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Purpose: Mammographic percent density (PD%) is known to be a strong risk factor for breast cancer.
Recent studies also suggest that parenchymal texture features, which are more granular descriptors of
the parenchymal pattern, can provide additional information about breast cancer risk. To date, most
studies have measured mammographic texture within selected regions of interest (ROIs) in the breast,
which cannot adequately capture the complexity of the parenchymal pattern throughout the whole
breast. To better characterize patterns of the parenchymal tissue, the authors have developed a fully
automated software pipeline based on a novel lattice-based strategy to extract a range of parenchymal
texture features from the entire breast region.
Methods: Digital mammograms from 106 cases with 318 age-matched controls were retrospectively
analyzed. The lattice-based approach is based on a regular grid virtually overlaid on each mammo-
graphic image. Texture features are computed from the intersection (i.e., lattice) points of the grid
lines within the breast, using a local window centered at each lattice point. Using this strategy, a range
of statistical (gray-level histogram, co-occurrence, and run-length) and structural (edge-enhancing,
local binary pattern, and fractal dimension) features are extracted. To cover the entire breast, the
size of the local window for feature extraction is set equal to the lattice grid spacing and optimized
experimentally by evaluating different windows sizes. The association between their lattice-based
texture features and breast cancer was evaluated using logistic regression with leave-one-out cross
validation and further compared to that of breast PD% and commonly used single-ROI texture
features extracted from the retroareolar or the central breast region. Classification performance was
evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC).
DeLong’s test was used to compare the different ROCs in terms of AUC performance.
Results: The average univariate performance of the lattice-based features is higher when extracted
from smaller than larger window sizes. While not every individual texture feature is superior to
breast PD% (AUC: 0.59, STD: 0.03), their combination in multivariate analysis has significantly
better performance (AUC: 0.85, STD: 0.02, p < 0.001). The lattice-based texture features also
outperform the single-ROI texture features when extracted from the retroareolar or the central breast
region (AUC: 0.60–0.74, STD: 0.03). Adding breast PD% does not make a significant performance
improvement to the lattice-based texture features or the single-ROI features (p > 0.05).
Conclusions: The proposed lattice-based strategy for mammographic texture analysis enables to
characterize the parenchymal pattern over the entire breast. As such, these features provide richer
information compared to currently used descriptors and may ultimately improve breast cancer risk
assessment. Larger studies are warranted to validate these findings and also compare to standard
demographic and reproductive risk factors. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4921996]
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1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer among
women and ranks second among cancer related mortality for
women in the United States.1 Among the various imaging
modalities, mammography is currently the main choice for
screening of breast cancer. Screen-film mammography (SFM)
is increasingly being replaced by full-field digital mam-
mography (FFDM), both for screening and surveillance of
asymptomatic women as well as in the diagnostic workup

of those suspected of malignancies. FFDM offers several
potential benefits compared to SFM,2 including the ability
to digitally store and quantitatively analyze the acquired
images.3–5

Starting with the pioneering work of Wolfe,6,7 studies
have long suggested a relationship between mammographic
parenchymal patterns and breast cancer risk.8–11 These paren-
chymal patterns are formed by the distribution of fatty,
fibroglandular, and stromal breast tissues. An increasingly
supported hypothesis is that inherent biological factors, such
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F. 1. (a) A digital mammogram of a woman diagnosed with unilateral
breast cancer, overlaid with three local ROI windows. (b)–(d): large views
of the three local windows (size: 6.3×6.3 mm2). These views demonstrate
the locally heterogeneous properties of the breast tissue.

as endogenous hormonal exposure and genetic predisposition
that are associated with the risk of breast cancer, are expressed
in a woman’s parenchymal tissue and subsequently manifested
in her mammographic parenchymal patterns.12–14

Currently, the most commonly used descriptor to quantify
such parenchymal patterns is breast percent density (PD%),
which measures the overall relative amount of fibroglandular
tissue in the breast. Breast density has been consistently iden-
tified as one of the strongest risk factors for breast cancer.15

It can be evaluated via visual categorical assessment,14 such
as by using the Boyd or ACR-BIRADS scale, or by using
computer-aided methods to estimate a continuous measure of
breast PD%.16–20

Given that the distribution of dense tissue within the breast
is not uniform, there is increasing interest in also measuring
the heterogeneity of the parenchymal pattern (Fig. 1) in more
granular ways than the global assessment of breast PD%.
For example, as described in the early work of Wolfe,6 the
distribution and prominence of ducts were hypothesized to
play a role in risk. This empirical observation was later
extended to the application of comprehensive categorical
descriptors of density patterns in cancer risk assessment.21

