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Abstract. Acoustic neuroma surgery is a procedure in which a benign mass is removed from the internal audi-
tory canal (IAC). Currently, this surgical procedure requires manual drilling of the temporal bone followed by
exposure and removal of the acoustic neuroma. This procedure is physically and mentally taxing to the surgeon.
Our group is working on the development of an acoustic neuroma surgery robot (ANSR) to perform the initial
drilling procedure. Planning the ANSR’s drilling region using preoperative CT requires expertise and takes about
35 min. We propose an approach for automatically producing a resection plan for the ANSR that would avoid
damage to sensitive ear structures and require minimal editing by the surgeon. We first compute an atlas-based
segmentation of the mastoid section of the temporal bone, refine it based on the position of anatomical land-
marks, and apply a safety margin to the result to produce the automatic resection plan. In experiments with CTs
from nine subjects, our automated process resulted in a resection plan that was verified to be safe in every case.
Approximately 2 min were required in each case for the surgeon to verify and edit the plan to permit functional
access to the IAC. We measured a mean Dice coefficient of 0.99 and surface error of 0.08 mm between the final
and automatically proposed plans. These preliminary results indicate that our approach is a viable method for
resection planning for the ANSR and drastically reduces the surgeon’s planning effort. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.025002]
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1 Introduction

An acoustic neuroma, which is a widely used misnomer for
vestibular schwannoma because the tumor is not derived from
neurons of the acoustic nerve but rather the Schwann cells of the
vestibular nerve, is a benign tumor originating from the vestibu-
lar nerve. Surgical treatment for acoustic neuroma involves
opening the internal auditory canal (IAC) to access the tumor
and dissecting it from the facial nerve and brainstem. The TAC
is a canal located in the temporal bone that serves as the pas-
sageway for cranial nerves and is the location where acoustic
neuromas form. The location of the IAC is shown in Fig. 1 in
light blue.

Although benign, as this mass grows it can begin to press
against the cochlear nerve that controls hearing, the vestibular
nerves that control balance, and the facial nerve that controls
facial expression, causing loss of hearing, ear ringing, dizziness,
balance problems, and sometimes facial weakness. The most
common presentation is unilateral hearing loss with or without
tinnitus and unsteadiness. Approximately one-third of indi-
viduals have nonaidable hearing at presentation.! After diag-
nosis by MRI, 28% of patients are observed with repeat MRI,
24% treated with radiation therapy, and 48% undergo surgical
resection® via one of three surgical approaches: the translabyr-
inthine approach, the retrosigmoid approach, or the middle
cranial fossa approach. Given (a) the high incidence of
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nonserviceable hearing at presentation and the natural history
of continued hearing loss' and (b) the wide surgical exposure
without the need to retract the brain, the most commonly
used is the translabyrinthine approach, which sacrifices residual
hearing.® In this approach, a mastoidectomy followed by laby-
rinthectomy is performed to obtain access to the exterior bony
wall of the IAC as shown in Fig. 1. During mastoidectomy,
the mastoid region of the temporal bone is drilled away, and
during labyrinthectomy, the semicircular canals of the cochlear
labyrinth are resected. After access to the exterior bony wall
of the IAC is achieved, the bone is thinned until transparent
so that it can be removed gently and safely in order to open
the IAC and remove the tumor. The translabyrinthine approach
puts several demands on the surgeon. The initial drilling step
(mastoidectomy and labyrinthectomy) is physically taxing
and can take 2 to 3 h. In addition, the surgeon must be very
precise during this portion of the procedure in order to identify
and avoid damage to a number of sensitive anatomical structures
that lie along the surgical path. The next step is also challenging.
It is completed after the mastoidectomy when only a thin layer
of bone is left covering the IAC. The surgeon must meticulously
pick the thin bone away in order to gain access to the IAC. The
initial drilling steps increase the likelihood of mental mistakes in
the final portion of the procedure in which the acoustic neuroma
is removed, which, depending on the patient’s anatomy, can
require a high degree of precision.
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Internal
Auditory  Facial
Canal Nerve

Mastoidectomy
Region

Fig. 1 IAC where acoustic neuromas form is shown in light blue out-
line, and the region removed during 48 the mastoidectomy is shown in
red outline. The sensitive inner ear structures are also shown with the
facial nerve depicted in 49 pink and the cochlear labyrinth depicted in
dark blue.

