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Abstract. Radiomics has shown promising results in several medical studies, yet it suffers from a limited dis-
crimination and informative capability as well as a high variation and correlation with the tomographic scanner
types, pixel spacing, acquisition protocol, and reconstruction parameters. We propose and compare two meth-
ods to transform quantitative image features in order to improve their stability across varying image acquisition
parameters while preserving the texture discrimination abilities. In this way, variations in extracted features are
representative of true physiopathological tissue changes in the scanned patients. A first approach is based on a
two-layer neural network that can learn a nonlinear standardization transformation of various types of features
including handcrafted and deep features. Second, domain adversarial training is explored to increase the invari-
ance of the transformed features to the scanner of origin. The generalization of the proposed approach to unseen
textures and unseen scanners is demonstrated by a set of experiments using a publicly available computed
tomography texture phantom dataset scanned with various imaging devices and parameters. © 2019 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.024008]
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1 Introduction
Radiomics aims at extracting and analyzing large amounts of
quantitative image features (e.g., volume, shape, intensity,
and texture) from medical images, including computed tomog-
raphy (CT), positron emission tomography, and magnetic reso-
nance imaging to improve decision-support, mostly in cancer
treatment. The number of related papers has followed an
exponential growth since the first publications in 2010.1–3 In the
context of oncology, radiomics allows establishing complex
links between tumoral regions of interest (ROI) and clinical
endpoints, such as diagnostic (presence and type of cancer),4

prognostic (information on overall survival and recurrence),3,4

or predictive (treatment responses and benefits)2 analyses.
Various organs and cancer types have been analyzed with radio-
mics including lungs,3–10 liver,11 breast,11,12 head-and-neck,3 and
brain gliomas.13 Radiomics generally refers to an interlinked
sequence of processes including image acquisition and
reconstruction, ROI segmentation, quantitative feature extrac-
tion, and analysis. This study focuses on the impact of the
first two processes, namely acquisition and reconstruction,
on the values of quantitative features. The standardization of
features can also impact the segmentation of tumor regions
when the latter involves the spatial clustering of features.

Uncovering disease characteristics or predicting a response
to treatment relies on the fact that the extracted features describe
the patients’ biomarkers (physiopathological effects) independ-
ently from the image acquisition device or protocol. Quantitative
features extracted from an ROI in scans of the same person
acquired in different hospitals should ideally be identical (with-
out considering temporal variations due to disease evolution).

Scanning protocols and machines are frequently changed
over time and vary across hospitals while even the same scan-
ners can be configured in different ways and software on the
scanners is regularly updated without knowing details of the
impact of updates (such as noise reduction algorithms) on the
produced images. While the ability of clinicians to take these
variations into account can be limited due to their experience
and knowledge, radiomics biomarkers such as texture features
lack this abstraction level and can be strongly impacted by these
changes.7 Several studies have shown a high variability and
dependence of texture radiomic features across scans, limiting
their interpretability and comparison.5,7,8,14,15 Yet, little attention
has been devoted to reducing this variation and many radiomic
studies are based on very clean data from a single scanner type
and often with the exact same protocol, which is not realistic in
standard clinical situations.

The influence of image processing and of feature extraction
algorithms and implementation on the feature variation is
tackled by the image biomarker standardization initiative.16

Various studies have evaluated the reproducibility and stability
of texture features and the influence of scanner variation and
reconstruction settings.5,6,8,14,17–20 These studies generally aim
at selecting stable and repeatable texture features for a given
task with test-retest and inter-rater reliability analysis, without
proposing a method to standardize unstable features. The
main limitations of such studies are their lack of generalization,
as the reproducibility is valid for only one scanner and one task,
as well as the questionable assumption that the analyzed body
part appearance has not changed between acquisitions. A study
of bias and variability of texture features across synthetically
simulated scans with various image acquisition settings
and reconstruction algorithms was proposed in Ref. 15. The
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simulations included modifying the slice thickness, in-plane
pixel size, dose, the task-transfer function, and noise power
spectrum. The extracted features were compared with those
from an original phantom scan from which the synthesized
scans are computed. The results show that image acquisition
and reconstruction conditions lead to substantial bias and vari-
ability of the texture features.

Texture phantom images allow evaluating the variation of
features extracted from different scanners and with varying pro-
tocols of an unchanged body. It avoids repeatedly exposing a
patient to radiation and tiring protocols,7 and only presents slight
differences in positioning between scans. Recent stability analy-
ses studied the use of phantom volumes, similar to those used in
this paper, to ensure the similarity of the scanned body between
consecutive scans and across multiple scanners.7,21 CT images
were preprocessed in Ref. 10 by resampling and filtering to
standardize image pixel sizes, resulting in a reduced variability
of radiomic features. Another phantom study was proposed in
Ref. 22 to evaluate intensity and texture features across varying
CT acquisitions of the same phantom. Again, the same conclu-
sion was drawn, claiming that quantitative changes may be
primarily due to acquisition variability rather than from real
physiopathological effects.

Finally, an excellent systematic review of the repeatability
and reproducibility of radiomic features with and without
phantom studies was recently presented in Ref. 23. We refer
readers to this work for more details on the mentioned analyses
and a more exhaustive literature review.