More recently, quantitative characterization of parenchymal
patterns with texture features has also attracted research
interest.22 Studies have shown that mammographic texture
features are independently related to breast cancer risk9,11,22–24

and may provide additional information to breast PD%.25,26

Most studies to date have computed parenchymal texture
features from a single region-of-interest (ROI) which is
typically manually placed in the breast (i.e., Fig. 2) in either the
retroareolar area,25 the central breast area,11,23 the largest rect-
angular box inscribed within the breast,27 or as a single feature
from the entire segmented breast.28 However, such approaches
may be limited, as they cannot fully capture the granularity
and heterogeneity of the parenchymal texture. Following
the original definition of image texture,29–32 mammographic
texture should be described as repeated local primitives
(i.e., structure elements) estimated over the entire breast. In
contrast, most previous approaches either treat such local
primitives as the only ROI, ignoring any information outside
that ROI [Figs. 2(a) and 2(b)], or estimate these features at a
very global level, reducing the granularity of these descriptors.

We hypothesize that the association of mammographic
textural measurements and breast cancer risk can be improved
if richer texture descriptors are extracted to better characterize
the heterogeneity of the parenchymal tissue. We have,
therefore, developed a fully automated software pipeline that
incorporates a lattice-based strategy to extract a wide range of
texture features using adjacent local windows (i.e., primitive

F. 2. Single-ROI analysis (a) and (b) allows to characterize parenchymal texture only within a specific tissue region, while a lattice-based strategy (c) can
combine a range of local tissue texture features obtained within a window (i.e., the red rectangle with size of W ) surrounding each lattice point (i.e., the blue
intersection points on the regular grid drawn using green lines), to better characterize the parenchymal tissue heterogeneity within the entire breast (outlined
with the yellow dashed curves).

Medical Physics, Vol. 42, No. 7, July 2015



4151 Zheng et al.: Parenchymal texture analysis for breast cancer risk assessment 4151

elements) that cover the entire breast. Using a case-control
study with digital mammograms, we further examine associa-
tions between these lattice-based texture measures and breast
cancer, compared to single-ROI texture features and breast
PD%. As such, our study serves as a preliminary evaluation of
the ability of our lattice-based texture features to predict breast
cancer risk. Upon further validation, our proposed texture
features could ultimately be incorporated into current breast
cancer risk assessment models to improve their discriminatory
capacity at the individual level.

2. MATERIALS AND METHODS
2.A. Pipeline overview

Our pipeline is currently implemented to analyze digital
mammograms.33,34 First, the pipeline performs preprocessing
steps to segment the breast region followed by z-score
normalization of the gray-level intensity values within the
segmented breast. Subsequently, breast PD% is estimated
using a previously validated automated technique18 and a set
of lattice-based parenchymal texture features is extracted. A
logistic regression classifier is then trained using cross vali-
dation, by selecting features that most significantly contribute
to case-control classification (Fig. 3).

2.B. Preprocessing

The breast region is first segmented using a previously
validated algorithm18 prior to any subsequent texture analysis.
Briefly, the air-breast boundary is delineated using automated
thresholding.18 Then, for medio–lateral oblique (MLO) im-
ages, the region of the pectoral muscle is removed by identi-
fying its boundary using a straight line Hough transform. Z-
score normalization18 is further applied within the segmented
breast region, to standardize gray-level intensity range for all
images across subjects.

2.C. Breast density analysis

Different image segmentation techniques have been
proposed for estimating breast PD%.18,35 Here, we used a

F. 3. Flowchart of our fully automated software pipeline for parenchymal
texture analysis.

recently developed method, validated for digital mammog-
raphy.18 Specifically, an adaptive multiclass fuzzy c-means
clustering algorithm is applied to partition the breast area into
a set of subregions with similar image intensity properties.
Then, a linear support vector machine classifier labels each of
these detected subregions as either being composed primarily
of dense tissue or fat. From these labels, breast PD% is
estimated as the percentage of the total breast area occupied
by the clustered regions of dense (i.e., fibroglandular) tissue.18

2.D. Texture analysis

2.D.1. Lattice-based strategy

Our lattice-based strategy for computing mammographic
texture features is based on a regular grid virtually overlaid
on the mammographic image (Fig. 2). This regular grid is
specified by vertical grid spacing, represented by “D,” which
also equals the horizontal spacing. Based on this lattice,
texture features are computed for the intersection points
(i.e., lattice points) of the grid lines within the breast and this
computation is performed inside a local square window of size
“W” centered at each lattice point. For each texture descriptor,
this strategy results in a texture map which is formed by
the texture values computed at each lattice point throughout
the breast. In Fig. 4, we show representative texture maps
generated by our pipeline.

This lattice-based framework has two main adjustable
parameters in computing the texture features. One is the grid
spacing D, for which larger values generate fewer lattice
points, resulting in a coarser texture map of a smaller scale,
and vice versa. The other is the size W of the local window
for computing the texture features, which is important for
characterizing the locality of the texture pattern and, in
principal, is optimal when equal to the size of the local
primitive of the intrinsic parenchymal texture structure.

