An approach to identify, from DCE MRI, significant subvolumes of tumors

related to outcomes in advanced head-and-neck cancer?®

Peng Wang, Aron Popovtzer, and Avraham Eisbruch
Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48103

Yue Cao®
Department of Radiation Oncology and Department of Radiology, University of Michigan,
Ann Arbor, Michigan 48103

(Received 14 September 2011; revised 28 June 2012; accepted for publication 28 June 2012;
published 2 August 2012)

Purpose: To develop and investigate a method to identify, from dynamic contrast enhanced (DCE)
MRI, significant subvolumes of tumors related to treatment outcomes.

Methods: A method, called global-initiated regularized local fuzzy clustering, was proposed to iden-
tify subvolumes of head-and-neck cancers (HNC) from heterogeneous distributions of tumor blood
volume (BV) and blood flow (BF) for assessment of therapy response. BV and BF images, derived
from DCE MRYI, of 14 patients with advanced HNC were obtained before treatment and 2 weeks after
the start of 7-week chemoradiation therapy (chemo-RT). The delineated subvolumes of tumors with
low BV or BF before and during treatment were evaluated for their associations with local failure
(LF). Receiver operating characteristic (ROC) analysis was used to assess performance of the method
for prediction of local failure of HNC.

Results: The sizes of the subvolumes of primary tumors with low BV, delineated by our method
before and week 2 during treatment, were significantly greater in the patients with LF than with local
control (LC) (p = 0.02 for pre-RT and 0.01 for week 2). While the total primary tumor volumes
were reduced from baseline to week 2 during therapy to a similar extent for both the patients with
LF and LC, the percentage decreases in the subvolumes of the primary tumors with low BV in the
same time interval were significantly smaller for the patients with LF than those with LC (p < 0.05).
ROC analysis shows that for any given sensitivity, the subvolume of the tumor with low BV week
2 during treatment has greater specificity for prediction of local failure than the pretreatment total
tumor volume, the percentage change in the tumor volume week 2 during treatment, or the change in
the averaged BV values of the entire tumor week 2 during therapy.

Conclusions: We developed a method to identify the significant subvolumes of primary tumors re-
lated to local failure. Large poorly perfused subvolumes of primary or nodal HNC before treatment
and persisting during the early course of chemo-RT have the potential for prediction of local or re-
gional failure, and could be candidates for local dose intensification. © 2012 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4737022]
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I. INTRODUCTION

Standard care for advanced head-and-neck cancers (HNC)
includes aggressive concurrent chemoradiation therapy
(chemo-RT).!™ Intensifying this regimen has resulted in im-
proved control rates as well as increased rates and severity
of late toxicity.® Despite improvements, failure rates, the per-
centage of the patients who had uncontrolled diseases after
treatment, are 20%—-50% in patients who are negative for hu-
man papillomavirus,’”-® and failures are predominantly local-
regional. An imaging means with prognostic or predictive
value could facilitate identification of subvolumes of the tu-
mors likely to be resistant to conventional radiation doses in
the patients who are at high-risk for local-regional failure and
who thus may benefit from intensifying local treatment.
Recently, functional imaging that assesses tumor hypoxia
or perfusion prior to therapy in HNC has been described.”'¢
In 105 patients with HNC treated by RT, low tumor perfusion
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prior to RT and T-stage classification were identified as
independent predictors for local failure (LF),'? suggesting
that poorly perfused HN tumors respond poorly to RT, and
that pre-RT tumor perfusion provides prognostic value for
local control (LC) even when accounting for established
clinical prognostic factors. Another recent study showed that
high pretherapy tumor blood volume and perfusion were
associated with large decreases in tumor volumes in response
to induction chemotherapy.'® By characterizing tumor prop-
erties of blood volume (BV) and blood flow (BF) derived
from dynamic contrast-enhanced (DCE) MRI, our previous
study showed that an increase of blood volume in the primary
tumor volume during the early course of chemo-RT was
associated with local control,!” which indicates that poorly
perfused tumors may be resistant to conventional doses of
radiation therapy.