Our group is working toward the development of an acoustic
neuroma surgery robot (ANSR) to perform the initial drilling
procedure to gain access to the IAC. Future cadaveric studies
may show that the ANSR is able to provide safe access to
the TAC. If safe, the ANSR could greatly benefit the surgeon
by decreasing the amount of physical and mental effort
expended prior to the acoustic neuroma identification and
removal step. This robot may directly benefit patients as well
by decreasing the total procedure time, and thus time under
anesthesia, while maintaining the same level of safety and effi-
cacy as the traditional approach. In order for a robot to perform
this drilling procedure, its path must be planned using preopera-
tive CT images. This path must drill through the mastoid region
and reach the IAC while avoiding vital structures such as the
facial nerve. Once the region to be resected is defined, a com-
plete set of instructions for the robot can be determined using
drill path planning techniques that have previously been
developed.* Currently, the drilling path utilized by the ANSR
is manually delineated by the surgeon using custom-developed
image segmentation software. As will be shown in our results
section, manual delineation is prohibitively time consuming,
typically requiring around 35 min of work. In the experience
of the authors (GW and RFL), it also requires great care and
expertise. In this work, we seek to develop an automatic
approach for delineating the resection region using CT images.

The task of automatically delineating the resection
region falls within the field of medical image segmentation.
Segmentation techniques fall broadly into two classes, pixel
classification-based and boundary-based techniques. Pixel clas-
sification techniques include techniques such as thresholding-
based’ and machine learning-based®’ techniques that aim to
label individual pixels. In contrast, boundary-based methods
aim to localize the boundary of the structure of interest. Such
methods include level sets,® active shape models,” snakes,'®
graph cuts,!' and atlas-based methods, in which manually
labeled images, or “atlases,” are used to automatically label
new target images by computing a nonrigid registration
transformation that registers the atlas image to the target
image.'>!> Then the labels that are defined on the atlas are
mapped to the target image using the registration transforma-
tions. More complete reviews of image segmentation methods
are available in the literature.'*'> Delineating a resection region
requires a boundary-based segmentation approach because it is
important that the resection region be of a simple topology (i.e.,
one connected component) and be generally convex in shape to
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permit drilling, and these types of shape constraints are difficult
to implement with pixel classification techniques. A subset of
boundary-based approaches, such as level sets, snakes, and
graph-based techniques, also makes this type of shape constraint
difficult to enforce. Furthermore, these methods also require
globally discriminant features, such as image edges correspond-
ing to a tissue interface, to be present over the vast majority of
the region boundary. This is an issue for our application because
the borders of the mastoidectomy region lie within the temporal
bone and do not correspond to a specific tissue interface. Active
shape models are robust to these issues but require a training set
large enough to capture population shape variance. Thus, we
propose an atlas-based segmentation technique using nonrigid
registration because such techniques are robust to these issues.
They also have the advantage of providing a normalized
anatomical coordinate system, via registration with a known
atlas image, that can be used to enforce spatially varying shape
constraints on the segmentation, as will be presented below.
Our proposed method is a multistep approach in which we
first compute an atlas-based segmentation of the mastoid section
of the temporal bone, refine it using anatomical landmarks, and
finally apply a safety margin to the result, producing a resection
plan that requires only minimal editing by the surgeon.
Automatic delineation of the resection region could lower the
learning curve for surgeons who wish to adopt the ANSR
approach and lead to more consistent plans across surgeons
and patients.