Changing the values of D and W may result in performance
differences for the texture features. Due to the heterogeneity of
the parenchymal pattern (i.e., Fig. 1), the optimal values of D
and W may vary for different locations in the breast. However,
for simplicity purposes, here, we assume an equal window
size W across the breast, the value of which is optimized
experimentally. Furthermore, we assume that D and W have
the same value, so that the entire breast region is covered by
adjacent windows.

2.D.2. Texture features

We characterize the textural properties of the breast tissue
by using two broad types of features (Table I), namely,
features estimating statistics of the gray-level histogram in
different orders31,36–38 and structural features describing the
architectural composition of the tissue using well-defined
elements.22,39–43 These features have been previously used,
primarily in studies with screen-film mammography and
single-ROI approaches, for parenchymal tissue analysis in
breast cancer risk assessment.44 We have also previously
validated the robustness of these features for different
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F. 4. Illustration of the texture maps concept generated using our lattice-based strategy (D =W = 11).

digital mammography detectors, using a statistical feature
normalization framework.45–47

Statistical texture features cover first-, second-, and higher-
order statistics of the image. Specifically, first-order features
are calculated from the gray-level intensity histogram and
include estimates of the mean, variance, skewness, kurtosis,
gray-level percentile (i.e., a measure of the shape of the gray-
level histogram), and entropy.36 While first-order statistics
consider only the pixels’ intensities, second-order statistics
are based on gray-level co-occurrence matrices (GLCMs)
and also consider the spatial relationships of pixels. A co-
occurrence matrix measures the probability that a pixel of a
certain gray-level intensity appears at a specific distance and
orientation from a pixel of another given intensity.37 Finally,
higher-order statistics include run-length measures, which
describe texture by measuring “runs” of consecutive pixels
with similar gray levels and calculate statistics based on the
number and length of such runs.38 As such, long runs of the
same gray-level value correspond to coarser textures, whereas
shorter runs correspond to finer textures. The structural
features include fractal dimension as estimated by the box-

counting method,22,39,40,48 the local binary pattern (LBP)41

which captures intensity variations between central and
neighboring pixels, and the edge-enhancing index feature42,43

which describes the directionality of flow-like structures
within the breast. In summary, a total of 30 texture features
are incorporated in our pipeline and used in our subsequent
analysis (Table I, the Appendix).

For our experiments, related parameters for feature extrac-
tion were based on our preliminary studies33,34,45 and pre-
vious related published literature22,31,36–41,43 in which these
parameters were optimized. For the image histogram-based
features, the number of histogram bins was set to 128. Co-
occurrence matrix-based features were computed by using
the same offset length of 11 pixels (1.1 mm) and averaging
along four directions (0◦, 45◦, 90◦, and 135◦), based on
the premise that these features are orientation invariant. For
computing LBP, the neighborhood size and the number of
neighboring pixels were set to three pairs: (1,8), (2,20), and
(3,36), respectively. For computing the edge-enhancing index
feature, the size of the Gaussian kernel to smooth each image
was set to 1, 5, 10, and 15 pixels (0.1, 0.5, 1.0, and 1.5 mm),

T I. List of texture features incorporated in our pipeline and used for parenchymal pattern analysis.

Feature type Feature name

Statistical

Gray-level histogram Max, min, mean, sum, entropy, kurtosis, sigma,
skewness, 5th, 5th mean, 95th percentile, 95th mean

Co-occurrence Cluster shade, energy, entropy, inertia, correlation,
Haralick correlation, inverse difference moment

Run-length Gray-level nonuniformity, high gray-level run
emphasis, low gray-level run emphasis

Structural

Edge-enhancing index Radius-1 edge center, radius-5 edge center, radius-10
edge center, radius-15 edge center

Local binary pattern Radius-1 LBP center, radius-2 LBP center, radius-3
LBP center

Fractal dimension Box-counting fractal dimension
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respectively, and for each of them, the computed edge center
was treated as an independent feature as shown in Table I.
To determine the optimal local window size for texture feature
extraction (i.e., the lattice window of size W ), we tested
different window sizes W of 63, 127, and 255 pixels (6.3,
12.7, and 25.5 mm, respectively).

2.E. Pipeline evaluation

2.E.1. Image acquisition and study data

We retrospectively analyzed raw (i.e., “for processing”)
MLO view digital mammograms, under HIPAA and IRB
approvals. The cases included women diagnosed with biopsy-
proven unilateral primary invasive breast cancer (n=106).
All cases were collected from a multimodality breast imaging
trial previously completed at our institution during 2002–2006
(NIH P01 CA85484, “Evaluation of Multimodality Breast
Imaging”; PI: M. D. Schnall). Their breast density distribution
was 3.8%, 47.2%, 48%, and 1% for BIRADS categories 1, 2,
3, and 4, respectively. The contralateral images (i.e., from the
unaffected breast) were analyzed, as a surrogate of inherent
breast tissue properties predisposing these women to a higher
risk of breast cancer.25 Controls were randomly selected from
the pool of women with negative screening mammograms
at same time-period in our institution and age-matched to
cases based on 5-year intervals at a (3:1) ratio (n = 318).
Their BIRADS density distribution was equal to 6.6%, 41.5%,
50.6%, and 1.3% for the same corresponding categories. Their
raw images were side-matched to cases, resulting in a total of
424 digital mammograms included in our analysis. All images
were acquired using either a GE Senographe 2000D or DS
digital mammography system (GE Healthcare, Chalfont St
Giles UK), with 14-bit pixel gray-level depth and 10 pixel/mm
resolution.