Recently, a study was performed on the dependency of
deep features from image pixel sizes across CT scanners.24 The
features were extracted from pretrained convolutional neural
networks (CNN), mainly VGG networks of different depths.
A normalization method was proposed based on a holistic
assumption of quadratic and cubic proportionality between
the features and the pixel size, with limited success in removing
the dependency of some of the deep features. Another study of
deep learning for CT texture classification was performed in
Ref. 25, in the context of image quality after reconstruction

of CT images with reduced radiation doses. This study used
a phantom dataset but considered a classification accuracy rather
than a standardization of features presented in this paper.
By focusing on the accuracy, classification may achieve an
excellent class recognition, although the extracted features
may be noninformative for a radiomics task (e.g., average of
Hounsfield units (HU) in the phantom dataset in Ref. 7) and
highly correlated with scanner parameters. With motivations
similar to ours, yet without the use of phantom volumes that
ensure the stability of the measured body to isolate the variabil-
ity due to scanners, a simple harmonization method named
ComBat was recently used in Ref. 11 to standardize radiomic
texture features.

The adequacy of deep learning for texture analysis and
medical imaging was extensively demonstrated in various
studies.13,26–29 Besides this, the complementarity of deep and
radiomic features was demonstrated in Refs. 4 and 30 for the
prediction of patient survival in the context of lung cancer
and in Ref. 12 for breast cancer detection. This paper is therefore
not dedicated to yet another illustration of the informativeness
and generalization of these features in a classic radiomics task.
Our goal is to demonstrate that the performance and reliability of
handcrafted and deep descriptors can be further improved by
using phantom images to learn a feature stability transformation,
allowing robust generalization to unknown textures and unknown
scanners. The obtained features are robust to changes in the
acquisition and reconstruction methods. This allows oncologists
to better evaluate and compare patient biomarkers over time and
across scanners and hospitals, while predictive models based
on the standardized features will achieve better generalization.
An overview of the proposed approach is shown in Fig. 1.

This work expands our previous study,31 in which a first
standardization method was proposed using neural network
training on phantom CT scans. The main extensions proposed
in this paper are summarized as follows. (a) Experiments are
extended to the analysis of a generalization to unknown scan-
ners. The networks are trained to standardize features from a set
of scans using the phantom images. The resulting features

Fig. 1 Overview of the proposed standardization of visual features extracted from CT scans of various
scanners.
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extracted from new scans acquired and reconstructed differently
become also more stable. (b) Domain adversarial training is pro-
posed to avoid that the extracted features contain information
about the domain of origin, i.e., the scanner and protocol.
(c) Principal component analysis (PCA) and t-distributed sto-
chastic neighbor embedding (t-SNE) dimensionality reduction
methods are used for visualization of the learned features to
support the analyses. (d) The transfer learning of the CNNs is
evaluated by comparing pretrained networks with those trained
from scratch.

2 Material and Methods

2.1 General Overview

For a given ROI in an image, a stack of slices or a volume I, we
extract a feature vector g ¼ gðIÞ. The function gðIÞ is generally a
set of classic radiomic features, e.g., first-, second-, and higher
order statistics of pixel values (see Sec. 2.4). These radiomic
features were shown to strongly vary for a same phantom texture
scanned across different scanners with varying protocols.5,8,14

More discriminative features can also be extracted with CNNs.
Using a phantom of texture volumes, we train neural net-

works on top of the image features to classify slices from a sub-
set of textures from 17 scans acquired with different scanners
and protocols and reconstructed with different algorithms. In
this way, hidden layers converge to similar values for each tex-
ture type, where the extracted features become standardized for
the considered set of scanners. We can then test whether this
standardization generalizes to another set of textures, implying
a reduced variability of the features across scanners essential to
robust clinical analyses. With a perfect standardization, the
obtained features should be nearly identical across scans and
informatively characterize the textures (thus, the features should
be unable to identify the scanner type). The training process is
therefore used to maximize interclass feature variation while
minimizing intraclass feature variation.

We extract observed features gmk;l, where k ¼ 1; : : : ; K
represents the class, l ¼ 1; : : : ; L is the scan of origin (including
variation of scanner type, acquisition protocol, and
reconstruction algorithm) and m is the feature extraction
method. In our setup, we have L ¼ 10, K ¼ 17, and
m ∈ frad:; vgg; res:g standing for radiomics, VGG, and
ResNet. For each feature extraction method m, we want to
find a feature transformation τmðgmk;lÞ that both (a) minimizes
the variation due to scanner, i.e., τmðgmk;lÞ is independent from
l and (b) maintains the discriminability of the features, i.e.,
high-throughput quantitative features with optimal class sepa-
rability and informativity of texture variations. We will drop
the m index for readability when it is not essential, or use it

only for the features, implying it for the transform function,
e.g., τðgmÞ. This problem statement is summarized in Fig. 2.
The extraction and transformation are in practice performed
at a slice level, whereas gk;l and τðgk;lÞ are averages of the
features and of their transformed counterparts within texture
volumes. We add an index s (e.g., gk;l;s) to refer to features
extracted from a single slice. Note that averaging the features
within volumes (2.5D) is a common practice in radiomic studies,
and the phantom volumes can be considered homogeneous
(stationary)32 as each of them is composed of a unique material.