In these previous studies, the average BV and BF in the en-
tire tumor volume were investigated for their association with
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treatment outcome. However, many advanced head-and-neck
cancers have quite inhomogeneous perfusion characteristics
within the tumor volume, particularly in large tumors. Thus,
averaging BV and BF values over the entire tumor may not
result in optimal parameters for prediction of outcomes. A
change in the total tumor volume during the course of chemo-
RT, although the total tumor volume in HNC is a clinical prog-
nostic factor, has a poor predictive value for outcomes.'” The
subvolume of the tumor that is resistant to chemo-RT might
provide better prediction for outcomes. Therefore, we hypoth-
esize that the large poorly perfused subvolume of the head-
and-neck tumor pretherapy and persisting during the early
course of definitive chemo-RT could be a better indicator for
local-regional treatment failure than the tumor size or the av-
erage perfusion parameters over the entire tumors. The pur-
pose of the current study is to develop and investigate a new
method, called global-initiated regularized local fuzzy clus-
tering (GRELFC), to identify the subvolumes of the HNC
based upon heterogeneous distributions of BV and BF within
the tumors and characterize their longitudinal changes. New
quantitative metrics delineated by this method are evaluated
for their associations with treatment outcomes in patients with
advanced HNC.

Il. MATERIALS AND METHODS

In this section, first we will describe the GRELFC method
to identify the subvolumes of the tumors from physiological
imaging signals, and then specific methods and materials used
to investigate this method in the patients with advanced head-
and-neck cancer.

Il.A. Identification of subvolumes of the tumor

GRELFC is a method that is designed to first globally
initiate training to identify fuzzy clusters of the physiologi-
cal imaging parameters in the feature space, and then clas-
sify each tumor volume with local regularization to subvol-
umes according to the global feature clusters. This method
is designed not only to identify the subvolumes of individual
tumors based upon the heterogeneous distributions of phys-
iological imaging parameters but also to be able to com-
pare the classified subvolumes of the tumors across patients
and over multiple time points. The fuzzy clustering method,
specifically fuzzy C-means clustering (FCM),'® chosen in the
GRELFC method aims to deal with (1) intrinsic variations of
the physiological parameters in the tumors, (2) partial volume
effects due to the limited resolution of imaging sources, and
(3) uncertainty due to noise.

Fuzzy C-means clustering is a method of unsupervised
learning to assign a set of observations to belong to subsets
(clusters) with probability memberships. To partition a set of
observations {x;}, e.g., image voxels, into c clusters, an ob-
jective function with local spatial regularization'®
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is to be minimized. In Eq. (1), the first term is a standard FCM
cost function and the second term provides a spatial constraint
to overcome the effect of image noise and to improve spatial
connectivity. Here, u; is a probabilistic (fuzzy) membership
of observation x; belonging to class i, v; is a prototype vector
of class i, X; is a mean or median value of neighbors of voxel
k, m defines fuzziness of the membership, and « is a weight-
ing factor of spatial constraints. A 2D or three-dimensional
(3D) kennel, depending upon image resolution, can be used
to define neighbors of each voxel for spatial constraint. So-
lutions that minimize the objective function of Eq. (1) are
given by
1
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which are solved iteratively until reaching a stopping
criterion. The values for m and o« are usually determined
empirically. The analysis can be applied to either single- or
multiple-component parameters.

In order to evaluate longitudinal changes in physiological
imaging parameters of interest in the tumor, first a set of data
is used as training data to determine definitions of clusters
(prototype vectors and relationships between fuzzy member-
ships and observations), and then the remaining sets of data
are partitioned according to the class definitions of training
data. Our initial test on the “leave-one-out” cross validation
approach indicated that leaving one case out each time had
very little effect on the resulted prototype vectors from the
training data; and in turn had almost no effect on the subvol-
umes. Considering that our sample size is small, we included
all pre-RT tumor volumes in the training data.