2.E.2. Classification experiments

The association between our lattice-based texture features
and breast cancer was evaluated using logistic regression
analysis with leave-one-out cross validation49 and incremental
forward feature selection.50 To maintain the age-matched
study design during cross validation, each leave-one-out loop
is carried out as treating one cancer case and its three age-
matched controls as the test set while all other samples are
used for training. This is repeated such that all subjects have
been chosen one time for testing. For each texture descriptor,
the mean of the corresponding texture values over all lattice
points within the breast was estimated and used as an input
to the classifiers. Both univariate and multivariate analyses
were performed. For multivariate analysis, feature selection
was performed independently within each leave-one-out loop,
and the corresponding frequency of selection was recorded
for all features. We evaluated feature performance for the
different values of the local window size W , and compared
against the performance of the same texture features when
extracted as previously proposed from a single-ROI in the
retroareolar25 or the central breast region.11,23 Finally, we
investigated the performance and added value of our lattice-

based texture features as compared to standard breast PD%.
The area under the curve (AUC) of the receiver operating
characteristic (ROC) was used as a performance metric, as
estimated by the ROCKIT algorithm (WINDOWS version
1.0.1 BETA 2).51 Statistical significance of the AUCs was
assessed in comparison to a random guess (AUC = 0.50), and
differences when comparing the different AUCs obtained were
estimated using the DeLong’s test.52 No explicit correction
was applied for multiple comparisons.

3. RESULTS
3.A. Univariate performance

Overall, the average cross-validated performance of the
co-occurrence features over all window sizes (AUCavg: 0.58,
AUCstd: 0.03, p < 0.05) is better than the performance of the
gray-level histogram (AUCavg: 0.56, AUCstd: 0.05, p > 0.05),
run-length (AUCavg: 0.56, AUCstd: 0.05, p > 0.05), and struc-
tural features (AUCavg: 0.57, AUCstd: 0.06, p > 0.05) (Fig. 5).
The performance over all categories of texture features also
appears to be on average higher for smaller window sizes,
where the window size W of 63 pixels (AUCavg: 0.58, AUCstd:
0.07, p < 0.05) performs better than 127 pixels (AUCavg: 0.57,
AUCstd: 0.05, p > 0.05) or 255 pixels (AUCavg: 0.54, AUCstd:
0.03, p > 0.05). The best performing texture feature is “fractal
dimension” for a window size W of 127 pixels (AUC: 0.69,
STD: 0.03, p < 0.05) and 63 pixels (AUC: 0.69, STD: 0.03,
p < 0.05), and they both significantly outperform PD% (AUC:
0.59, STD: 0.03, p < 0.05). The worst and most unstable
performance is observed for the gray-level histogram feature
“sum” when using a window size of 255 (AUC: 0.50, STD:
0.03, p > 0.05). The AUCs for each of our lattice-based texture
features and all different parameter settings are provided in
Tables S1–S3 of the supplementary material.53

3.B. Multivariate performance

When combining all texture features in a multivariate
logistic regression classifier, the lattice-based texture features

F. 5. ROC performance of univariate logistic regression for the lattice-
based texture features extracted with different local window sizes. The bar
plots show the corresponding average AUC values (with the standard devia-
tion) for each category of texture features.
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also perform best when computed from smaller window sizes
(Fig. 6), with the window sizes of 63 (AUC: 0.85, STD:
0.02), outperforming the window sizes of 127 (AUC: 0.81,
STD: 0.02, p > 0.05) and 255 pixels (AUC: 0.76, STD:
0.03, p < 0.01). Regardless of which window size the lattice-
based texture features are computed, they consistently and
significantly outperform breast PD% (AUC: 0.59, STD: 0.03,
p < 0.001). No appreciable improvement (p > 0.05) is ob-
tained by adding PD% to the lattice-based texture features for

F. 6. Case-control classification performance for PD% (dotted line),
lattice-based texture features for windows (a) 255, (b) 127, (c) 63 (continuous
line), and PD% plus texture features (dot-dash red line).

any window size, compared to the multivariate performance
of the lattice-based texture features alone (Fig. 6).

