric repeat-scan MD-CT
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T II. Comparison of cortical bone thickness (mm) and density (mg/cm3) measures between male and female
cohort members from the Iowa Bone Development Study.

Males (N = 46) Females (N = 51) Effect sizea

ROI Mean ± SD Mean ± SD Unadjusted Adjusted p valueb

Thickness (mm)

T8−10 1.53 ± 0.23 1.33 ± 0.18 0.97 0.73 0.02
T10−12 1.81 ± 0.24 1.58 ± 0.20 1.05 0.80 <0.01
T12−14 2.06 ± 0.26 1.80 ± 0.19 1.14 0.83 <0.01
T14−16 2.28 ± 0.27 2.02 ± 0.20 1.12 0.74 0.01
Alateral 1.77 ± 0.25 1.57 ± 0.29 0.72 0.56 0.06
Aanterior 2.15 ± 0.30 1.82 ± 0.24 1.24 0.92 <0.01
Amedial 1.94 ± 0.33 1.67 ± 0.25 0.94 0.65 0.03
Aposterior 1.81 ± 0.32 1.65 ± 0.25 0.54 0.36 0.23

Bone mineral density (mg/cm3)

T8−10 1850.23 ± 26.11 1879.67 ± 29.86 −1.05 −1.26 <0.0001
T10−12 1882.49 ± 17.74 1909.13 ± 19.53 −1.42 −1.35 <0.0001
T12−14 1898.28 ± 14.04 1922.44 ± 16.14 −1.59 −1.30 <0.0001
T14−16 1907.18 ± 12.89 1929.64 ± 13.96 −1.67 −1.32 <0.0001
Alateral 1883.47 ± 22.41 1912.14 ± 23.21 −1.26 −1.29 <0.0001
Aanterior 1890.26 ± 18.67 1909.94 ± 19.80 −1.02 −0.88 <0.01
Amedial 1887.58 ± 18.00 1913.21 ± 20.63 −1.32 −1.25 <0.0001
Aposterior 1876.86 ± 18.05 1905.59 ± 20.44 −1.48 −1.35 <0.0001

aEffect size was calculated as the difference (males − females) between least-squares means for male and female IBDS
cohort members standardized by

√
MSE, where MSE is the mean square error from the linear regression models with

(adjusted) and without (unadjusted) adjustment for height and weight.
bp-value from multivariable linear regression models with adjustment for height and weight differences.

images over a 9 mm axial section at 22.5 mm proximal
to the distal tibial end-plateau. The observed MD-CT-based
mean cortical bone thickness of 1.07 mm at the 22.5 mm
location was close to the mean cortical bone thickness of
1.13 mm reported by Burghardt et al. for older individuals. The
observed root mean square coefficient of variation (RMSCV)
of 0.81% by the MD-CT-based method at the 22.5 mm
location was better than the value of 1.5% reported by
Burghardt et al. The observed results suggest that, using
novel and advanced image processing algorithms, MD-CT
imaging offers automated segmentation of cortical bone and
computation of thickness and density measures at the distal
tibia whose accuracy and reproducibility are comparable
to the performance using HR-pQCT imaging. It may be
worth examining whether the cortical bone segmentation
method provides a similar performance for other scanners and
imaging protocols with similar spatial resolution and noise
characteristics.

In vivo data from a human pilot study involving 46 male
and 51 female young adults showed that males have a thicker
cortex, but reduced cortical bone mineral density, i.e., more
porous cortex at the distal tibia as compared to females. This
observation was consistent across all axial as well as angular
regions and statistically significant for most regions. However,
cortical bone thickness differences between males and females
were not significant at lateral (p = 0.06) and posterior
(p = 0.23) angular regions. Based on a HR-pQCT study,
Kazakia et al.51 reported the cortical thickness and porosity
at the tibia among young and elderly males and females.

Their reported data show a 7.0% difference in cortical bone
thickness between young males and females, which is lower
than the difference of 13.1% observed in our study between
young males and females at 8%–10% of the tibia. The results
observed in this study are important because the lower cortical
bone thickness observed in females puts them at higher risk of
osteoporosis and/or low-trauma fractures during age-related
bone loss at later phases of life or during bone loss incurred due
to other disease processes. Reduced cortical bone mineral den-
sity in males could demonstrate adaptation of longer and wider
bones to bending and may be a factor to counteract the higher
cortical thickness and thus, balance the net skeletal weight.
The trade-off of a thicker but more porous cortex to mechanical
strength and risk of fracture is yet to be investigated.