2 Methods

Atlas-based segmentation is an approach in which manually
labeled images, or atlases, are used to automatically label
new target images. In this approach, one or more transforma-
tions are computed that register the atlas image to the target
image. Then the labels that are defined on the atlas are mapped
to the target image using the registration transformations. Prior
work from our group has shown that atlas-based segmentation
techniques can be used to accurately localize certain structures
of the ear that have consistent topology and appearance across
different subjects.'® However, the same techniques are not
directly applicable to localization of the resection volume of
the ANSR. This is because the borders of the mastoidectomy
lie within the temporal bone, which has a pneumatization pattern
that is highly variable. It is well known that atlas-based segmen-
tation techniques are sensitive to such topological differences.
This sensitivity makes atlas-based segmentation techniques
inadequate when used alone.

To account for these issues while still exploiting the atlas-
based approach that was validated in prior studies, a multistep
atlas and landmark-based segmentation approach was devel-
oped. The first step is to segment the boundaries of the mastoid
region of the temporal bone using atlas-based techniques'® to
serve as a coarse unedited segmentation of the resection region.
The atlas-based approach relies on a sequence of linear and non-
linear registrations computed between the target and an atlas
image to automatically map a segmentation of the mastoid
that was manually created in the atlas image to the target
image volume. Typically, with an atlas-based approach, the bor-
ders of the segmentation in the atlas image are defined to match
the structure-of-interest (SOI), the planned region of resection in
this application, as closely as possible. Our SOI has borders that
fall within the pneumatized bone of the mastoid as shown in
Fig. 2 in blue. As mentioned previously, this poses a problem
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Fig. 2 Comparison between surgeon’s manually delineated resection plan (blue) and the segmentation
of the full mastoid region of the temporal bone (red) that is used in our atlas-based segmentation step.

as registration in this area is often inaccurate due to intersubject
variability. To account for this, the initial segmentation volume
in the atlas image is extended to follow the contours of the skull
rather than the SOI itself as shown by the red contour in Fig. 2.
The exterior borders of the red contour are well identified in the
target image via an atlas-based approach.

The next step is to refine the borders of the initial segmen-
tation using a landmark-based strategy based on the decisions
the surgeon typically makes during surgery. This first requires
segmenting the IAC, labyrinth, and facial nerve to serve as land-
marks. The IAC and the labyrinth are localized using atlas-based
techniques'® and the facial nerve is localized using techniques
we have previously developed and validated.!” To refine the
superior boundary of the SOI, the SOI is edited so that no tissue
is resected superior to the labyrinth. The superior boundary can
be defined as a simple axially oriented plane, while the inferior
boundary must be defined as a slanted plane (see Fig. 3). This
permits the inferior boundary of the IAC to be reached while
also allowing the SOI to expand inferiorly away from the
IAC as it approaches the lateral surface of the skull. This con-
straint permits adequate access for surgical tools necessary for
the removal of the acoustic neuroma. To implement this con-
straint, a plane is defined that contains the most inferior
point on the IAC segmentation and two points on the mastoid
tip. The SOI is then automatically updated so that no tissue is
resected inferior to this plane.

Next, the anterior boundary of the SOI is updated to ensure
the anterior border of the IAC can be reached while remaining
posterior to the facial nerve and the portion of the labyrinth that
cannot be resected. As mentioned previously, the semicircular

canals of the labyrinth are removed during the manual drilling
portion of the surgery. While their removal is unavoidable, it is
preferred to remove only portions of the labyrinth needed to gain
access to the IAC. In order to define which portions of the
labyrinth cannot be drilled, the vertices of the labyrinth that
are allowed to be drilled versus those vertices that cannot be
drilled are labeled in the atlas labyrinth surface based on the
surgeon’s recommendations. The labyrinth surface is segmented
in the target image using an atlas-based technique that results in
a one-to-one point correspondence between the atlas and target
surface vertices. Automatically defining the vertices in the target
labyrinth that should not be drilled is done by simply using the
same labels defined in the atlas. Figure 4 shows the two labels as
defined by the surgeon.