Table II shows the features ranked as selected by incre-
mental forward selection for the best performing window size
of 63 pixels (6.3 mm). Overall, fractal dimension, run-length,
co-occurrence, and gray-level histogram features are more
frequently selected than the local binary and edge-enhancing
index features by the classifier.

Compared to single-ROI based approaches [Fig. 7(a)],
our lattice-based texture features significantly outperform
(p < 0.001) the same texture features when extracted from the
retroareolar25 (AUC: 0.60, STD: 0.03) or the central breast
area11,23 (AUC: 0.74, STD: 0.03). This performance improve-
ment also holds when combining with PD% [Fig. 7(b)], as
the lattice-based texture features still significantly outperform
(p < 0.001) the single-ROI features from the retroareolar
(AUC: 0.64, STD: 0.03) and the central breast area (AUC:
0.75, STD: 0.03). Breast PD% does not add value either
to the single-ROI based texture features or the lattice-based
texture features (p > 0.05). The single-ROI texture features
from the central area of the breast perform overall better than
the retroareolar texture features.

4. DISCUSSION

The radiographic appearance of the breast tissue is increas-
ingly being recognized as a strong breast cancer risk factor.54

Wolfe originally defined four parenchymal patterns,6 ranging
from lower to higher parenchymal tissue complexity, as related
to breast cancer risk. However, most current approaches to
quantify parenchymal patterns are limited in their ability
to characterize the complexity of the parenchymal tissue.
Breast PD% is a rather simplified descriptor, estimated as the
percentage of the dense tissue over the total breast area.16–18

Although consistently shown to have a strong association with
breast cancer, breast density has not yet shown the ability
to substantially improve the discriminatory performance of
current breast cancer risk prediction models.55 Therefore, a
strategy to improve breast cancer risk assessment could be
to incorporate richer descriptors of the parenchymal pattern
complexity.

There are two principal concepts in most formal definitions
of image texture.29,30,32 First is the notion that a local
primitive element exists, which is repeated over a region larger
in comparison to the primitive’s size. Second, these local
primitives are roughly uniform entities having approximately
the same dimensions everywhere within the textured region.
Therefore, according to these principles, texture features
should first be extracted from a local region with an optimal
size, determined by the dimension of the local primitive
element, and then statistically and structurally summarized
over the entire textured region. A similar idea has also
been exploited in a related recent work56 which characterizes
parenchymal texture using textons30 in order to perform
mammographic density segmentation.

Based on this formal definition of image texture, we
proposed a lattice-based texture analysis strategy, which not

Medical Physics, Vol. 42, No. 7, July 2015
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T II. Feature selection frequencies of the lattice-based texture features for window size W = 63, as ranked by
incremental forward feature selection over all the leave-one-out classification loops.

Rank Feature Score Rank Feature Score

1 Fractal Dimension 1.00 16 Grey-level-histogram-Entropy 0.49
2 Co-occurrence_Entropy 0.98 17 Grey-level-histogram_5th 0.47
3 Co-occurrence_InverseDifferenceMoment 0.94 18 Grey-level-histogram_Max 0.40
4 Run-length_HighGreyLevelRunEmphasis 0.89 19 Edge-Enhancing-Index_Radius_1 0.38
5 Local-Binary-Pattern_Radius_1 0.88 20 Grey-level-histogram_95thMean 0.35
6 Co-occurrence_Correlation 0.77 21 Co-occurrence_ClusterShade 0.31
7 Grey-level-histogram_Min 0.76 22 Grey-level-histogram_95th 0.28
8 Co-occurrence_Inertia 0.71 23 Edge-Enhancing-Index_Radius_5 0.22
9 Run-length_LowGreyLevelRunEmphasis 0.67 24 Run-length_GreyLevelNonuniformity 0.19

10 Grey-level-histogram_Kurtosis 0.66 25 Edge-Enhancing-Index_Radius_15 0.17
11 Grey-level-histogram_Skewness 0.62 26 Local-Binary-Pattern_Radius_3 0.14
12 Grey-level-histogram_5thMean 0.53 27 Edge-Enhancing-Index_Radius_10 0.13
13 Co-occurrence_HaralickCorrelation 0.51 28 Local-Binary-Pattern_Radius_2 0.07
14 Grey-level-histogram_Sigma 0.51 29 Grey-level-histogram_Mean 0.01
15 Co-occurrence_Energy 0.50 30 Grey-level-histogram_Sum 0.00

only computes texture features in an optimal local fashion
but also characterizes the parenchymal pattern over the entire
breast. This lattice-based strategy extracts texture features
very differently as compared to the conventional breast PD%
and single-ROI based approaches9,11,22,23 (Fig. 2). While
breast PD% is a global measure of the relative amount of
dense tissue and single-ROI texture features are extracted
from a selected breast region, our lattice-based features are
computed at each lattice point within the breast, providing
more comprehensive descriptors of the intrinsic parenchymal
pattern heterogeneity throughout the breast.