2.2 Dataset

We use the credence cartridge radiomics (CCR) phantom dataset
developed in Ref. 7. The physical phantom contains 10 volumes
of textures (cartridges) as shown in Fig. 3. The cartridge mate-
rials were selected to span the range of radiomic features found
in scanned lung tissue and tumors (nonsmall cell lung cancer),
for example, in terms of density and texture. The developed
methods are therefore strongly expected to generalize to clinical
images. The dataset consists of 17 CT scans of this volume
produced by different scanners (from the manufacturers GE,
Philips, Siemens, and Toshiba), in different centers and with
different acquisition protocols and reconstruction algorithms.
Although it is a three-dimensional volume, it is designed for
the analysis of two-dimensional (2-D) slices (the method is
termed 2.5D in Ref. 7 and commonly used in medical imaging).
Contour positions of individual slices inside the cartridges
(6 to 11 slices per cartridge) are provided to extract the features.
More information about the scanners and the scanning protocols
can be found in Ref. 7. The dataset is publicly available, and
the experiments are thus fully reproducible.

2.3 Preprocessing

The features are extracted from 16 cm2 slices as provided in
Ref. 7. The slices are resized using bilinear interpolation to
either (a) in-plane pixel spacing of 1 mm2 for the radiomic
features as suggested in Ref. 7, or (b) to the CNN input size
for computing the deep features (224 × 224). The HU range
½−1;409; 747� is linearly converted into the interval [0; 255]
for the input of CNNs as in Ref. 30. This reduces the dynamic
range in the images but we expect these effects to be limited.
The effect of interpolation is limited as the textures are relatively
homogeneous in the phantom and in addition we learn a stable
representation of the texture after interpolation. For the CNNs,
a three channel input is obtained by duplication in order to use
networks pretrained on color images from ImageNet (more
information on transfer learning in Sec. 4.3). As a standard pro-
cedure to keep the same pixel value range as the pretrained

Fig. 2 Overview of the problem statement in which the function τ is sought to obtain informative features
ideally independent of the scanner types.
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domain, the image intensity histograms used with the pretrained
CNNs are centered and scaled similarly to the images used for
pretraining (i.e., ImageNet mean subtraction and division by
the ImageNet standard deviation).

2.4 Feature Extraction

As a baseline, we use radiomic features extracted with the
pyRadiomics toolbox9 with a fixed bin width of 25. A 97-
dimensional feature vector is extracted from each slice. The
extracted features include intensity features, i.e., first-order sta-
tistics and texture features including gray-level co-occurrence,
run length, size zone, and dependence matrices as well as a
neighboring gray tone difference matrix.

As a second set of features, we use VGG1933 and ResNet-
5034 to extract deep features from the slices. We remove the
prediction layer and extract the penultimate layer output. The
VGG and ResNet-50 features are of dimension d ¼ 4096 and
d ¼ 2048, respectively.

By averaging the features gk;l;s over all slices within each
cartridge, we obtain the feature vectors gk;l.

2.5 Feature Transformation

We design a two-layer multilayer perceptron (MLP) with 100
hidden neurons (with standard dropout 0.5 and ReLU activa-
tion). The design of this network is motivated by a simple non-
parametric yet nonlinear transformation where the 100 neurons
are used to correspond to the radiomic feature dimensionality
(97) for comparison. For a given feature extraction method
m, the MLP takes the observed features gmk;l;s as input and is
trained to output a class probability with five training texture
classes (i.e., five output neurons). After training (see Sec. 2.6),
the output of the hidden layer is used as a 100-dimensional
feature vector that performs the transformation τðgk;l;sÞ. Once
again, by averaging the features τðgk;l;sÞ within each cartridge,
we obtain the feature vectors τðgk;lÞ.

The MLP performs a transformation of the feature space into
a discriminative and clustered space, in which the features
τðgk;lÞ are more stable to scanner variability. This is achieved
by learning from the set of training slices and the ground
truth of the texture types and assuming that the scanner invari-
ance of the learned representation will generalize to unknown

tissue types if the changes are relatively systematic. We then
evaluate the stability of the original features gmk;l and their
transformed counterparts τðgmk;lÞ for all the methods m.

When finetuning the CNNs, the MLP is connected to the
penultimate layer that outputs gk;l;s, and we freeze all but the
last two trainable layers (MLP layers) as in a standard fine-
tuning. This is equivalent to training the MLP on the extracted
features gk;l;s. An overview of the deep feature training and
extraction is shown in Fig. 4.

2.6 Training

We randomly split the dataset (100 repetitions) to train the net-
works to classify half of the texture types. For each run, five
texture volumes from all the 17 scans are used for training,
and the remaining five are kept for testing. A number of slices
ranging from 6 to 11 depending on the scans and cartridges are
available from each cartridge, as proposed in Ref. 7. From 1360
available slices in total, we obtain training and test sets com-
posed of a number of slices between 675 and 685 depending
on the random splits.

The networks are trained by optimizing the class prediction,
i.e., the last layer (softmax activated) of the MLP, but the feature
representation is extracted from a hidden layer with output
τðgk;l;sÞ. More details on the training setup are provided in
Sec. 3.2.

