The Mathematics of Computerized Tomography

The Mathematics of Computerized Tomography

F. Natterer
University of Münster
Federal Republic of Germany

茞

B. G. TEUBNER

Stuttgart

JOHN WILEY \& SONS
Chichester • New York • Brisbane • Toronto • Singapore

ISBN 978-3-519-02103-2 ISBN 978-3-663-01409-6 (eBook)
DOI 10.1007/978-3-663-01409-6
Softcover reprint of the hardcover 1st edition 1986
Copyright © 1986 by John Wiley \& Sons Ltd and B G Teubner, Stuttgart

All rights reserved
No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data:

Natterer, F. (Frank), 1941-
The mathematics of computerized tomography.
Bibliography:
Includes index.

1. Tomography-Mathematics. I. Title.

RC78.7.T6N37 1986 616.07'572 85-29591

British Library Cataloguing in Publication Data:

Natterer, F.
The mathematics of computerized tomography. 1. Tomography-Data processing 2. Electronic data processing-Mathematics 621.36' 73 RC78.7.T6

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Natterer, Frank:
The mathematics of computerized tomography
/ F. Natterer.-Stuttgart: Teubner;
Chichester; New York; Brisbane; Toronto;
Singapore: Wiley, 1986.

Contents

Preface vii
Glossary of Symbols ix
I. Computerized Tomography 1
I. 1 The basic example: transmission computerized tomography 1
I. 2 Other applications 3
I. 3 Bibliographical notes 8
II. The Radon Transform and Related Transforms 9
II. 1 Definition and elementary properties of some integral operators 9
II. 2 Inversion formulas 18
II. 3 Uniqueness 30
II. 4 The ranges 36
II. 5 Sobolev space estimates 42
II. 6 The attenuated Radon transform 46
II. 7 Bibliographical notes 52
III. Sampling and Resolution 54
III. 1 The sampling theorem 54
III. 2 Resolution 64
III. 3 Some two-dimensional sampling schemes 71
III. 4 Bibliographical notes 84
IV. IIl-posedness and Accuracy 85
IV. 1 Ill-posed problems 85
IV. 2 Error estimates 92
IV. 3 The singular value decomposition of the Radon transform 95
IV. 4 Bibliographical notes 101
V. Reconstruction Algorithms 102
V. 1 Filtered backprojection 102
V. 2 Fourier reconstruction 119
V. 3 Kaczmarz's method 128
V. 4 Algebraic reconstruction technique (ART) 137
V. 5 Direct algebraic methods 146
V. 6 Other reconstruction methods 150
V. 7 Bibliographical notes 155
VI. Incomplete Data 158
VI. 1 General remarks 158
VI. 2 The limited angle problem 160
VI. 3 The exterior problem 166
VI. 4 The interior problem 169
VI. 5 The restricted source problem 174
VI. 6 Reconstruction of homogeneous objects 176
VI. 7 Bibliographical notes 178
VII. Mathematical Tools 180
VII. 1 Fourier analysis 180
VII. 2 Integration over spheres 186
VII. 3 Special functions 193
VII. 4 Sobolev spaces 200
VII. 5 The discrete Fourier transform 206
References 213
Index 221

Preface

By computerized tomography (CT) we mean the reconstruction of a function from its line or plane integrals, irrespective of the field where this technique is applied. In the early 1970s CT was introduced in diagnostic radiology and since then, many other applications of CT have become known, some of them preceding the application in radiology by many years.

In this book I have made an attempt to collect some mathematics which is of possible interest both to the research mathematician who wants to understand the theory and algorithms of CT and to the practitioner who wants to apply CT in his special field of interest. I also want to present the state of the art of the mathematical theory of CT as it has developed from 1970 on. It seems that essential parts of the theory are now well understood.

In the selection of the material I restricted myself - with very few exceptions - to the original problem of CT, even though extensions to other problems of integral geometry, such as reconstruction from integrals over arbitrary manifolds are possible in some cases. This is because the field is presently developing rapidly and its final shape is not yet visible. Another glaring omission is the statistical side of CT which is very important in practice and which we touch on only occasionally.

