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Abstract. A generalized wavelet domain image fusion method which imposes weights on each
of the wavelet coefficients for improving the conventional wavelet domain approach is pre-
sented. The weights are controlled in the least-squares sense for enhancing the details while
suppressing excessive high frequency components. In experiments with IKONOS and
QuickBird satellite data, we demonstrated that the proposed method shows a comparable or
better performance than conventional methods in terms of various objective quality metrics.
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1 Introduction

For decades, various image fusion techniques have been developed to obtain a high-resolution
multispectral (HRM) satellite image from a set of sensor data: a high-resolution panchromatic
(HRP) image containing only intensity information and several low-resolution multispectral
(LRM) images with color information.1 Among them, the intensity-hue-saturation (IHS) domain
method and principal component analysis (PCA) method replace the intensity component of LRM
images with that of an HRP image and a PCA-applied HRP image, respectively.1,2 These methods
are relatively simple and easy to implement but known to cause distortion in color information.

Recently, wavelet decomposition was adopted for the satellite image fusion, which is reported
to have less color distortion.3–5 In the conventional wavelet-based methods, the “à trous” algo-
rithm is known to be suitable for obtaining wavelet planes of satellite images,3,6 where the wavelet
plane is computed from the difference between the given image and its filtered image with the B3

cubic spline function. The wavelet-based methods are generally classified into the substitution
method [substitute wavelet (SW)] and the additive method [additive wavelet (AW)] according to
the merging strategy of wavelet planes.3 In the substitution method, the wavelet planes of LRM
images are substituted by thewavelet planes of a panchromatic image, whereas those are added by
the wavelet plane of a panchromatic image in the additive method. Since the SW discards high
frequency components of the LRM images, it usually fails to attain sufficient high frequency
details and sometimes loses the information in the LRM images. In contrast, the AW considers
the high frequency components of all the LRM images and the HRP image, and thus possibly
introduces excessive high frequency details in the synthesized image. Accordingly, there have
been efforts to overcome these drawbacks using some improved wavelet-domain methods utiliz-
ing weighted merging.4,5 Otazu et al.4 proposed a method in which the wavelet plane of the HRP
image is added to each LRM image in proportion to its color intensity value [AW-luminance
proportional (AWLP)], whereas Kim et al.5 proposed to add the difference between the wavelet
planes of HRP image and each LRM image with or without considering the relative radiometric
signature of the LRM images [improved AW (IAW) and IAW proportional (IAWP)].
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To develop a more optimized way of adding the wavelet planes, we propose a generalized
fusion equation in the form of a weighted composition of wavelet planes, where the weights are
determined by the least-squares method. The proposed fusion equation includes wavelet planes
of HRP, LRM, and degraded HRP images to control the high frequency injection. In the experi-
ments with IKONOS and QuickBird satellite images, the proposed method is compared with the
conventional methods in terms of various objective quality metrics. The results show that the
proposed method does not introduce noticeable color distortion and enhances the details better
than the conventional methods.

2 Proposed Wavelet-Based Fusion Method

We propose a wavelet-based image fusion method which extracts wavelet planes by the “à trous”
algorithm3 and combines them using a generalized fusion equation. The weights included in the
fusion equation are determined by the least-squares method.

2.1 Generalized Fusion Equation

The generalized fusion equation includes n wavelet planes and is defined as

HRMi ¼ LRMi þ αi
Xn
j¼1

ωHRP;j þ βi
Xn
j¼1

ωLRMi;j þ γi
Xn
j¼1

ωLRP;j; (1)

where HRMi is the i’th HRM image that we want to obtain, LRMi is the i’th LRM image, and αi,
βi, γi are the weights for the i’th multispectral image fusion. In this fusion equation, the low-
resolution panchromatic (LRP) image is a spatially degraded image of HRP through the decima-
tion (by four) and interpolation (by four), and ωI is the wavelet plane of the image I, e.g., ωHRP is
the wavelet plane of the HRP image. Each LRM image is interpolated (by four) and then added to
the weighted sum of the HRP wavelet planes. Theweighted LRMwavelet planes and LRP wavelet
planes are added or subtracted to inject high frequency components without introducing excessive
high frequency components. The “generalized” equation means that our fusion Eq. (1) includes the
conventional wavelet-based fusion methods by setting the weights as shown in Table 1.