To define a 0.5-mm safety margin of bone around the facial
nerve that cannot be drilled, a three-dimensional (3-D) distance
map is computed for the facial nerve. In each axial slice,
isocontours are computed from the distance map 0.5 mm from
the facial nerve. An example slice of this contour as well as its
3-D representation is shown in Fig. 5.

Due to the complex spatial relationship of these structures,
updating the anterior boundary of the SOI to ensure it does not
violate the facial nerve safety margin or the portion of the
labyrinth that cannot be resected cannot be done using edits
defined by simple planar geometry. We thus define a decision
contour in each axial plane and automatically adjust the SOI so
that no tissue is resected anterior to the decision contour in that
axial plane. The contour (an example is shown in yellow in
Fig. 6) is defined as the shortest convex path that connects
the most anterior point of the IAC, S, to the most posterior

Superior Boundary

-
10 mm

-—

(@)

+ Superior

Posterior

Inferior Boundary

—

Lateral

/'

(b)

Fig. 3 The superior and inferior resection boundaries shown (a) with the automated resection surface
included and (b) with the automated resection surface removed. The IAC is shown in cyan, the labyrinth is
shown in magenta, and the automated resection surface is shown in red.
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[ Do-Not-Drill”

15mm

Fig. 4 Labyrinth labels designating the portion of the labyrinth
that should and should not be drilled based on the surgeon’s
recommendations.

Labyrinth
Safety

/contour

Facial

Fig. 5 Example of the 0.5-mm safety contour (shown in yellow)
around the facial nerve (shown in red). The labyrinth is shown in
light blue and the IAC is shown in green. The top figure shows an
axial CT slice, and the bottom shows the 3-D surfaces with the safety
contour corresponding to the axial slice.

Labyrinth

Fig. 6 Example of final contour (shown in yellow) for one axial slice.
The IAC is shown in light green, the facial nerve is shown in pink, and
the labeled labyrinth is shown in dark blue and light blue. The initial
point on the IAC is indicated by the red circle. The end point is indi-
cated by the dark green circle.
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Algorithm 1 Algorithm to compute convex contour C.

Q=S5C=Q
while Q # E

h=

[Ey-Qy,Qu-E,]
IEy—-Qy,Qx—Ex]

j = argmax;(;p=gr - AV i=1:N

Q=P
c=cla

end-while

point on the facial nerve safety margin isocontour, E, and passes
posterior to both the facial nerve isocontour and the portions of
the labyrinth that cannot be resected. The algorithm for deter-
mining the contour path, C, is shown in Algorithm 1.