Our results indicate certain key findings. First, not all
individual texture features generated by the proposed lattice-
based strategy are necessarily superior to breast PD%, but
it is rather the combination of a set of selected texture
features which result into significantly better performance.
This suggests that single texture features may not be enough
to fully characterize the parenchymal pattern, but a range
of optimally selected and combined texture features may
be able to better capture heterogeneous characteristics of
the intrinsic breast parenchymal tissue pattern. Interestingly,
texture features that capture the overall parenchymal pattern
structure, such as fractal dimension, entropy, and local binary
pattern, appear to be more frequently selected by the classifier
compared to intensity-based histogram features, suggesting
that intrinsic pattern characteristics may ultimately prove to
have more value in assessing breast cancer risk. Second, the
size of the local window of the lattice-based strategy plays an
important role in the discriminatory capacity of the extracted
texture features. Through experiments, we found that the size
of 63 pixels (or 6.3 mm) performs best, as compared to larger
window sizes, suggesting that smaller window sizes are more
appropriate for characterizing the parenchymal pattern. Third,
the lattice-based texture features perform significantly better
(p < 0.001) than the single-ROI based texture features. Breast
PD% did not improve the performance of either the lattice-
based texture features or the single-ROI texture features. This
observation suggests that texture features, when computed

with optimized parameters, may ultimately be able to capture
the parenchymal pattern information described by breast
PD%.

Although a direct comparison cannot be performed, the
best AUC value generated by our texture features is 0.85
(Fig. 6) and appears to be higher than the results reported
in current literature for similar populations, including the
generic texture features used by Haberle et al.28 (AUC: 0.79),
the mammographic texture resemblance marker reported by
Nielsen et al.8 (AUC: 0.66), and the texture measurements
analyzed by Manduca et al.11 (AUC: 0.58). However, it is
lower than the fractal features of Li et al.10 (AUC: 0.93) who
also included BRCA1/2 carriers in their study. It is worth
noting, however, that in our study, we used a relatively simple
approach (i.e., the statistical mean) to summarize the lattice-
based texture features throughout the breast. As such, it is
reasonable to expect that the discriminatory performance of
the lattice-based features can be further improved if more
advanced dimensionality reduction techniques are used for
this purpose, such as principal component analysis,57 which
could retain additional information from the original texture
feature image. Therefore, future investigations should also
seek to explore the optimal approach for parameterizing the
rich information provided by these features.

Certain limitations should also be acknowledged for our
study. We used the contralateral mammograms of the cancer
cases at the time of diagnosis rather than prospective follow-
up. We also primarily evaluated a potential optimization
for the window size W , keeping D =W so that the entire
breast region would be covered, while in principal, several
combinations of these two parameters could be tested,
including optimizing the extent of the local primitives of
mammographic texture by looking for an optimal local scale
of image texture, based on a multiscale analysis process.58,59

In addition, we compared our lattice-based texture features
to breast density estimates obtained by only one specific
algorithm,18 while several other implementations exist in the
literature, including also volumetric density measures.60 Our

Medical Physics, Vol. 42, No. 7, July 2015



4156 Zheng et al.: Parenchymal texture analysis for breast cancer risk assessment 4156

F. 7. Case-control classification performance for lattice-based texture fea-
tures (window size 63) compared to single-ROI texture features (a) without
and (b) with the combination of breast PD%.

intention with this study was to show feasibility for our lattice-
based strategy for texture analysis and proof-of-concept
that our extracted texture features constitute rich descriptors
of the parenchymal pattern that may ultimately improve
breast cancer risk prediction. Considering the encouraging
performance, several other combinations of feature extraction
parameters could also be explored in future larger studies.

Of note, for certain features, we observed differences be-
tween their univariate versus their multivariate performances
after incremental forward feature selection. In our feature
selection process, each feature’s performance is measured
by assuming its range in the two classes of the training
samples to follow a Gaussian distribution and then computing
the distance between these two distributions. In contrast, in
our univariate analysis, each feature performance is measured
directly using the AUC of the ROC curve. This difference
may, in turn, cause a feature with a lower AUC value in
the univariate analysis to be selected more frequently in the
feature selection process, or a feature with a higher AUC

value to be selected less frequently. As such, our findings
will need to be validated prospectively in larger independent
populations, including evaluating a broader range of pipeline
parameters such as window sizes that vary within the breast or
sparser lattice spacing. Ultimately, our features should also be
evaluated in conjunction to current standard risk predictors,
including demographic and reproductive (i.e., Gail/Claus) risk
factors,61 ethnicity, and BMI, to evaluate their potential added
value in breast cancer risk assessment.