To avoid a bias from large tumors in training data, each
of the tumor volumes is upsampled or downsampled to have
an equal number of voxels contributing to the training data
while maintaining the initial distribution of the physiologi-
cal imaging parameters from the original into the resampled
tumor. To do so, a histogram of the physiological imaging pa-
rameters of each tumor is generated, and resampled to create
a new tumor volume with the same size. The recreated tumor
volume, while preserving the original distribution (histogram)
of the imaging parameters, cannot maintain the original spa-
tial relationship between voxels. This spatial information is
not critical for the training data to determine prototype vec-
tors of global clusters, which is the centroid of the cluster or
the mean of all points in the cluster weighted by their degree
of belonging to the cluster. To partition individual tumors in
the second data set, fuzzy membership of each voxel of each
tumor is classified using the prototype vectors found in anal-
ysis of the training data by Eq. (2), where spatial constraint is
used to improve spatial continuity. Finally, the highest proba-
bility of fuzzy membership of each voxel is used to assign the
voxel to a discreet class. As a result, the tumor is partitioned
into spatial subvolumes based upon the similarity of the
physiological parameters of interest. The physiological
parameter-derived subvolumes of the tumor at different time
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points, e.g., a change in the BV-derived subvolumes of the
HNC from baseline to week 2 during therapy, can be evalu-
ated for their association with outcomes such as local failure.

To evaluate this method to identify significant subvolumes
of the tumor related to outcomes, we applied the method to
BV and BF images derived from DCE MRI of patients with
advanced head-and-neck cancer.

I.B. Patients and treatment

Fourteen patients with advanced squamous cell carcino-
mas were enrolled in a prospective MRI study that was ap-
proved by the institutional review board at the University of
Michigan. Informed consent was obtained from all patients.
Table I summarized the characteristics of the patients. All pa-
tients received definitive 7-week concurrent chemo-RT with
a total radiation dose of 70 Gy to the primary gross tumor
volume (GTV) and involved nodes, by intensity-modulated
radiation therapy (12 patients) or three-dimensional confor-
mal radiation therapy (two patients). For chemotherapy, eight
patients received carboplatin (one area under the curve) and
paclitaxel 30 mg/m? weekly; five patients received cisplatin
100 mg/m? once every three weeks; and one patient received
cetuximab with a loading dose of 400 mg/m? followed by
weekly dose of 250 mg/m?.

After receiving chemo-RT, all patients were followed for
clinical evaluation. Follow-up visits per protocol took place
every six weeks for the first two years, then every three
months for the third year, and every six months from the
fourth year forward. Per protocol MRI scans took place 3
months after the completion of RT. FDG positron emission to-
mography (PET), CT, other MRI scans, or biopsy was elected
as clinical indication. The median follow-up time for living
patients was 19.6 months (range 14.1-36.4 months) posttreat-
ment. At these evaluations, eight patients had local-regional

TABLE I. Patients characteristics.

Age MRI scans

(year)/ Disease pre/during/
Patients sex location Stage 3Mpost Outcome
1 65/F Soft palate T2N3 yly/n LRF/dead
2 62/M  Tonsil T1 N2a ylyly LRC
3 58/M  Hypopharynx T4 N2b ylyly LF/dead
4 83/ M Larynx T4NO y/y/n LF/dead
5 61/F Tonsil T2N3 ylyly RF
6 43/M  BOT + tonsil T4N2c y/y/n LF/dead
7 49/M  Tonsil T4N2c ylyly LRC
8 62/M  BOT T3NO ylyly LRC
9 39/M  UNP TxN3 ylyly LRC
10 57/M  Nasopharyneal T2N2b ylyly LRC
11 56/M  Piriform sinus T1N2c ylyly LRC
12 42/M  Tonsil T2N2b ylyly LRC/DF
13 62/M  Tonsil T2N2b ylyly LRC
14 58/M  Tonsil T2N2b ylyly LRC

Note: F = female; M = male; Pre = pre-RT; during = week 2 during the course of
RT; 3Mpost = three months after the completion of RT; BOT = base of tongue;
UNP = unknown primary disease; LRF = local-regional failure; LRC = local-
regional control; LF = local failure; RF = regional failure; DF = distant failure.
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controlled diseases and without distant metastasis, three had
local failure, one had local-regional failure, one had regional
failure, and one had local-regional control but distant failure.