The methods presented until here including feature extrac-
tion and transformation are first evaluated using all scanners
for training and testing (but different texture classes) in
Secs. 4.1 to 4.3. The standardization with unknown test scanners
is then evaluated in Sec. 4.4.

2.7 Domain Adversarial Training

Domain adversarial training of neural networks35 is a method
inspired by the domain adaptation theory to optimize a main
learning task while minimizing the discrimination between
domains. In this feature standardization task, the domain is
the scan. This was used in medical imaging to increase gener-
alization to new data with different imaging protocols in brain
lesion segmentation in Ref. 36 and for dealing with appearance
variability of histopathology images due to acquisition variation
between pathology labs in Ref. 37. The idea is that removing the
domain information, i.e., the scanner type and protocol, from
the trained features enhances their stability. For this, we assume
that all the slices from a given scan come from the same data
distribution constituting a domain. Domain adversarial training
is employed to learn the texture cartridge classification as
explained in Sec. 2.6, while limiting the possibility to recover

Fig. 4 Overview of the feature extraction and training. The CNN is
either VGG-19 or ResNet-50 from which the prediction layer is
removed.

Fig. 3 Texture phantom volume used to acquire the CCR dataset
(Figure reproduced from Ref. 7). (a) Credence Cartridge Radiomics
(CCR) phantom with 10 cartridges. (b) CCR phantom set up for
scanning.
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the domain of origin from the learned features (i.e., lower overall
correct classification of the domain classifier). Figure 5 shows
our domain adversarial training. The domain classifier with
trainable parameters θD contains two fully connected layers
of 100 and 17 neurons, respectively. The prediction layer con-
tains 17 neurons for classifying the 17 scans. The label classifier
in blue predicts the texture labels with parameters θy. Finally, the
parameters θh of the hidden layer with features h ¼ τðgmk;l;sÞ are
trained with both the label loss gradients ∂Ly

∂θh
and the reversed

domain loss gradients −λ ∂LD
∂θh

, where λ weighs the importance
of the domain adversarial training of the features h. Results
using domain adversarial training are presented in Sec. 4.5.

3 Experimental Setup and Evaluation
The feature vectors are extracted for all the test slices and
averaged within the cartridges [grad:k;l ∈ IR97, gvggk;l ∈ IR4096,
gres:k;l ∈ IR2048, and τðgmk;lÞ ∈ IR100]. The sparsity of the neuron
activations results in a few features of τðgk;lÞ being zero for
all the slices of a test set. These features are removed from
the sets in each of the 100 runs. The dimensionality of
τðgk;lÞ may, therefore, be reduced to d ≤ 100.

3.1 Evaluation Metrics

Several metrics are employed to evaluate the stability of the fea-
tures and their dependence on the scanners, acquisition proto-
cols, and reconstruction algorithms as listed in the following.

Intraclass correlation coefficient (ICC): ICC evaluates the
clustering of features from several classes using the correlation
of features within classes as

EQ-TARGET;temp:intralink-;e001;63;184ICC ¼ BMS − EMS

BMSþ ðk − 1ÞEMSþ k
n ðJMS − EMSÞ ; (1)

where n is the number of targets (five test classes) and k is the
number of judges (17 scans, or 8 in Sec. 4.4). BMS is the
between targets mean square, EMS is the residual mean square,
and JMS is the between judges mean square. The ICC ranges
from 0 to 1 with values close to 1 indicating high similarity
between values of the same class. The coefficients are averaged
across all d features.

In Sec. 4.5, we also evaluate the scan domain ICC, i.e., the
correlation within scans that we want to minimize. ICC is a stan-
dard evaluation method of feature stability, yet we provided
other measures for a more exhaustive evaluation.

Clustering: For further analysis of class separability, cluster-
ing-based measures are also standard, where cluster dispersion
measured under Gaussianity assumption is reasonable. We
apply a Gaussian mixture model (GMM) with five components
corresponding to the five test classes to cluster the features
gradiomics
k;l or τðgmk;lÞ from the test volumes. We evaluate the clus-

tering results using the ground truth test labels. We measure and
report the homogeneity, completeness, V-measure (harmonic
mean of the latter), and the average covariance of the mixture
components. The homogeneity and completeness are in the
range [0, 1]. The former is highest if the clusters contain
only cartridges of a single class, the latter if all cartridges of
a given class are elements of the same cluster.

Correlation with pixel spacing: as pointed out in other stud-
ies,2,7,15 we noted that the value of the features is highly corre-
lated with the pixel spacing, limiting their comparison and
interpretability. We measure, average, and compare the absolute
Pearson correlation coefficients of the various extracted features
with the resolution of the slices. It is worth noting that this
metric only reflects linear relations between the features and
the pixel spacing. Nonlinear dependencies are evaluated by
recovering the scan classification from the features with a non-
linear MLP classifier in the domain adversarial experiments in
Sec. 4.5.

