Supporting Information

Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery

Monty Liong,¹ Jie Lu,² Michael Kovochich,³ Tian Xia,³ Stefan G. Ruehm,⁴ Andre E. Nel,^{3,*} Fuyuhiko Tamanoi,^{2,*} and Jeffrey I. Zink^{1,*}

¹Department of Chemistry and Biochemistry ²Department of Microbiology, Immunology, and Molecular Genetics ³Department of Medicine ⁴Department of Radiological Sciences

University of California, Los Angeles, California, 90095

*Email: zink@chem.ucla.edu (J.I.Z), fuyut@microbio.ucla.edu (F.T.), anel@mednet.ucla.edu (A.E.N.)

Figure S-1. Transmission electron microscope (TEM) images of the iron oxide nanocrystals (NCs).

Figure S-2. The mesoporous silica formed large clumps of materials when the reaction temperature was set at over 80° C (left). Low temperature (below 65° C) resulted in materials which consisted of mostly structured mesoporous silica particles with the iron oxide clusters situated on the edges of the silica particles (right).

Figure S-3. TEM image of the iron oxide-mesoporous silica NPs at lower magnification.

Figure S-4. TEM image of the as-synthesized dodecanethiol-capped gold NCs.

Figure S-5. TEM images of the gold-mesoporous silica NPs. The dark gold NCs were incorporated at the center of the NPs.

Figure S-6. TEM images of the as-synthesized oleylamine-capped silver NCs (left) and silvermesoporous silica NPs.

Figure S-7. FTIR spectra of the as-synthesized NPs (left) and after the surfactant removal process (right). The C-H stretch (2850–3000 cm⁻¹) peaks from the CTAB surfactants disappeared after the ion-exchange procedure.

Figure S-8. X-ray diffraction pattern of the iron oxide-mesoporous silica NPs. An interplanar spacing of d(100) = 4.1 nm was calculated from the XRD pattern

Figure S-9. Nitrogen adsorption-desorption isotherm of the NPs after the surfactant removal process showing the type IV isotherm that is typically observed for structured mesoporous materials.

Figure S-10. Pore size distribution calculated by the Barret-Joyner-Halenda (BJH) method shows that the pore diameter of the NPs is approximately 2.8 nm.