As shown in Fig. 1, the LRM images are enlarged to the size of the HRP, and then histogram
matching between the HRP and the intensities of the LRM is performed. For the wavelet decom-
position of these images, we adopt the “à trous” algorithm as presented in Refs. 3–6. The “à
trous” algorithm is known to be more suitable for image fusion than the Mallat algorithm in
terms of artifacts and structure distortion, because the “à trous” algorithm is an undecimated
and dyadic algorithm which preserves the structure continuity, whereas the Mallat algorithm
is a decimated algorithm which causes the loss of linear continuity.3,6

2.2 Computation of Weights by Least-Squares Method

The fusion equation (1) can be rewritten with matrices as

HRMi ¼
h
LRMi

P
n
j¼1 ωHRP;j

P
n
j¼1 ωLRMi;j

P
n
j¼1 ωLRP;j

ih
1 αi βi γi

i
T
; (2)

Table 1 Various wavelet-based fusion algorithms derived from Eq. (1).

Substitute wavelet 3
Additive

wavelet (AW)3
AW-luminance

proportional (AWLP)4
Improved
AW (IAW)5

IAW proportional
(IAWP)5

αi 1 1 Λi 1 Λi

βi −1 0 0 0 0

γi 0 0 0 −1 −Λi

Λi≜
LRMi

ð1∕nÞ
P

n
i¼1

LRMi
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which is in the form of Yi ¼ Aiwi. Based on the matrix representation, finding weights (αi, βi,
γi) is an over-determined problem and the weight vector wi can be computed by using the pseu-
doinverse as

wi ¼ ðAT
i AiÞ−1AT

i Yi: (3)

In the actual implementation, since the HRM image Ai is not available, we perform the
estimation in the lower resolution. This approach is motivated by an example-based super-
resolution, where the relation between an original image patch and the corresponding high-
resolution one is extracted using the relation between the original image patch and its degraded
(i.e., blurred and downsampled) one.7 This process is explained in Fig. 1, which shows that
the LRP and LRM images are degraded by decimation and interpolation to generate LLRP
and LLRM images (lower resolution images of LRP and LRM), respectively, and Ai is built
in this lower resolution. In the computation of weights by the least-squares method in the
lower resolution, however, the relation between the HRM images and LRM images is possibly
different from that between the LRM images and the LLRM images, which might degrade the
quality of the fused multispectral images. To compensate for the discrepancy, we adopt a scaling
factor which is multiplied by the weights. That is, the weights αi, βi, and γi are computed in
the lower resolution and then multiplied by the scaling factor.

3 Experimental Results

Twenty-eight IKONOS and 10 QuickBird images were used to evaluate the performance of the
proposed fusion method. The spatial resolutions for the HRP and LRM images are 1 and 4 m,
respectively. The HRP size is 512 × 512 and the LRM size is 128 × 128. It is difficult to measure
the quality of the synthesized HRM images objectively since the original HRM images for the
reference do not exist. For the quantitative comparison of the fused image, we used the original
LRM images with a 4-m resolution as the reference HRM images. Then, the reference HRM
images are compared to the HRM images which are obtained by fusing the degraded HRP and
LRM images from the original satellite images to 4 and 16-m resolution, respectively.

Figures 2 and 3 show the HRM images synthesized by the proposed method and the existing
algorithms, such as IHS,2 substitute wavelet intensity (SWI),8 and IAWP.5 The reference HRM and
input LRM images are also included. In these figures, the input LRM images are upsampled by
four and interpolated for the purpose of comparison. In Fig. 2, color distortion is noticeable for the
IHS method, whereas it is not noticeable for the wavelet-based methods (SWI, IAWP), including
the proposed method. It can also be seen that the details are well restored in the synthesized HRM
image by the proposed algorithm when compared with the others (Fig. 3). For the objective

Fig. 1 The block diagram for the proposed image fusion procedure.
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evaluation, we compute various visual quality metrics,1 such as correlation coefficient (CC), root
mean squared error (RMSE), mean structural similarity (MSSIM), universal image quality index
(UIQI), quality nonrequiring reference (QNR), spectral angle mapper (SAM), ERGAS, and peak
signal-to-noise ratio (PSNR). For the metrics CC, UIQI, MSSIM, QNR, and PSNR, a larger value
means a better performance, whereas a smaller value implies better performance for RMSE,
ERGAS, and SAM. The overall visual quality assessments are summarized in Tables 2 and 3.
The CPU times for the MATLAB® implementation on a personal computer (Intel Core i5
CPU 750 @2.67 GHz) are also measured for the assessment of the computational complexity.
Approximately 80% of the time for the proposed algorithm is occupied by the extraction of
the wavelet planes for the HRP, LRM, and LRP images. IHS, Gram-Schmidt adaptive (GSA),
GIHSA, AdapIHS, AdapCS, and MMSE are not based on the wavelet decomposition, whereas
SWI, AWLP, IAWP, NAW, and the proposed algorithms are based on the wavelet decomposition.
In Tables 2 and 3, the best two results for each assessment are highlighted in bold. The assessments
show that the proposed algorithm is included in the best two for all the objective evaluation metrics
except for the UIQI and QNR tests in the QuickBird images, where the proposed algorithm takes
third place for both cases. The performance of the proposed method is comparable to the MMSE
method9 for the IKONOS data and the proposed method is slightly better than the MMSE except
for UIQI in the QuickBird test. The full-size synthesized images for all the algorithms used in the
comparison andMATLAB p-codes for the proposed algorithm are available at http://ispl.snu.ac.kr/
~idealgod/image_fusion.