II.C. MRI acquisition

All MRI scans were acquired using a Philips 3T scanner
(Philips Healthcare). Scans were taken before radiation ther-
apy (“pre-RT”) and 2 weeks after start of therapy (later re-
ferred as “wk-2" or “during-RT”). Each scan included the
following series: T1-weighted images, T2-weighted fluid-
attenuated inversion recovery (FLAIR) images, DCE TI-
weighted images, and postcontrast T1-weighted images.
Thirty-two dynamic volumes of T1-weighted MRI were ac-
quired by a 3D gradient echo pulse sequence in the sagit-
tal plane during intravenous injection of 0.1 ml/kg Gd-DTPA
with TR/TE = 5.1/1.1 ms, flip angle = 20°, temporal resolu-
tion = 7.6 s, and voxel size = 2 x 2 x 2 mm® to cover the
whole head and neck including primary tumor and involved
node.

I.D. Gross tumor volume definition

GTVs were delineated on the postcontrast T1-weighted
images acquired pre-RT and during-RT by a head-and-neck
radiation oncologist. If available, treatment planning CT and
diagnostic PET scans were referenced. The primary and nodal
GTVs were drawn separately due to the possibility that the
two could respond to therapy differently. Heterogeneous BV
and BF of the primary GTV for prediction of LC or LF were
investigated.

II.LE. Quantification of BV and BF

DCE images were fitted to the modified two-compartment
Tofts model.?’ The model assumes the contrast agent concen-
tration Cy(?) in the tissue at time ¢ following the equation be-
low:

t
C,(t) = K" / e =D (T)dT + v,C (1), 3)
0
where C,(1) is the artery input function, K™ is the volume
transfer constant from the plasma to the extravascular extra-
cellular space (EES), &, is the efflux rate constant from the
EES to the plasma, and v,, is the fractional volume of the blood
plasma. BV is calculated from v, by BV = v,/(1—Hct) (Hct
is the hematocrit) and converted to per unit mass of the tissue.
BF images were derived by using the method described
by Mullani et al.>' and Hermans et al.” and described by the
following equation:

(dCt(t)
dt

) = F/OCp(t)maXa 4

where p is the density of tissue, F is the blood flow, and
(dC,/df)max 1s the maximum derivative of the contrast concen-
tration uptake in the tissue.

Finally, the BV and BF images were aligned with the treat-
ment planning CT scans via coregistration of postcontrast
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FIG. 1. An example of postcontrast T1-weighted MRI (left), T2 FLAIR
(second left), BV (second right), and BF (right) slices of a patient pre-RT
(top row) and at week 2 (bottom row). White contour indicates the GTV.

T1-weighted MR images with the CT. An example of
postcontrast T1, T2 FLAIR, BV, and BF slices is shown
in Fig. 1.

ILF. Clustering analyses

All image analyses were completed using an in-house soft-
ware package: Functional image analysis tool (FIAT).?? For
analysis of the single parameter of BV, first training data were
generated from the pretreatment BV values of the primary
GTVs of all patients. Each of the pre-RT primary GTVs was
resampled to create 10 000 voxels according to the distribu-
tion of BV values within the original GTV. Our experience
suggested that 10 000 voxels per tumor were sufficient to
maintain the distribution of BV in the tumor. As a result, the
training data consisted of 100 x 100 x 14 voxels (14 is the
number of patients), and then was partitioned into 2, 3, or 4
feature clusters using the above described clustering method.
The resulting prototype vectors {v;} were adopted to parti-
tion each individual GTV before and during therapy to ob-
tain the fuzzy membership of each voxel belonging to the fea-
ture classes. The subvolumes of the primary GTVs defined by
the clusters with low BV (for two-cluster partition, the clus-
ter with lower BV; for three- and four-cluster partition, the
cluster with lowest BV) before and during RT were tested for
their association with local failure using the Mann—Whitney U
test. A two-tailed p-value < 0.05 was considered significant.
The same analysis was applied to BF data. Two examples of
subvolumes of the primary GTVs with low BV are shown in
Figure 3.

To evaluate the discriminatory value of BF combined with
BV, {x;} in Eq. (1) was formed to have two components,
BV and BF, which were weighted equally for their contribu-
tions. The two-component dataset {x;} was analyzed simi-
lar to the single parameter. Figure 2 illustrates analysis in the
two-component feature space defined by BV and BF.
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FIG. 2. Tllustration of the process of classification of the whole GTV into
subvolumes based upon their characteristic physiological features. (a) and (b)
Two different parameter maps (e.g., BV and BF). The white contour depicts
the GTV. (c) A two-dimensional feature space, onto which each voxel from
the two parameter maps is projected based upon their values. The voxels
are partitioned into three clusters (triangles, circles, and squares) using FCM
clustering analysis, which optimizes homogeneity of the parameters within
the clusters and separation between the clusters.