Dimensionality reduction: an excellent clustering and ICC of
unknown textures can be obtained with a simple HU averaging
as this measure separates the cartridges well in the CCR dataset.
However, the informative and discriminative power of such a
simple feature is limited in a real medical image analysis sce-
nario, where texture rather than only density are important to
separate tissue types. On the other hand, a higher dimensional
feature vector with highly correlated features can also result in
an excellent clustering and ICC. Yet, such noninformative
redundancy offers little interest in the description of biomarkers
for more complex medical imaging tasks. PCA allows evaluat-
ing the intra- and interclass variability along the directions of the
largest variance in the feature space. PCA and t-SNE are also
used to illustrate the stability of the features across scanners

Fig. 5 Our domain adversarial network architecture. The domain D is the scanner type and the classi-
fication label y is the texture volume. The standardized features h ¼ τðgm

k;l ;sÞ are extracted from layer l h .
Best viewed in color.

Journal of Medical Imaging 024008-5 Apr–Jun 2019 • Vol. 6(2)

Andrearczyk, Depeursinge, and Müller: Neural network training for cross-protocol radiomic. . .



in a two-dimensional plot (see Figs. 7 and 8). t-SNE is a non-
linear dimensionality reduction technique used for visualization
of high-dimensional data points. Feature vectors are modeled by
2-D points so that similar vectors result in nearby points and
dissimilar vectors in distant points.

3.2 Training Setup

The CNNs are pretrained on ImageNet38 to obtain informative
deep features despite the limited amount of training data. They
are then finetuned end-to-end by adding fully connected layers
in place of the MLP. The CNNs and MLPs are trained with the
Adam optimizer39 with standard hyperparameters, namely an
initial learning rate of 10−4, average decays β1 and β2 of 0.9
and 0.999, respectively, and a batch size of 32. The deep
CNNs are trained for 100 epochs and the shallow network
(MLP on top of radiomic features) for 500 epochs. The radio-
mics MLP is trained for more epochs than the CNNs as the for-
mer overfits less due to a reduced number of trainable weights
(the CNNs’ second last dense layer is substantially wider than
the radiomic feature dimensionality). The pretrained CNNs also
enable a faster convergence. The random train/test split is repro-
duced 100 times, with the same splits kept unchanged for all
experiments. The average and standard deviation are reported
for each method.

4 Results

4.1 Results with Known Scanners

As a first set of experiments, the training and test slices originate
from the same 17 scans. As mentioned in Sec. 2.6, half of
the texture types are used for training (five texture labels),
the rest for testing with repeated random splits. Figure 6
shows the statistically significant improvement of ICC (with
p-value < 0.0001 for the three methods) with the proposed
standardization method. Considering only the ICC, the radiomic
features surprisingly obtain better results than the ResNet ones
(with p-value < 0.0001), although this is contrasted by the
supplementary results.

More results are provided in Table 1, supporting our hypoth-
esis that robust features are obtained using the proposed training
scheme.

Figures 7 and 8 show PCA and t-SNE representations,
respectively, to investigate the influence of standardization on
class clusters for several training runs. It includes the following
features: radiomics, MLP radiomics, VGG, and MLP VGG.

4.2 Computational Time

The networks are implemented in Keras40 with a TensorFlow
backend. The computation time is reported in Table 2 using
a Titan Xp GPU.

4.3 Transfer Learning

The pretraining domain (natural color images from ImageNet) is
distant from the task domain (CT textures with gray levels in
HU). Yet, a good transferability of the pretrained features is
observed despite the limited amount of training data, as well
as a quick convergence in finetuning and a good generalization
to unknown textures. These results confirm previous studies
showing the need for transfer learning in computer vision33–35

and medical imaging tasks4,24,26,27,29–31 with limited training
data. When training the CNNs from scratch, the dataset was
too limited to obtain informative features that could characterize
an ROI. Despite a texture classification accuracy reaching more
than 90% (overall correct classification on the balanced test set),
the networks were strongly relying on basic HU characteristics
of the slices, without learning meaningful (texture) features.
Figure 9 shows the first two PCA components of the features
extracted from ResNet-50 trained from scratch. The features
are mostly aligned on a single axis in the hidden space,
which shows that they are neither informative nor complemen-
tary and that the network probably learned only the average
intensity. Similar results were obtained with VGG trained from
scratch.

4.4 Results with Unknown Scanners

In a second set of experiments, we evaluate the generalization of
the proposed method to new scanners and protocols not used for
training. In this setup, we still repeatedly split the training and
test texture classes (five training and five test texture classes) and
also split the scans (eight training and nine test scans). These
results with the test scanners unknown to the models are sum-
marized in Table 3. The hypothesis is that standardization over
a few scanners also extends to unknown scanners, as at least
some of the changes in the produced images are systematic,
even if they are not the same.

4.5 Standardization with Domain Adversarial
Training

For the third set of experiments, we evaluate the domain adver-
sarial training with known test scanners. As a first result of train-
ing with the domain adversarial network, we investigate the
capacity of discarding the domain (scanner) information. For
this, we train with different values of λ ∈ f−1;0; 1g. When
λ ¼ 1, the adversarial part of the network behaves in a normal
domain adversarial scheme. Layers ld1 and ld2 (see Fig. 5) try to
recover the domain information from the features h ¼ τðgmk;l;sÞ in
a categorical domain classification, while layer lh is finetuned to
limit this recovery, together with learning the texture classifica-
tion. When λ ¼ 0, ld1 and ld2 still learn to recover the domain
information but lh is now only trained to classify the texture.