The algorithm starts by initializing a temporary variable Q to
be equal to S and the path C to contain S. Within the while loop,
{Pi}f\’: | s a set that contains two sets of points: (1) the points
that compose the portion of the labyrinth surface that cannot be
resected and that fall within the specific axial slice of interest
and (2) the points that compose the facial nerve safety margin
isocontour for that axial slice. We aim to find a contour to serve
as a border to the drilling region that is not anterior to any of the
points in {P;}¥ |, and is convex so that drilling into concavities
is not required. This is related to the problem of finding the con-
vex hull of a set of points,'® but can be simplified here as we do
not need a complete convex hull but rather aim to find a convex
path around a set of points. Each iteration of the while loop
updates Q to be the next point along the contour path that is
added to the convex contour C. The first two lines in the
while loop are used to find the point in {P;}¥, such that a
line segment formed by connecting the current path endpoint
Q to that point would have the largest angle in the posterior
direction relative to the vector E-Q. That is then chosen as
the next point added to the contour path. Choosing the next
point to add to the contour path in this way guarantees that
the resulting path is convex and passes posterior to all
{P;}¥.,. The while loop terminates when the final point
added to the contour path is equal to E, the most posterior
point on the facial nerve safety margin isocontour. Once the con-
tour reaches the most posterior point on the facial nerve isocon-
tour, it is extended laterally to the surface of the skull. The steps
of this algorithm are visualized in Fig. 7. In the figure, S, E, Q,
and P; are defined as in Algorithm 1. In the first step, the vector
P,-Q is found to be the one that makes the largest posterior
angle relative to E-Q and therefore is chosen as the next step
in the contour path. Similarly, Ps-Q is found to do the same
in iteration 2. In the third iteration, this is found to be the
case for E-Q, thus completing the process of finding a convex
path from S to Q that does not pass anterior to any {P;}¥_,. This
process of finding decision contours is completed in each axial
slice. Taken together, the decision contours form a 3-D decision
surface. A common issue when analysis is performed slice-by-
slice in this fashion is that it produces an irregular 3-D shape.
However, this issue is avoided here because the contours are
constructed based on smooth 3-D landmarks. The posterior bor-
der of the SOI does not need to be refined as it is well-defined
already by the border of the skull-brain interface.
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S Iteration 2

.P3

Iteration 3

Q=S

P,

E-Q

Fig. 7 Visualization of the contour path finding algorithm. In each iteration, the contour path is grown to
the point in {P,»},-"i1 that makes the widest angle relative to E-Q. The algorithm terminates when the end

point E is reached.

Finally, to account for the fact that surgeons typically desire a
1-mm margin of bony tissue to not be drilled at the borders of
the resection region and to account for up to 1 mm of error in the
drilling system, we apply an erosion to the SOI. A simple global
erosion using a spherical structuring element (SE) in this case is
not desirable as the lateral wall of the SOI on the mastoid is
where the ANSR will begin drilling and must not be eroded.
Instead, a spatially adaptive structuring element (SASE) is
used. The SASE must be a full sphere for most of the SOI to
ensure safety but should be a medial-facing quarter-sphere at
the lateral edge of the SOI to prevent eroding the border of
the SOI at the lateral surface of the skull.

Rather than defining the SASE to sharply transition from full
to partial sphere, the SASE is designed to vary smoothly over
the image space so that the final resection plan will be smooth.
The spatial adaptation function, i.e., the function that defines the
shape of the SASE based on spatial location, cannot be defined
using simple planar geometry due to the contoured shape of the
skull. Instead, the spatial adaptation function is defined using a
radial basis function network approach. To do this, first, a sur-
face defined around the initial segmentation volume in the atlas
image is projected onto the target image through the compound
registration transformation. Figure 8 shows an axial slice of a
target image with the cut of the axial slice through this surface
shown as the blue, cyan, and yellow contour. Each vertex in the
original surface in the atlas image is classified into one of three
groups: vertices in a region that requires a full spherical SE
(cyan), those in a region that requires a quarter spherical SE (yel-
low), and those that fall between these two regions (blue). These
vertex classifications are then identically mapped to the corre-
sponding vertices in the target surface. The colors of the contour
in Fig. 8 show an example result of this process. Next, a

Surface resulting
from landmark-
based refinements
(red)

Original surface: Adaption between
full and quarter sphere (blue)

Original surface:
Full sphere
(cyan)

Original surface:
Quarter sphere
(yellow)

Final resection
plan resulting
from both SASE
and erosion (pink)

Fig. 8 The SASE process. Light blue circles show the SE that is being
used for the voxel of interest (orange x). The dashed orange box sur-
rounding the SE shows the range of the SE. The initial mastoid seg-
mentation surface is shown in cyan, blue, and yellow. The resection
plan prior to erosion is shown in red (most of the red contour is
occluded by the cyan, blue, and yellow contour) and the resulting
resection plan after erosion is shown in magenta.
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Gaussian radial basis function G, j; (x,y,z) is defined in the
target image at the location of each i’th surface vertex v; in
the group of N vertices classified in the cyan or yellow groups.
Finally, the spatial adaptation function can be defined using the
network of radial basis functions as