Il.G. Receiver operating characteristic (ROC) analysis

To evaluate performance of the subvolumes of the tumors
identified from BV, BF or combination of BV and BF for pre-
diction of local failure, ROC analysis was performed using
software package ROCKIT.>* The fitted ROC curves and the
areas under the curves (A,) of several representative metrics
were generated and compared.

lll. RESULTS

lllLA. Subvolumes of the primary GTVs
with low BV pre and during treatment

We assessed the subvolumes of the primary GTVs derived
from clustering analysis of the heterogeneous distribution of
BV, and related them to LC and LF. When the primary GTVs
pretreatment were partitioned into two classes based upon
the BV distribution, the subvolumes of the primary GTVs
with low BV in the patients with LC, ranging from 2.4 to
26.6 ml with a median of 9.9 ml, were significantly smaller
than those in the patients with LF (p < 0.02), from 15.0 to
46.0 ml with a median of 31.9 ml in the patients with LF
(Table IT and Fig. 3). After receiving 2 weeks of the 7-week
chemo-RT treatment course, the subvolumes of the GTVs
with low BV decreased to 0.3-17.4 ml with a median of
3.7 ml in the patients with LC, and changed to 7.7-49.9 ml
with a median of 23.8 ml in the patients with LF. The persis-
tence of large subvolumes of the GTVs with low BV during
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Week 2

Pre-RT

FIG. 3. Two representative examples of the subvolumes of the primary GTVs with low BV, pre-RT and at week 2. BV maps are color-coded and overlaid on
post-Gd T1-weighted images. White contours: primary GTV; blue color: the subvolumes of the GTV with low BV. (a) A local failure case with the whole GTV
of 61.4 ml and the subvolume of the tumor with low BV of 28.6 ml pre-RT (left); and 44.8 ml, 20.9 ml, respectively, at week 2 (right). (b) A local control case
with the whole GTV of 97.5 ml and the subvolume of the tumor with low BV of 16.5 ml pre-RT (left); and 52.3 ml, 17.4 ml, respectively, at week 2 (right).

treatment differentiated LF from LC tumors significantly
(p < 0.01) (Table II), suggesting that a large subvolume of
poorly perfused tumor both initially prior to therapy and per-
sisting during the early course of chemo-RT may be an indica-
tor for local failure. The scatter plot of the subvolumes of the
primary GTVs with low BV pre and during chemo-RT shows
that three of the four primary tumors with LF have the largest
subvolumes with low BV (Fig. 4).

The fractional reduction (or reduction rate) of the subvol-
umes in the primary GTVs with low BV during treatment vs
pretreatment was significantly greater in the patients with LC
than those with LF, 56% =+ 9% and 23% =+ 12%, respectively
(» < 0.05). In the patients with LF, the initial large subvol-
umes of the primary GTVs with low BV and slow response
rates of the subvolumes to two weeks of chemo-RT suggest
that locally intensified treatment is required to further reduc-
tion of this persisting and aggressive subvolume of the tumor.

lll.B. Subvolumes of the primary GTVs with low BF
pre and during treatment

We assessed whether the subvolumes of the primary GTVs
identified by the heterogeneous distribution of BF differenti-

TABLE II. Summary of tumor BV and BF analysis results.

ated tumors with LF from LC, either analysis of BF indepen-
dently or combining BF with BV, to test the discriminatory
value of BF in comparison with BV. Analysis of BF alone
yielded a similar trend as BV: prior to chemo-RT, the patients
with LF had large subvolumes of the primary GTVs with low
BF (range: 17.1-67.9 ml; median: 35.5 ml) while those with
LC had small subvolumes with low BF (range: 5.2-32.1 ml;
median: 13.0 ml). The difference between the two groups was
not significant pretreatment (p = 0.07). After 2 weeks of treat-
ment, the subvolumes of the primary GTVs with low BF de-
creased to 9.6-39.6 ml with a median of 20.8 ml in the pa-
tients with LF and to 0.9-21.2 ml with a median of 6.3 ml in
the patients with LC, the difference of which was marginally
significant (p = 0.05) (Table II). While analyzing BF with
BV together, there was no improvement in the differentiation
of the LF from the LC tumors, compared to analysis of BV
alone (Table II).