Fig. 6 ICC before and after feature standardization when averaged
over 100 runs with 95% confidence interval. Asterisks represent
statistically significant differences (p-value < 0.0001).
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In this case, the quantitative features are trained in a similar man-
ner as in the previous experiments. Finally, when λ ¼ −1, ld1,
ld2, and lh are trained together to recover the domain informa-
tion and no adversarial training takes place. Table 4 summarizes
the domain classification accuracy reached after training using
these setups. It is worth noting that the test sets are balanced and
that a random domain classification accuracy is 1

17
¼ 5.9%

whereas a random texture label classification accuracy is
1
5
¼ 20%. The CNNs and the radiomics MLP are trained for

100 and 500 epochs, respectively, similarly to the previous
experiments. As the domain classification is more challenging
than the texture classification, we balance the neural network
update by giving more weight to the domain adversarial update
than the texture one (1 and 0.5, respectively). We observe that
for all the setups, the texture classification still reaches nearly
100% accuracy as discriminating the texture volumes is a sim-
pler task than discriminating the scanner of origin. We also
report the domain ICC, which corresponds to an intrascan
correlation coefficient.

5 Discussions
The results with known scanners (reported in Table 1) show that
training the MLP on top of the radiomic features [τðgrad:Þ, we
drop the k and l indexes for simplicity] improves the generali-
zation and standardization with respect to the scanner type,
acquisition protocols, and reconstruction algorithms. The radio-
mic features benefit more from the MLP stabilization method
than the deep features. Recall that the dimensionality of the non-
standardized deep features gvgg and gres: is substantially larger
than the other features (4096 and 2048 versus ∼100). The stand-
ardized deep features, in particular τðgvggÞ, are more robust to
scanner variation than the ones trained on radiomic features with
a better ICC and clustering evaluation.

The results (ICC, homogeneity, completeness, and V-mea-
sure in Table 1) obtained after applying PCA to the features con-
firm the superiority of the transformed deep features over the
radiomic ones. The low ICC and clustering measures of radio-
mic feature PCA components and their transformed counterparts
reflect the feature correlation, their limited informativeness and
discriminative power in medical applications. The results are
provided with four PCA components, yet similar results are
observable for other numbers of principal components as
well. It is worth noting that the large covariance of the PCA
clusters is a consequence of retaining the components with
the largest variance.

Consistently, we notice from the PCA and t-SNE visualiza-
tions (Figs. 7 and 8) that the trained MLP features clearly
improve the stability of the radiomic features, while the
VGG and transformed VGG features are even more stable
with a better intraclass clustering and interclass separability.
The standardization improvement from the learned transform is
less evident for the VGG features, as also shown in Table 1.
Some improved clusters in the t-SNE representations are
shown by red circles in Fig. 8.

The correlation of the features with the pixel spacing of the
scanners (see last column of Table 1) is lower with the trained
features. In particular, the radiomic features grad: present the
largest correlation, in line with other studies.2,7,15 The deep fea-
tures and the standardization method reduce this correlation,
illustrating the improved robustness and generalization of the
features. The VGG network performs globally better on this
task than ResNet. This is potentially due to the latter’s depth,
leading to a difficulty to generalize with the limited amount
of training data and a larger amount of information extracted
on the scanner of origin.

From another visualization of the features with t-SNE and
PCA (see Fig. 10 where the colors represent the scanners),
we notice that two scans (S2 and T2, see Ref. 7 for details

Table 1 Evaluation of feature stability linked to scan variation (average and standard deviation for 100 runs). From left to right: ICC, GMM cluster
homogeneity (H), GMM cluster completeness (C), GMM cluster V-measure (V), average GMM cluster covariance (Cov.), and correlation with
resolution (Cor.). The (↑/↓) signs indicate whether higher or lower results are better. Best results are marked in bold (p-value < 0.001).

ICC (↑) H (↑) C (↑) V (↑) Cov. (↓) Cor. (↓)

Radiomics grad: 0.633� 0.06 0.564� 0.10 0.672� 0.09 0.611� 0.09 0.343� 0.18 0.577� 0.02

MLP radiom. τðgrad:Þ 0.784� 0.06 0.723� 0.10 0.770� 0.08 0.745� 0.09 0.239� 0.07 0.510� 0.03

VGG gvgg 0.684� 0.04 0.794� 0.10 0.844� 0.08 0.817� 0.09 0.352� 0.05 0.504� 0.02

MLP VGG τðgvggÞ 0.801� 0.07 0.790� 0.11 0.849� 0.10 0.817� 0.10 0.199� 0.08 0.503� 0.04

ResNet-50 gres: 0.411� 0.04 0.681� 0.12 0.778� 0.08 0.724� 0.10 0.580� 0.12 0.424� 0.01

MLP ResNet-50 τðgres:Þ 0.644� 0.08 0.740� 0.13 0.799� 0.12 0.767� 0.12 0.376� 0.09 0.443� 0.03

Radiomics PCA 0.680� 0.07 0.569� 0.09 0.661� 0.09 0.611� 0.09 3.592� 1.80 0.563� 0.03

MLP radiom. PCA 0.729� 0.10 0.731� 0.11 0.777� 0.10 0.753� 0.11 3.211� 1.06 0.560� 0.06