N DG, (x.y.2)

D(x,y,z) =
( ) N1 Goi(x,y.2)

6]

where o is selected to be 2 mm, D; represents the fraction of the
sphere of the SE associated with 7;, and is equal to 1 for the cyan
group and 0.25 for the yellow group, and D(x, y, z) defines the
fraction of the sphere that we select to be used for the SE at
location x,y, z in the target image. In summary, the shape of
the SE is defined by Eq. (1) as a weighted average of the SE
shape defined at sites around the initial segmentation surface,
where weights are selected based on the distance to each site.
Medially, the SE is a full sphere as shown in “1” in Fig. 8.
Further laterally over the mastoid, in region “2,” the SE sphere
becomes a fraction of a sphere. Finally, at the lateral edge of the
mastoid, region “3,” the SE is its smallest at a quarter of a
sphere. The SOI volume that has been refined using the land-
mark-based scheme described above (shown as red contour in
Fig. 8) is eroded using the SASE with a radius of 2 mm (shown
as cyan SEs in the figure) to add a safety margin and account for
targeting error, resulting in a final automatic resection volume
(shown as magenta contour in the figure). Note that while the
spatial adaptation function in Eq. (1) is defined based on the
initial segmentation surface (multicolored contour), it is a 3-D
function and thus can be used to apply the SASE to erode
the refined (red contour) rather than the initial segmentation.
A summary of the combined steps for the multistep atlas and
landmark-based segmentation approach described is shown in
Fig. 9.

To validate the safety of the automatic resection plan, first,
the surgeon manually delineated a maximum safe drilling
volume from scratch for each patient, without benefit of the
automatic resection plan. This required 35 min from the surgeon
per patient on average. Then, the percentage of voxels of the
automatic resection plan located inside the manually defined
maximum drilling volume was calculated. Some difficulty
was encountered in defining a truly maximum drilling volume
due to differences between the region that is typically drilled in
surgery and additional regions that may not always be resected
but are still safe to drill. In addition, there are some difficulties in
precisely defining a 3-D volume by manually delineating a
sequence of two-dimensional slices. To account for this, any
voxels in the automatic plan that were located outside the maxi-
mum drilling region were then examined by the surgeon and
further labeled as safe or unsafe. To verify that the automatic
resection plan is functional, the surgeon was instructed to
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Fig. 9 Flowchart summarizing the multistep atlas and landmark-based segmentation approach dis-

cussed in the methods section.

Table 1 Quantitative validation results for automatic resection plans.

Patient 1 2 3 4 5 6 7 8 9 Mean  Worst case
% Within maximum 99.07 9546 98.79 99.06 97.92 9298 90.96 93.57 98.61 96.27 90.96
Verified safe Yes Yes Yes Yes Yes Yes Yes Yes Yes N/A Yes
Max surface error (mm) 1.88 1.96 2.74 4.98 3.84 1.73 2.63 3.1 1.29 2.69 4.98
Mean surface error (mm) 0.04 0.05 0.09 0.09 0.17 0.09 0.06 0.1 0.06 0.08 0.17
Dice coefficient 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.97 0.99 0.99 0.97
Time to edit automatic plan (min) 3:00 1:48 3:00 2:19 6:02 1:58 2:15 2:38 2:08 2:08 6:02

make any adjustments to the automatic resection plan that would
be required so that when the ANSR finishes the drilling, the
surgeon would need only to thin the bone around the IAC to
reach the acoustic neuroma and would be provided adequate
working space to do so. The adjusted plan was then compared
to the automatic plan using surface distance measurements and
Dice similarity coefficient (DSC)."