lll.C. Predictive value of the subvolumes of the
primary GTVs with low BV for local failure

We explored the predictive value of the subvolumes of the
primary GTVs with low BV pre and during treatment for

Median (range)
Parameters Local control (n = 9) Local failure (n = 4) p-value
BV subvolume Subvolume of tumor with low BV pre-RT [ml] 9.9 (2.4-26.6) 31.9 (15.0-46.0) 0.02
Subvolume of tumor with low BV wk 2 [ml] 3.7(0.3-17.4) 23.8 (7.7-49.9) 0.01
BF subvolume Subvolume of tumor with low BF pre-RT [ml] 13.0 (5.2-32.1) 35.5(17.1-67.9) 0.07
Subvolume of tumor with low BF wk 2 [ml] 6.3 (0.9-21.2) 20.8 (9.6-39.6) 0.05
BF + BV subvolume Subvolume of tumor with low BV + BF pre-RT [ml] 10.5 (4.1-28.9) 32.2(16.3-52.9) 0.03
Subvolume of tumor with low BV + BF wk 2 [ml] 4.4 (0.4-18.6) 21.6 (8.4-45.6) 0.01
GTV Primary GTV pre-RT [ml] 15.8 (5.3-97.5) 74.3 (19.6-120.1) 0.05
% change in GTV (wk 2 vs pre-RT) —279(—65.41t0 —11.2) —21.4(—44.6t0 —8.2) 0.33
Mean BV Change in mean tumor BV (wk 2 vs pre-RT) [ml/100g] 5.1(—0.6to 13.2) 1.0(—1.7to0 1.6) 0.03
Mean BF Change in mean tumor BF (wk 2 vs pre-RT) [ml/100g min] 20.1 (—3.9t0 54.6) 15.0 (—22.1to 41.1) 0.71

Note: All subvolumes above were determined by the analysis for two clusters.
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FIG. 4. Correlation of the subvolumes with low BV at the two time-points
(pre- vs during-RT). The subvolumes at the two time-points are highly corre-
lated (p = 0.96). Circle: local failure; triangle: local control; solid line: linear
regression line; dashed line: diagonal line.

local failure using ROC analysis, and compared its perfor-
mance with other conventional metrics, such as the pretreat-
ment tumor volume, the percentage change in tumor volume
during-treatment, and the change in a mean BV value over
the whole tumor during-treatment. The areas under the ROC
curves (A,), a measure of overall performance of a metric
for prediction of an event (e.g., local failure), indicate that all
BV-related (function-based) metrics have better performance
than the tumor volume metrics (anatomy-based). Specifically,
the areas under the ROC curves were 0.872 £ 0.098 for the
pretreatment tumor volume and 0.723 £ 0.158 for the per-
centage tumor volume change during-treatment. However, the
change in the mean of tumor BV values during-treatment,
a valuable functional parameter for prediction of local fail-
ure reported previously,'® had an area under the ROC curve
0.903 £ 0.084. When considering the subvolume of the pri-
mary GTV with low BV, the areas under the ROC curves in-
creased to 0.925 &£ 0.107 for pretreatment and 0.947 + 0.079
for during-treatment (Fig. 5). The ROC analysis indicates that
85% sensitivity in predicting local failure resulted in 87.5%
and 91.0% specificity by the subvolumes of the GTVs with
low BV before and during RT, respectively, compared with
83.0% specificity by the change in the mean BV values over
the entire GTV during-treatment and 75.5% specificity by the
pretreatment GTV.

lIl.D. Subvolumes of the nodal GTVs with low BV

We explored the subvolumes of the nodal GTVs with low
BV. There were two cases with regional failure. Prior to treat-
ment, the subvolumes of the nodal GTVs with low BV were
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35.5 and 120.1 ml in the two patients with regional failure,
which were greater than those with regional control, ranging
from 4.0 to 29.5 ml with a median of 15.6 ml. After 2 weeks of
chemo-RT, the subvolumes of the nodal GTVs with low BV
changed to 11.6 and 132.5 ml in the patients with regional
failure, and to a median of 9.9 ml with a range from 3.3 to
24.5 ml in those with regional control. It is worthwhile to
point out that the patient who had local-regional failure had
the largest subvolume of the nodal GTV with low BV (~120
ml) and the smallest subvolume of the primary GTV with
low BV among the LF cases (~15 ml, see Fig. 4), and also
the primary and nodal GTVs were anatomically adjacent or
connected, which might explain why this case deviated from
other local failure cases (Fig. 4).