VGG PCA 0.814� 0.11 0.842� 0.10 0.876� 0.08 0.859� 0.09 42.53� 16.44 0.598� 0.07

MLP VGG PCA 0.775� 0.10 0.831� 0.12 0.877� 0.10 0.853� 0.10 1.38� 0.81 0.540� 0.07

ResNet-50 PCA 0.730� 0.10 0.748� 0.10 0.829� 0.08 0.785� 0.09 46.02� 22.57 0.563� 0.07

MLP ResNet-50 PCA 0.764� 0.11 0.785� 0.12 0.833� 0.10 0.808� 0.11 2.148� 0.86 0.528� 0.06
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Fig. 7 Two component PCA representation of the features on the test set for three distinct runs. The runs
with different training/testing splits are shown from left to right. The correspondence between colors and
texture types is shown at the bottom. The trained MLP reduces the intraclass variation and increases
the interclass variation of the radiomic and VGG features. Best viewed in color.
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on the scanners and protocols) lead to correlated features that are
well separated from the other scans. Other such correlations
include slices from scanners GE4, GE5, and GE6 as well as
P1, P3, P4, and P5. These scans were mostly acquired with scan-
ners from the same manufacturer, with similar acquisition pro-
tocols and reconstruction algorithms. This observation could be
further investigated by a correlation analysis of features from

Fig. 8 t-SNE representation of the features on the test set for three distinct runs (same runs as Fig. 7).
The trained MLP reduces the intraclass variation and increases the interclass variation of the radiomic
and VGG features (some improvements are shown by red arrows). Best viewed in color.

Table 2 Training and inference time (675 test slices) of the networks.

Method Training time Test time

MLP radiomics 42.5 s 25 ms

MLP VGG 337.3 s 3.7 s

MLP ResNet-50 252.6 s 3.2 s
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(a) (b)

Fig. 9 Example of the first two PCA components of the features extracted on the test set from MLP
ResNet-50 (a) trained from scratch and (b) finetuned from ImageNet pretraining. The features from
scratch are highly correlated and nondiscriminative. Best viewed in color.

Table 3 Evaluation of feature stability with test scanners different from the training scanners. See Table 1 for metric descriptions. Best results are
marked in bold (p-value < 0.001).

ICC(↑) H(↑) C(↑) V(↑) Cov.(↓) Cor.(↓)

Radiomics grad: 0.615� 0.04 0.581� 0.06 0.672� 0.08 0.623� 0.07 0.277� 0.16 0.584� 0.02

MLP radiomics τðgrad:Þ 0.766� 0.06 0.678� 0.09 0.732� 0.08 0.704� 0.09 0.270� 0.08 0.519� 0.02

VGG gvgg 0.697� 0.05 0.829� 0.09 0.880� 0.08 0.854� 0.08 0.306� 0.05 0.284� 0.07

MLP VGG τðgvggÞ 0.809� 0.07 0.821� 0.11 0.880� 0.08 0.848� 0.10 0.169� 0.06 0.291� 0.07

ResNet-50 gres: 0.427� 0.05 0.737� 0.13 0.838� 0.09 0.782� 0.11 0.498� 0.07 0.288� 0.05

MLP ResNet-50 τðgres:Þ 0.609� 0.11 0.760� 0.14 0.824� 0.11 0.790� 0.13 0.350� 0.09 0.290� 0.05

Radiomics PCA 0.660� 0.06 0.566� 0.08 0.644� 0.07 0.602� 0.07 3.496� 2.04 0.572� 0.03

MLP radiomics PCA 0.730� 0.10 0.697� 0.11 0.757� 0.08 0.725� 0.09 3.704� 1.02 0.636� 0.09

VGG PCA 0.812� 0.11 0.854� 0.10 0.892� 0.08 0.872� 0.09 41.54� 18.92 0.295� 0.10

MLP VGG PCA 0.772� 0.10 0.831� 0.10 0.884� 0.09 0.856� 0.09 1.126� 0.51 0.291� 0.09

ResNet-50 PCA 0.729� 0.11 0.759� 0.13 0.849� 0.09 0.800� 0.11 33.92� 11.87 0.291� 0.11

MLP ResNet-50 PCA 0.746� 0.12 0.774� 0.14 0.827� 0.11 0.799� 0.13 1.98� 0.86 0.285� 0.09

Table 4 Domain classification accuracy (% overall correct classification with standard deviation) and domain ICC of the extracted features with
different domain adversarial setups. The domain ICC represents the averaged correlation of the features with the scanners of origin. Lower accu-
racy and lower ICC is better as it shows that the adverarial part is not able to recover the domain information (i.e., scanner types) and that
the features withing domains are less correlated. We report the ICC with all the features followed by the ICC with the first four PCA components.
Best results in bold for each network (p-value < 0.001).