The book is intended to be self-contained and the necessary mathematical background is briefly reviewed in an appendix (Chapter VII). A familiarity with the material of that chapter is required throughout the book. In the main text I have tried to be mathematically rigorous in the statement and proof of the theorems, but I do not hesitate in giving a loose interpretation of mathematical facts when this helps to understand its practical relevance.

The book arose from courses on the mathematics of CT I taught at the Universities of Saarbrücken and Münster. I owe much to the enthusiasm and diligence of my students, many of whom did their diploma thesis with me. Thanks are due to D. C. Solmon and E. T. Quinto, who, during their stay in Münster which has been made possible by the Humboldt-Stiftung, not only read critically parts of the manuscript and suggested major improvements but also gave their advice in the preparation of the book. I gratefully acknowledge the help of \mathbf{A}. Faridani, U. Heike and H. Kruse without whose support the book would never have been finished. Last but not least I want to thank Mrs I. Berg for her excellent typing.

Glossary of Symbols

Symbol	Explanation	References
\mathbb{R}^{n}	n-dimensional euclidean space	
$\Omega^{\boldsymbol{n}}$	unit ball of \mathbb{R}^{n}	
S^{n-1}	unit sphere in \mathbb{R}^{n}	
Z	unit cylinder in \mathbb{R}^{n+1}	II. 1
T	tangent bundle to S^{n-1}	II. 1
θ^{\perp}	subspace or unit vector perpendicular to θ	
D^{\prime}	derivative of order $l=\left(l_{1}, \ldots, l_{n}\right)$	
$x \cdot \theta$	inner product	
$\|x\|$	euclidean norm	
\mathbb{C}^{n}	complex n-dimensional space	
\hat{f}, \mathfrak{f}	Fourier transform and its inverse	VII. 1
C_{l}^{λ}	Gegenbauer polynomials, normed by $C_{l}^{\lambda}(1)=1$	VII. 3
Y_{l}	spherical harmonics of degree l	VII. 3
$N(n, l)$	number of linearly independent spherical harmonics of degree l	VII. 3
J_{k}	Bessel function of the first kind	VII. 3
U_{k}, T_{k}	Chebyshev polynomials	VII. 3
δ, δ_{x}	Dirac's δ-function	VII. 1
sinc_{b}	sinc function	III. 1
$\eta(\vartheta, b)$	exponentially decaying function	III. 2
Γ	Gamma function	
$0(M)$	Quantity of order M	
\mathscr{S}	Schwartz space on \mathbb{R}^{n}	VII. 1
	Schwartz space on Z, T	II. 1
\mathscr{S}^{\prime}	tempered distributions	VII. 1
$C^{\text {m }}$	m times continuously differentiable functions	
C^{∞}	infinitely differentiable functions	
C_{0}^{∞}	functions in C^{∞} with compact support	
$H^{\alpha}, H_{0}^{\alpha}$	Sobolev spaces of order α on $\Omega \subseteq \mathbb{R}^{n}$	VII. 4
	Sobolev spaces of order α on Z, T	II. 5

$L_{p}(\Omega) \quad$ space with norm $\left(\int_{\Omega}|f|^{p} \mathrm{~d} x\right)^{1 / 2}$

$L_{p}(\Omega, w)$	same as $L_{p}(\Omega)$ but with weight w	
$\left\langle u_{1}, \ldots, u_{m}\right\rangle$	span of u_{1}, \ldots, u_{m}	
$\mathbf{R}, \mathbf{R}_{\theta}$	Radon transform	II.1
$\mathbf{P}, \mathbf{P}_{\theta}$	X-ray transform	II.1
\mathbf{D}_{a}	divergent beam transform	II.1
$\mathbf{R}^{\#}$ etc.	dual of \mathbf{R}, etc.	II.1
$\mathbf{I}^{\boldsymbol{a}}$	Riesz potential	II. 2
\mathbf{R}_{μ}	attenuated Radon transform	II. 6
\mathbf{T}_{μ}	exponential Radon transform	II. 6
A^{*}	adjoint of operator A	
$A^{\boldsymbol{\top}}$	transpose of matrix A	
\mathbb{Z}^{n}	n-tupels of integers	
\mathbb{Z}_{+}^{n}	n-tupels of non-negative integers	
$f \perp g$	f perpendicular to g	
\mathbf{H}	Hilbert transform	
\mathbf{M}	Mellin transform	VII.1
\square	end of proof	VII. 3