5. CONCLUSION

We proposed a fully automated software pipeline for
mammographic parenchymal pattern analysis, which uses a
lattice-based strategy to extract parenchymal texture features
throughout the entire breast region. Using a case-control study,
we show that our lattice-based texture features outperform
current approaches based on single-ROIs for mammographic
texture analysis and standard breast PD%, potentially provid-
ing more comprehensive descriptors of the parenchymal
pattern complexity for the entire breast tissue. As such,
our features may ultimately have complementary value in
breast cancer risk assessment. Larger studies are warranted to
validate our findings prospectively in independent populations
as well as compare to standard risk factors. Additional
strategies for further optimizing the parameters of the grid
spacing and size of the local square window will also be
investigated in these future larger studies.
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APPENDIX: TEXTURE FEATURE LIST
1. Gray-level histogram features

Gray-level histogram features characterize the first order
statistical properties of the image’s histogram. Given an
image with intensity I = (I(i, j)), dimensions i = 1,. . .,M and
j = 1,. . .,N , the gray-level histogram features evaluated in the
paper are listed in Table III.

Entropy describes the amount of randomness within a given
image; the higher the entropy the greater the randomness.
Kurtosis measures whether the image distribution is peaked
or flat relative to a normal distribution. Skewness is a measure
of the image histogram’s symmetry.

2. Co-occurrence features

Co-occurrence features are a class of features describing
the spatial relationship between the pixels, and features are
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T III. First order histogram features.

Name Definition Name Definition

Max(:MAX) maxi, j I (i, j) Kurtosis(:KTS) (I−I )4
(MN−1)std(I )4

Min(:MIN) mini, j I (i, j) Skewness(:SKEW) (I−I )3
(MN−1)std(I )3

Sum(:SUM)


i, j I (i, j) Fifth percentile(:5TH) I0.05 : {p |I (p)≤I0.05}
n1n2

= 5%

Mean(:MEAN) Ī =


(i, j) I (i, j)/MN Fifth mean(:5THM) I0.05mean=


I (p)≤I0.05

I (p)
|{p |I (p)≤I0.05}|

Standard deviation(:STD) std(I )=


i, j(I (i, j)− Ī )2 95th percentile(:95TH) I0.95 : {p |I (p)≥I0.95}
n1n2

= 5%

Entropy(:ETP)


(−pi log2 pi),

pi =
|{p |ai ≤ I (p) ≤ ai+1}|

n1n2

95th mean(:95THM) I0.95mean=


I (p)≥I0.95

I (p)
|{p |I (p)≥I0.95}|

extracted from a preconstructed GLCM. Given the image f ,
the offset length l, and the angle θ, the co-occurrence matrix
G = (g(i, j)) is defined as

g(i, j)= |{(x1,y1), (x2,y2)| f (x1,y1)= i, f (x2,y2)= j,

x2− x1= l |cosθ |, y2− y1= l |sinθ |}|.
The size of the GLCM is decided by the number of gray
levels within the image f . In all our experiments, the number
of histogram bins, commonly chosen as a power of 2, was set
to a fixed value of 128, based on previous studies. Parameters
associated with the GLCM include the offset length l and the
offset direction θ. These two parameters decide the searching
direction and distance between two pixels with a given spatial
relationship in image intensity. The offset length l was set
equal to 10, to avoid biases in our computation from inherent
physics acquisition parameters, as shown in our prior studies.
To extract the features as orientation-invariant, features were
calculated along all four directions of angular degree θ equal
to 0◦, 45◦, 90◦, and 135◦ and were then averaged for any
subsequent calculations. The definitions of the seven co-
occurrence features evaluated in our study are summarized
in Table IV.

Energy describes the uniformity/homogeneity of the texture
in the image. Entropy measures the amount of randomness of
entries in GLCM, and in general, homogeneous image has low
entropy and vice versa. Inverse difference moment and inertia

are oppositely associated, i.e., images with coarser texture tend
to have higher inverse difference moment but lower inertia.
Correlation and Haralick correlation both measure the image
complexity. Compared with correlation, the Haralick corre-
lation responds stronger to the complexity. Cluster shade is
related to the GLCM symmetry.

3. Run-length texture features

Run-length texture features are also used to describe the
spatial relationship between pixels, and specifically, as they
capture the continuous patterns (i.e., “runs”) of image inten-
sity. The features are defined based on the gray-level run-
length matrix,

P= (p(i, j,θ)), i = 1,. . .,M, j = 1,. . .,N, θ = {0◦,45◦,90◦,135◦}
where p(i, j,θ) is the total number of occurrences of gray-level
runs of length j at the intensity value i along the direction of
θ. M is the level of image intensity and N is the range of run-
length.

The run-length features capture the coarseness and com-
plexity of a given image. Homogeneous images tend to have
high long-run emphasis, low short-run emphasis, low gray-
level nonuniformity, low run-length nonuniformity, and low
run percentage. If a homogeneous region has low gray level,
this region will have a high low gray-level run emphasis and

T IV. Co-occurrence features.