IV. DISCUSSION

In this study, we developed and investigated a method to
identify subvolumes of the tumors by characterizing the het-
erogeneous tumor blood volume and blood flow before and
during treatment using DCE MRI in patients who had ad-
vanced HNC and were treated with concurrent chemo-RT. We
related the subvolumes of the primary GTVs with low BV or
BF to outcomes. Also, we explored the predictive value of
the subvolumes of the primary GTVs with low BV for lo-
cal failure and compared these with other quantitative metrics
derived from anatomic or functional imaging. We found that
the large subvolumes of the primary GTVs with low blood
volume pretreatment and persisting during the early course
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of chemo-RT are associated with high probability of local
failure. For a given sensitivity for prediction of local fail-
ure, the tumor subvolume with low blood volume has higher
specificity compared to the change in the mean of blood vol-
ume values over the whole tumor during-RT, the percentage
change of tumor volumes during-RT, or the pre-RT GTV vol-
ume. The tumor subvolume with low blood volume might be
a better biomarker for identifying the patients with advanced
HNC at high-risk for local failure and for defining a radiation
boost target to intensify local treatment.

DCE MRI (Refs. 10, 17, 24, and 25) and hypoxia PET
[e.g., 3F_fluoromisonidazole (FMISO) PET] (Refs. 26-29)
both have been recognized as promising functional imag-
ing modalities with potential clinical utility in management
of HNC, including detection of hypoxic tumor subvolumes,
early assessment and prediction of treatment response and
outcomes, and definition of a radiation boost target volume.
Hypoxia has been long considered as an important factor for
tumor resistance to radiation therapy,**=* and thus has been
considered a candidate for mapping the radiation boost tar-
get volumes and investigated for predicting treatment out-
comes. FMISO PET has been shown to be capable of de-
tecting the hypoxic region in the head-and-neck cancers.?®?’
However, low spatial resolution, signal-to-noise ratio, and
tumor-to-background ratio in FMISO PET have raised some
concerns in its clinical management of HNC.* In addition,
a recent study testing reproducibility of FMISO PET by re-
peated acquisitions three days apart in patients with HNC
prior to treatment showed substantial spatial variability be-
tween the two scans, suggesting this modality might be sus-
ceptible to acute hypoxia.*® DCE MRI is capable of charac-
terizing vascular and perfusion properties in tumors, and has
demonstrated the potential for prognosis and prediction of
treatment response and outcomes in HNC.'®!7 Also, recent
studies reported an inverse correlation between tumor perfu-
sion measurement from DCE MRI and hypoxia measurement
from FMISO PET in an animal model®’ and in patients with
HNC.?® These studies suggest that DCE MRI has the potential
to be an alternative approach supporting individualized clini-
cal management of HNC. In this study, we evaluated whether
the poorly perfused subvolume of the tumor, as characterized
by DCE MR, is associated with poor outcome.