The scaling factor multiplied by the weights is set to 0.65, which is experimentally chosen
and applied to all the tested images. Figure 4 shows the performance variation with respect to the
scaling factor for IKONOS images. As the scaling factor increases, more high frequency com-
ponents are injected, whereas a small scaling factor induces less sharpened results. We choose

Fig. 2 Results of fusing IKONOS1 images [cropped images (64 × 64) from fused images
(512 × 512)]. (a) Reference HRM, (b) input LRM, (c) IHS, (d) SWI, (e) IAWP, (f) proposed method.

Fig. 3 Results of fusing IKONOS2 images [cropped images (64 × 64) from fused images
(512 × 512)]. (a) Reference HRM, (b) input LRM, (c) IHS, (d) SWI, (e) IAWP, (f) proposed method.
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Table 3 The spectral quality assessment of image fusion methods (averaged values for 10
QuickBird images). The best two results for each assessment are highlighted in bold.

PSNR CC MSSIM UIQI QNR RMSE ERGAS SAM Time (ms)

IHS 32.4 0.934 0.926 0.952 0.948 6.52 4.35 2.98 29

SWI 34.1 0.951 0.937 0.958 0.967 5.52 3.72 3.00 83

AWLP 34.5 0.958 0.946 0.964 0.966 5.28 3.54 2.86 225

IAWP 34.5 0.958 0.947 0.964 0.966 5.27 3.54 2.86 51

GSA 32.6 0.934 0.923 0.947 0.967 6.51 4.34 3.12 33

GIHSA 30.9 0.898 0.902 0.927 0.969 7.48 5.03 3.34 27

AdapIHS 34.7 0.958 0.944 0.959 0.961 5.22 3.53 2.85 583

AdapCS 34.5 0.959 0.939 0.953 0.937 5.55 3.81 3.21 1183

NAW 34.2 0.954 0.940 0.959 0.967 5.42 3.65 2.99 103

MMSE 34.5 0.957 0.948 0.958 0.984 5.38 3.49 2.94 1999

Proposed 34.9 0.959 0.949 0.960 0.968 5.11 3.49 2.79 456

Fig. 4 Performance variation of the proposed method with the scaling factor.

Table 2 The spectral quality assessment of image fusion methods (averaged values for 28
IKONOS images). The best two results for each assessment are highlighted in bold.

PSNR CC MSSIM UIQI QNR RMSE ERGAS SAM Time (ms)

IHS2 24.7 0.956 0.907 0.941 0.929 15.3 4.04 4.68 19

SWI8 25.9 0.963 0.901 0.947 0.967 13.3 3.49 4.94 83

AWLP4 26.6 0.968 0.919 0.955 0.965 12.7 3.36 4.63 222

IAWP5 26.6 0.968 0.920 0.955 0.964 12.7 3.35 4.63 53

GSA10 25.4 0.958 0.909 0.944 0.965 14.0 3.63 4.94 32

GIHSA10 25.5 0.965 0.908 0.944 0.968 13.7 3.63 5.00 27

AdapIHS11 25.8 0.966 0.905 0.943 0.963 13.6 3.60 4.92 593

AdapCS12 25.5 0.962 0.888 0.935 0.956 14.5 3.79 4.81 1226

NAW13 26.1 0.964 0.905 0.948 0.967 13.1 3.45 4.94 103

MMSE9 26.7 0.969 0.931 0.964 0.969 12.0 3.15 4.71 1970

Proposed 26.7 0.968 0.927 0.961 0.977 12.1 3.16 4.60 463
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0.65 as the optimal scaling factor since a scaling factor of 0.65 yields the lowest accumulated
ranking values (¼13) for all the evaluation metrics (cf. 15 for 0.75, 22 for 0.55).

4 Conclusion

In this article, we have proposed a wavelet domain image fusion method, which can be con-
sidered a generalization of the existing methods. The fusion equation consists of the weighted
composition of wavelet planes, which includes the terms for enhancing the details and avoiding
excessive high frequency components as well. The weights are computed by the least-squares
method in the low resolution, and the scaling factor is exploited to compensate the discrepancy
incurred in the lower resolution computation of the weights. Experimental results show that the
proposed method reduces color distortion and provides high-resolution details.
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