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Preface 

By computerized tomography (CT) we mean the reconstruction of a function 
from its line or plane integrals, irrespective of the field where this technique is 
applied. In the early 1970s CT was introduced in diagnostic radiology and since 
then, many other applications of CT have become known, so me of them 
preceding the application in radiology by many years. 

In this book I have made an attempt to collect so me mathematics which is of 
possible interest both to the research mathematician who wants to und erstand 
the theory and algorithms of CT and to the practitioner who wants to apply CT in 
his special field of interest. I also want to present the state of the art of the 
mathematical theory of CT as it has developed from 1970 on. It seems that 
essential parts of the theory are now weIl understood. 

In the selection of the material I restricted myself - with very few 
exceptions-to the original problem of CT, even though extensions to other 
problems of integral geometry, such as reconstruction from integrals over 
arbitrary manifolds are possible in so me cases. This is because the field is 
presently developing rapidly and its final shape is not yet visible. Another glaring 
omission is the statistical side of CT which is very important in practice and which 
we touch on only occasionally. 

The book is intended to be .self-contained and the necessary mathematical 
background is briefly reviewed in an appendix (Chapter VII). A familiarity with 
the material of that chapter is required throughout the book. In the main text I 
have tried to be mathematically rigorous in the statement and proof of the 
theorems, but I do not hesitate in giving a loose interpretation of mathematical 
facts when this helps to understand its practical relevance. 

The book arose from courses on the mathematics of CT I taught at the 
Universities of Saarbrücken and Münster. I owe much to the enthusiasm and 
diligence of my students, many of whom did their diploma thesis with me. Thanks 
are due to D. C. Soirnon and E. T. Quinto, who, during their stay in Münster 
which has been made possible by the Humboldt-Stiftung, not only read critically 
parts of the manuscript and suggested major improvements but also gave their 
advice in the preparation of the book. I gratefully acknowledge the help of A. 
Faridani, U. Heike and H. Kruse without whose support the book would never 
have been finished. Last but not least I want to thank Mrs I. Berg for her excellent 
typing. 

Münster, July 1985 Frank Natterer 
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Glossary of Symbols 

Symbol Explanation References 

IRn n-dimensional euclidean space 
on unit ball of IRn 

sn-l unit sphere in W 
Z unit cylinder in IRn + 1 11.1 
T tangent bundle to sn - 1 11.1 
(f- subspace or unit vector perpendicular to (J 
D' derivative of order I = (110 ... , In) 
x·(J inner product 
lxi euclidean norm 
cn complex n-dimensional space 
1,1 Fourier transform and its inverse VII.l 
Cl' Gegenbauer polynomials, normed VII.3 

by C/(l) = 1 

Yi spherical harmonics of degree I VII.3 
N (n, I) number of linearly independent VII.3 

spherical harmonics of degree I 
J k Bessel function of the first kind VII.3 
Vb Tk Chebyshev polynomials VII.3 
(j, (jx Dirac's (j-function VII.l 
sincb sinc function 111.1 
rJ(9,b) exponentially decaying function 111.2 
r Gamma function 
O(M) Quantity of order M 
[/ Schwartz space on IRn VII.l 

Schwartz space on Z, T 11.1 
[/' tempered distributions VII.l 
cm m times continuously differentiable 

functions 
C OO infinitely differentiable functions 
CO' functions in C OO with compact support 
W,H'O Sobolev spaces of order a: on 0 ~ IRn VIIA 

Sobolev spaces of order a: on Z, T 11.5 
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x 

Lp(O) space with norm (flflPdXYl2 

Cl 

Lp(O, w) same as L p (0) but with weight w 
<ut. ... , um> span of Ut. ••. , Um 
R, Re Radon transform 11.1 
P, Pe X-ray transform 11.1 
Da divergent beam transform 11.1 
R# etc. dual of R, etc. 11.1 
I~ Riesz potential 11.2 

R" attenuated Radon transform 11.6 

T" exponential Radon transform 11.6 
A* adjoint of operator A 
AT transpose of matrix A 
?Ln n-tupels of integers 
?L"r n-tupels of non-negative integers 
f.1g f perpendicular to g 
H Hilbert transform VII.1 
M Mellin transform VII.3 
0 end of proof 