λ MLP radiomics MLP VGG MLP ResNet-50

Accuracy ICC Accuracy ICC Accuracy ICC

−1 34.6� 4.4 0.14� 0.05, 0.20� 0.07 23.7� 2.4 0.09� 0.02, 0.19� 0.08 38.6� 9.9 0.11� 0.03, 0.29� 0.11

0 16.6� 2.0 0.13� 0.07, 0.17� 0.08 6.5� 1.0 0.06� 0.05, 0.09� 0.08 8.0� 1.2 0.05� 0.03, 0.10� 0.09

1 8.9� 1.2 0.12� 0.08, 0.15� 0.10 5.9� 1.0 0.08� 0.05, 0.10� 0.07 5.6� 0.9 0.08� 0.04, 0.14� 0.10
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pairs of scans, yet this is out of the scope of this paper. As shown
in the results, our standardization approach limits these correla-
tion effects.

The results with unknown scanners (Table 3) show that a
network trained with images from a set of training scanners

generalizes the learned standardization transform τðgÞ to images
from new scanners. It extends the potential of this standardiza-
tion method as it is not necessary to scan the phantom with all
the scanners to obtain stable features from them. For instance,
our method can be used with images acquired by scanners no

Fig. 10 t-SNE visualization of the features on the test set with colors corresponding to the 17 scans of
origin. The features are the same and may be viewed with those in Fig. 8 (in which colors correspond to
the texture class). Various clusters are formed by features extracted from the same scans, although this
is reduced by the proposed standardization method. Best viewed in color.
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longer in operation for retrospective studies, which is extremely
important for the secondary use of image data that is regularly
needed for research studies.

Comparing Tables 1 and 3, one can see that the results using
a subset of scans for training are almost as good as those using
all the scans. This observation underlines the excellent generali-
zation to unknown scanners. It is worth noting, however, that the
number of test samples is different in these two experiments. For
a valid comparison, we evaluated the stability of features with a
training set including all scans similarly to Sec. 4.1 but the same
number of test scans as in Sec. 4.4, i.e., nine scans. Similar
results were obtained with a minor deterioration of the results
when using this subset of training scans.

Noticeably, as reported in the domain adversarial Sec. 4.5
(Table 4), the MLP with radiomic features benefits more
from the domain adversarial training (λ ¼ 1) than the deep fea-
tures. The domain accuracy and domain ICC are significantly
reduced from the training without adversarial and with non-
adversarial (λ ¼ 0 and λ ¼ −1, respectively). The deep CNN
features seem to already discard the domain information when
training to classify only textures (λ ¼ 0) by extracting meaning-
ful information about the texture that is not correlated with the
scanner type. This observation is even more striking with the
VGG features from which the domain can almost not be recov-
ered at all (6.5%). The scanner ICC of the CNN features is,
therefore, not reduced by using domain adversarial training
despite the scanner (domain) accuracy reduction, which is the
optimization goal of the adversarial training. If more normali-
zation by domain adversarial training is required, more weight
can be given to the domain adversarial contribution in the net-
work update. Finally, the texture ICC and clustering, as reported
in Table 1, are not improved by domain adversarial training
since discarding the domain information does not entail a better
texture intraclass clustering.

A drawback of the proposed feature transformation with and
without domain adversarial is the limited direct interpretability
of the generated features as compared to some classical radiomic
features. However, although interesting studies have investi-
gated the interpretation of radiomic features and their link with
biological characteristics, standard radiomic features are rarely
interpreted directly and individually. Prediction performance of
a set of descriptors is usually analyzed and validated, which is
also possible with the proposed learned features.

6 Conclusions
This paper proposes an approach to standardize image features
to make them robust to scanner variability by training a neural
network on top of radiomic or deep features extracted from CT
images. The network learns a function τðgk;lÞ that outputs fea-
tures independent of the scanner type l. The standardization is
based on the idea that the same features should be extracted from
different scans of the same phantom volume and that standard-
izing for a set of characteristic textures should generalize to
other types of textures and tissue types. The standardized dis-
criminative and quantitative features can be extracted from
patient scans to characterize ROIs (e.g., texture in a tumor
region) independently from the acquisition and reconstruction
protocols. This robustness is expected to improve performance
and generalization for retrieval, computer-assisted diagnosis,
predictive treatment planning, and prognosis, in particular
when using data from several hospitals or varying acquisition
methods. The presented results particularly motivate the use of

deep CNN features in radiomics studies with data from more
than a single scanner type, as more stable features can be
obtained than with classic handcrafted texture features.

We showed that the learned standardization can be general-
ized to new images from unknown scanners, which is important
as it is common to use old data for which such a standardization
can no longer be done. We also evaluated domain adversarial
training to remove information about the scanner and protocol
from the extracted features. In this setting, the network represen-
tation is trained to enable an accurate texture classification while
avoiding the recovery of a scan of origin classification. This
method should be used to avoid intrascan clustering of texture
features that does not underline true physiopathological tissue
changes. We are confident that this approach will play an impor-
tant role in the standardization of features with larger datasets
and/or other architectures and training schemes in future appli-
cations. In addition, as shown in Ref. 37, adversarial training can
be used in combination with augmentation and normalization
techniques with complementary benefits.

Finally, although this study did not evaluate real patient data,
the texture phantom was designed to mimic actual biomedical
tissue types (particularly nonsmall cell lung cancer commonly
analyzed in radiomics), and it allowed a controlled analysis to
isolate the variation due to scanner variation. Future work is
foreseen on the evaluation of the approach on prognosis, predic-
tion, and diagnosis of real patient data, which requires the
extraction of visual features as image biomarkers.
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