5. CONCLUSION

A fully automated cortical bone segmentation algorithm
with regional cortical measures was developed for in vivo
MD-CT bone imaging at a peripheral site. The algorithm was
applied to cadaveric as well as in vivo MD-CT images of
the distal tibia. Experimental results demonstrate that the new
method is accurate and reproducible. After optimizing the
threshold parameter for a specific CT imaging protocol, the
algorithm can automatically compute cortical bone measures
from acquired images. The method was applied in a human
pilot study describing gender differences in cortical bone
properties. Observed results are presented and discussed.
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APPENDIX: GENERALIZED FUZZY DISTANCE
TRANSFORM AND CONNECTIVITY ANALYSIS

A MD-CT image is represented by a CT intensity function
fCT on a 3-D rectangular voxel grid Z3, where Z is the set
of integers. Two voxels p = (p1, p2, p3), q = (q1, q2, q3) ∈ Z3

are as 26-adjacent if ∀i = 1, 2, 3, ||pi − qi || ≤ 1; those are
6-adjacent if

3
i=1 ||pi−qi || = 1.52 Here, 26-adjacency is used

for bone voxels, while 6-adjacency is used for marrow voxels.
A fuzzy object O is a fuzzy subset

�(p, fO(p)) | p ∈ Z3	 of
Z3 where fO is its membership function. An α-path π,
α ∈ {6, 26}, is a sequence of voxels p0, p1,. . ., pN−1 where
every two successive voxels are α-adjacent. The length Π(π)
of the path π in the fuzzy object O is

Π(π)=
N−1
i=1

1
2
( fO(pi−1)+ fO(pi)) |pi−1− pi | . (A1)

Fuzzy distance40 between any two voxels p, q, denoted as
µFD(p,q), is the length of the shortest path between p, q, i.e.,

µFD(p,q)= min
π∈P(p,q)

Π(π), (A2)

where P (p,q) is the set of all possible paths between p, q. For
any voxel p inside the support O =

�
q | q ∈ Z3 fO(q)> 0

	

of O, the fuzzy distance transform or FDT at p, denoted as
FDTO(p), is the fuzzy distance of p from the background
B = Z3−O, i.e.,

FDTO(p)= min
q∈Z3−O

µFD(p,q). (A3)

The FDT is computed in two steps. The first step is to
initialize a zero FDT value within the background B where
the FDT value is trivially defined and a large value in O,
i.e., not known at the beginning. The second step performs an
iterative propagation of FDT values that is governed by the
following equation:

FDTO(p)= min
q∈N ∗(p)

FDTO(q)+ 1
2
( fO(p)+ fO(q)) |p−q| , (A4)

where N∗(p) is the set of voxels adjacent to p excluding p
itself. The iterative propagation step of the FDT computation
terminates in a finite number of iterations when the FDT
values at all voxels stabilize and no further changes are
possible.40 In the following, we introduce a simple yet
effective generalization of the FDT algorithm that may be
useful in several applications. First, let us define the following
three sets: (1) L: set of voxels initialized with a large positive
value, i.e., the set of voxels with an unknown FDT value at
the time of initialization, (2) U: set of voxels initialized with
nonlarge values, i.e., the set of voxels with known FDT values
at initialization, and (3) V : the set of voxels where no path

propagation is allowed, i.e., outside the region of interest. Note
that the sets L, U, V are mutually exclusive and exhaustive,
i.e., L∩U =U ∩V = L∩V = ∅ and L∪U ∪V fills the entire
image space. Unlike the case of conventional FDT,40 here, the
initial values of the voxels in U may be nonzero, nonuniform,
and may include negative values depending upon the target
application. This generalization provides an effective and
efficient solution to delineate an object after computing locally
varying thickness of the object along its centerline or along
an edge of the object. Introduction of the notion of V into the
framework allows geodesic distance analysis.

Fuzzy connectivity47,53 between any two voxels p, q in
the fuzzy object O, denoted as µFC(p,q), is the connectivity
strength of the strongest path between p, q where the strength
of connectivity of a path is the smallest membership value on
the path, i.e.,

µFC(p,q)= max
π∈P(p,q)

min
pi∈π

fO(pi). (A5)

The connectivity strength, denoted by FC, of a fuzzy
connected object induced by a set S of seed voxels is

FC(p)=max
s∈S

µFC(p,s). (A6)
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