Many large tumors manifest intratumor heterogeneity, e.g.,
multiple phenotypes within a single tumor, which is possibly
responsible for heterogeneous treatment response within the
tumor. It is plausible that a portion of the tumor is more ag-
gressive or more resistant to treatment, and thereby, might
ultimately determine the treatment outcome. However, the
mean value or the change in the mean value of a functional
imaging parameter over a heterogeneous tumor has generally
been used to correlate with treatment outcome in most pre-
vious imaging studies, which could compromise the predic-
tive power of the parameter.’**! In this study, we aimed to
assess the tumor heterogeneous perfusion and blood volume,
and found the poorly perfused subvolumes prior to and dur-
ing chemo-RT have greater specificity for prediction of local
failure for a given sensitivity than considering the tumor as a
whole (Fig. 5).
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It is a great challenge to characterize tumor heterogene-
ity and heterogeneous changes over a longitudinal study.*>
One approach to address the problem is to analyze statisti-
cal differences at each voxel over time.** This requires a re-
liable and accurate voxel-to-voxel alignment of images ac-
quired at different time points. The volume, shape, and image
intensity of the tumors may change over weeks and months.
For head-and-neck cancers, the patient position changes due
to the neck flexibility over scans can result in additional
difficulty for voxel-level image alignment, even with highly
sophisticated deformable image registration tools. In addi-
tion, voxel-level analyses show large uncertainty and poor
reproducibility,*® which impact on the correlation with re-
sponse and outcome. Therefore, in this study, we developed
a robust method (clustering analysis) to characterize hetero-
geneous vascular and perfusion parameters of head-and-neck
tumors as well as their changes over time. This method can
map functional images from different time points into a fea-
ture space, and then analyzes the intrinsic properties of the
parameter of interest by statistically grouping and splitting
the voxels into feature classes (e.g., the voxels with low or
high blood volume) based upon their similarities and dif-
ferences. This methodology can be applied to imaging data
from longitudinal studies without the requirement of voxel-
size accuracy of image registration. Also, this method is not
based upon a user-defined ad hoc threshold, which is often
used in other studies with a similar goal as ours. Our method
can be generalized to other tumors and other imaging pa-
rameters. Also, fuzzy clustering used in our method allows
us to deal with the continuous distribution of the physio-
logical imaging parameters in the tumor as well as noise in
images. Through this work, we demonstrated the potential
value of the feature class (the subvolume of the tumor with
low blood volume) delineated by this method for prediction
of outcome and definition of potential radiation boost target
volumes.

Several methods have been proposed to automatically seg-
ment tumor volumes (binary segmentation) as well as for
identification of inhomogeneous tumor subvolumes (multiple
classes) from metabolic PET, e.g., watershed*~2 and fuzzy
local adapted Bayesian (FLAB) segmentation methods.>>*
These methods have focused on how to deal with the influence
of object (tumor) size on radioactivity detected by PET due
to limited spatial resolution, by iterative segmentation using
phantom scans for guidance. Recently, FLAB segmentation
has been extended to identify multiple classes in the inho-
mogeneous FDG distribution in the tumors.>> However, this
method needs to predefine the fuzzy level, and becomes com-
plicated when dealing with three or more classes and various
object sizes, especially for small objects (<2 cm). Most im-
portantly, these methods cannot handle the longitudinal data.
The questions that these methods attempt to address are gen-
erally not major concerns in MRI. In this study, we developed
and investigated the GRELFC method that is less sensitive
to noise and capable of handling any number of classes and
fuzzy levels for identifying the significant subvolumes of the
tumors derived from MRI BV and BF measures from a longi-
tudinal study.
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In this study, we found that the large poorly perfused sub-
volume of the HNC both before and during the early course
of chemo-RT were associated with local failure. Also, these
large subvolumes of tumors with low BV had a slow reduction
rate in response to early treatment, suggesting local intensifi-
cation of treatment may be needed to sufficiently reduce this
persisting and aggressive portion of the tumors. Information
provided by the early-course scans confirmatively support the
findings prior to therapy, which could increase the confidence
of clinical decision-making based upon the pretreatment scans
alone. Also, a large reduction in the subvolume of tumor with
low blood volume during the early course of chemo-RT could
be used as an indicator for a decreased-intensity treatment in
the patients who have good outcomes in order to reduce nor-
mal tissue toxicity. These findings and reproducibility of test
and retest of DCE MRI without therapy will be further inves-
tigated in a large cohort study.

In this study, we analyzed the primary and nodal tumors
separately. However, there is no sufficient evidence to indi-
cate whether or not the primary and nodal tumors respond
to chemo-RT differently. In one case with local-regional fail-
ure, although the subvolume of the primary tumor with low
BV is small, the poorly perfused subvolume of the nodal tu-
mor is large. In addition, the primary tumor and affected node
are anatomically adjacent and connected. These observations
may explain why this case reduces the sensitivity of predic-
tion of local failure based upon the metric characterizing the
primary tumor alone. Future studies will consider the possi-
bility of interaction of responses between primary and nodal
tumors to therapy.
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