3 Results

The segmentation procedure described above was performed on
nine separate patient CT scans: five patients and four cadavers.
Results are shown in Table 1. A mean of 96% of resection plan
voxels was found to be within the maximum region. Notice that
the lower amount of voxels found within the maximum region is
for the cadaver images (6 to 9).

This most likely is caused by the fact that the cadaver images
were acquired with a cone beam scanner that has lower signal-
to-noise ratio compared to the clinical scans acquired for the
patients, which made it more difficult to manually identify a
maximum region and to generate an automatic resection plan
due to a decrease in registration accuracy. The few voxels
that were located outside the maximum for each patient were
examined, and these were verified by the surgeon as voxels
that could still be safely drilled. Good agreement is seen
between the automatic and adjusted surfaces with small mean
and maximum surface errors of 0.08 and 2.69 mm, respectively,
and a high average DSC of 0.99 on average. 3-D renderings of
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two of our resulting surfaces that correspond to the surface with
the smallest max surface error and the largest max surface
error (cases 9 and 4) are shown in Figs. 10 and 11, respectively.
In the figures, the automatically generated resection plans are
color-mapped with distance to the border of the adjusted plan.
The highest errors occur medially or around the IAC, indicating
that our plan was conservative in this region.

In addition, we examined the distances from the facial nerve
for all subjects for both the final automated resection plan
(Fig. 12) and the manual resection plan (Fig. 13). The plots
show the distribution of total volume to be resected across all
cases as a function of distance to the facial nerve for the auto-
matic and manual resection plans, respectively. Only distances
up to 9 mm were included as the closest distances are the most
relevant. These plots also show good agreement among the

I1.3mm

0.7 mm

I0.0mm

Fig. 10 Resection plan for the best case color-mapped with error
distance.

Posterior

Lateral

Inferior
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Fig. 11 Resection plan for worst case color-mapped with error
distance.
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Fig. 12 Bar plot of total automatic resection plan volume as a function
of the distance to the facial nerve.

"

Distribution of Dist: betv 1 Manual R
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Fig. 13 Bar plot of total manual resection plan volume as a function of
the distance to the facial nerve.

plans. However, the manual resection plan approaches 1 mm
distance from the facial nerve while the automated plan has a
minimum distance of 2.5 mm. This shows again that our auto-
mated resection plan is overly conservative and prioritizes the
safety of the facial nerve.

Journal of Medical Imaging

025002-7

4 Conclusions

In this study, we present the first approach for automatically
determining patient-specific resection plans for acoustic neu-
roma surgery. Another group has developed techniques for seg-
mentation of the exterior borders of the mastoid bone.?’ The
exterior borders of the mastoid are defined by a smooth bony
surface with consistent topology, thus it lends itself well to
an atlas-based segmentation approach alone. Our problem is
distinct in that we need to identify a drilling region within
the mastoid bone. The border of our drilling region lies
where there exists pneumatized bone, which has unpredictable
topology across individuals, thus requiring a unique combined
atlas-based segmentation and landmark-based approach. Our
approach could be beneficial in other applications aimed at seg-
menting tissue for resection with spatially varying constraints on
the resection volume, or in other general segmentation applica-
tions in which some borders of the region of interest are well
defined by image information while others are definable only
by their spatial relationship with other structures and are not
easily localizable with standard segmentation techniques.

Our approach was verified to be safe in every case. In all
cases, the surgeon edited the resection plan to move its border
closer to the IAC. At this time, it is not possible to perform the
same edits automatically and still conform to the safety margin
criteria we have defined. However, editing the automatic plan
required an average of only 2 min of work by the surgeon,
which represents a drastic reduction in required effort compared
to manual planning, requiring an average of 35 min. In all
instances where edits were made, the surgeon was increasing
the drilling volume. This shows that our plan was generally
conservative rather than unsafe, which is preferred. While
this preliminary study is relatively small (N =9), it demon-
strates the promise of our proposed method. In future work,
we will evaluate our approach on a larger dataset to confirm
our findings.
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