Name(:notation) Definition

Energy(:ENG)


(i, j)g (i, j)2
Entropy(:ETP) −(i, j)|g (i, j),0 g (i, j)log2 g (i, j)
Inverse difference moment(:IDM)


(i, j) 1

1+(i− j)2 g (i, j)
Inertia(:INT)


(i, j)(i− j)2g (i, j)

Correlation(:COR)


(i, j) (i−µ)( j−µ)σ2 g (i, j)
Haralick correlation(:HCOR)


(i, j)

i jg (i, j)−µ2
t

σ2
t

Cluster shade(:CSD)


(i, j)((i− µ)+ ( j − µ))3g (i, j)
Notation:
µt =

1
M


i, jg (i, j), σt =


i( jg (i, j)− µt)2,

µ =


(i, j)i ·g (i, j)=
(i, j) j ·g (i, j), σ =

(i, j)(i− µ)2 ·g (i, j)=
(i, j)( j − µ)2 ·g (i, j).
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T V. Run length features.

Name(:notation) Definition

Short run emphasis(:SRE) 1
nr

M
i=1

N
j=1

p(i, j,θ)
j2

Long run emphasis(:LRE) 1
nr

M
i=1

N
j=1

p(i, j, θ) · j2

Gray-level nonuniformity(:GLN) 1
nr

M
i=1

( N
j=1

p(i, j, θ))2

Run-length nonuniformity(:RLN) 1
nr

N
j=1

(M
i=1

p(i, j, θ))2

Run percentage(:RP) nr/np

Low gray-level run emphasis(:LGRE) 1
nr

M
i=1

N
j=1

p(i, j,θ)
i2

High gray-level run emphasis(:HGRE) 1
nr

M
i=1

N
j=1

p(i, j, θ) · i2

nr : total number of runs; np: total number of pixels

low high gray-level run emphasis. To generate orientation-
invariant features, we also compute run-length features along
four directions and average them.

4. Structure Features
a. LBP features

LBP features are designed to capture relations of a central
pixel and its neighborhood pixels. In this study, the definition
of LBP is based on the uniform distribution of neighborhood
pixels. The LBP value at the central pixel (xc,yc) for image f
is defined as:

LBPP,R(xc,yc)=
P−1
p=0

s(gp−gc)2P,

gc = f (xc,yc), gp = f (xp,yp),
p= 0,. . .,P−1.s(x)= 1, x ≥ 0; s(x)= 0, x < 0,

(xp,yp)=
(
xc+Rcos

(
2πp

P

)
, yc−Rsin

(
2πp

P

))
.

The parameters used to define LBP features include the num-
ber of neighborhood pixel P and the radius of the neighbor-

F. 8. Uniform distribution of LBP neighborhood (P = 8,R = 1).

hood R, where R defines the size of the neighborhood, and P
decides the number of pixels used within the given neighbor-
hood. Common choices of R in previous studies include 1, 2,
and 3 pixels. Here, according to the default definition, these
parameters are set to P= 8, R= 1, as shown in Fig. 8.

b. Box-counting fractal dimension (FD)

Box-counting fractal dimension (FD) is a measure of the
self-similarity in the pattern of the given image and defined as

dBC=− lim
ε→0

lnN(r,A)
lnr

.

Here, A is a given bounded set, r is the side length of box, and
N(r,A) is the minimum number of nonadjacent boxes needed
to cover the set A. In our study, the set A denotes the breast
region.

c. Edge enhancement index (EEI)

Edge enhancement index (EEI) is used to capture in-
herent geometric information, especially for flow-like struc-
tures. The presence of flow-like structures within breast tissues
implies that EEI might be appropriate for characterizing struc-
tural properties of the parenchymal pattern. Given an image f ,
EEI is defined as

Eσ( f )=
(

λ1−λ2

λ1+λ2+η

)2

. (A1)

Here, λ1, λ2 with λ1 > λ2 are eigenvalues of the diffusion
tensor matrix D defined as

D =
1

(∂x fσ)2+ (∂y fσ)2

×



c1(∂x fσ)2+c2(∂y fσ)2 (c2−c1)∂x fσ∂y fσ

(c2−c1)∂x fσ∂y f c1(∂y fσ)2+c2(∂x fσ)2



,

fσ = f ∗Gσ, c2= e−((∂x fσ)2+(∂y fσ)2)/k2
, c1=

1
5

c2.

In general, when λ1≈ λ2,Eσ ≈ 0, and when λ1≫ λ2,Eσ ≈ 1,
and η is an empirical normalizing factor set equal to 10 for this
study. The parameter evaluated in our study is the Gaussian
kernel size σ. Gaussian smoothing (i.e., f ∗Gσ) is used as
a common image preprocessing step to remove image noise
before image analysis and the kernel size determines the de-
gree of smoothing (i.e., the extent of image details that are
preserved). In our study, the Gσ was varied from 1 to 15
pixels.
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