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Abstract. We present a breast lesion classification methodology, based on four-dimensional (4-D) dynamic
contrast-enhanced magnetic resonance images (DCE-MRI), using recurrent neural networks in combination
with a pretrained convolutional neural network (CNN). The method enables to capture not only the two-
dimensional image features but also the temporal enhancement patterns presented in DCE-MRI. We train
a long short-termmemory (LSTM) network on temporal sequences of feature vectors extracted from the dynamic
MRI sequences. To capture the local changes in lesion enhancement, the feature vectors are obtained
from various levels of a pretrained CNN. We compare the LSTM method’s performance to that of a CNN
fine-tuned on “RGB” MRIs, formed by precontrast, first, and second postcontrast MRIs. LSTM significantly
outperformed the fine-tuned CNN, resulting in AUCLSTM ¼ 0.88 and AUCfine-tuned ¼ 0.84, p ¼ 0.00085, in the
task of distinguishing benign and malignant lesions. Our method captures clinically useful information carried
by the full 4-D dynamic MRI sequence and outperforms the standard fine-tuning method.© 2018Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1.011002]
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1 Introduction
Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) plays a significant role in high-risk breast cancer
screening, staging, and monitoring response to therapy.1–3

The imaging procedure allows for visualization of the tumor’s
temporal enhancement changes, necessary for accurate tumor
characterization. However, image evaluation is performed visu-
ally, by expert radiologists, leading to the possibility of human
error and to long evaluation times. In this work, we propose an
automated deep learning-based methodology that captures not
only tumor morphological characteristics from two-dimensional
(2-D) images but also the temporal enhancement changes pre-
sented in dynamic MRI sequence. The combination of the two
components of DCE-MR images allows for more accurate breast
cancer diagnostic decision-making.

Deep learning approaches, specifically deep convolutional
neural networks (CNNs), have become state of the art in
many computer vision tasks.4 CNNs consist of multiple trans-
formation layers (e.g., convolutional, pooling, and fully con-
nected), which extract features from pixel-level data, generating
new image representations in their respective feature spaces.
Image features extracted from earlier layers of CNN are more
general and are related to local image structures, such as
edges and shapes.5 On the other hand, later layers, such as fully
connected layers, are more class-specific and responsible for
representing increasingly more abstract features, hierarchically

composed of lower-level features. CNNs have shown great
success in standard image classification tasks6–8 and are being
adapted in medical image analysis to improve accuracy and
speed of image-based diagnosis and prognosis.9 However, train-
ing an accurate and generalized CNN requires large amounts of
data. Due to the lack of large-scale medical image datasets,
medical analyses have been frequently performed with CNNs
pretrained on a natural image dataset, such as ImageNet.10–13

The typical approach to using pretrained CNN is to fine-tune
the last, fully connected layers of the network for the medical
classification tasks. Fine-tuning is limited in dimensionality and
is performed on 2-D images, making it difficult to apply it to
imaging exams that have temporal or volumetric components.

In this work, we propose a deep learning-based methodology
that enables incorporation of temporal component of DCE-MRI
sequences. Many breast lesion diagnostic and prognostic deci-
sions often rely on lesion enhancement over time, as shown in
DCE-MRIs. The sequential imaging yields enhancement pat-
terns that carry clinically useful information. For example, in
lesion malignancy assessment, benign lesions typically have
moderate uptake and slow washout of the ejected contrast agent,
whereas malignant lesions have both rapid uptake and washout.
Therefore, the focus of this work is to incorporate the temporal
component of the dynamic DCE-MRIs into breast lesion clas-
sification using deep learning methods.

We achieve our goal by training a recurrent neural network
(RNN), specifically long short-term memory (LSTM), which
exploits the temporal correlations. We train LSTM on sequences
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of feature vectors extracted from dynamic MRIs with a pre-
trained CNN.14,15 Higher-level CNN features represent informa-
tion, important for class discrimination. On the other hand,
lower-level CNN features possess local pattern information
valuable for further differentiating within a given class.16,17

RNNs perform classifications based on sequences of input
data (image feature vectors in our case) and rely on the fact that
a sequence itself carries useful information for a given task. Thus,
to capture the lesion enhancement changes presented in MRI
images of a given DCE-MRI sequence, we form each image fea-
ture vector by concatenating features from various levels of pre-
trained CNN. We compare LSTM method’s performance to that
of CNN fine-tuned on 2-D MRIs. The results suggest that incor-
poration of enhancement patterns observed over the dynamic
MRI sequence into lesion classification with deep learning meth-
ods improves malignancy assessment for breast cancer.

2 Methods

2.1 Dynamic Contrast-Enhanced Magnetic
Resonance Images Dataset

The proposed method was demonstrated for the task of discrimi-
nating malignant and benign lesions on a dataset of 703 DCE-
MRI cases. The dataset was retrospectively collected under
a HIPAA-Compliant Institutional Review Board protocol and
annotated as benign and malignant based on pathology or
radiology reports. Other clinical characteristics of the dataset
are detailed in Table 1. DCE-MR images were acquired on
1.5- and 3-Tesla Philips Achieva scanners with T1-weighted
spoiled gradient sequence over the period of 10 years, 2006
to 2016. Image slice thickness varied across the dataset, with
2/3 cases having slice thickness of 2 mm and 1/3 cases having
slice thickness 1.5 or 1.6 mm. The image sequence included
one image (precontrast) acquired prior to and multiple images
(postcontrast) acquired after contrast injection (Fig. 1). A histo-
gram of the dynamic sequence lengths for the DCE-MRIs in
the database is demonstrated in Fig. 2.

Prior to CNN fine-tuning and image feature extraction, we
selected regions of interest (ROIs) around each lesion for
each DCE-MRI slice and timepoint. The ROIs were selected
based on lesion segmentations from the four-dimensional
MRIs, performed prior to this research with the fuzzy-c means
algorithm.18 These ROIs around a lesion were delineated from
each transverse slice of the three-dimensional (3-D) lesion
image and from each DCE timepoint (those include precontrast
t0 and multiple postcontrast timepoints t1: : : tn). The ROI coor-
dinates were unchanged across DCE timepoints. The number of
ROIs for an individual lesion varied based on the number of
slices containing the lesion and on the dynamic sequence length.

2.2 Convolutional Neural Network Fine-tuning

In our experiments, 19-layer VGGNet, pretrained on ImageNet,
was used as a base model.6,19 First, we fine-tuned the VGGNet
for the task of distinguishing malignant and benign lesions and
used its performance as a baseline. For fine-tuning, we utilized
the convolutional base of the VGGNet and added a fully con-
nected top. Since our dataset consisted of ROIs of various sizes,
we adapted a global average-pooling layer after the last convolu-
tional block of VGGNet.20 The average-pooling layer was
followed by two fully connected layers, with dropout applied
after each of the two layers. All layers, prior to and including

the fourth max-pooling layer, were frozen and the rest were
fine-tuned.

Fine-tuning was simultaneously performed on precontrast,
first, and second postcontrast ROIs. VGGNet requires an
image input consisting of three channels, red (R), green (G),
and blue (B). Since precontrast, first, and second postcontrast
ROIs are grayscale, we made use of the network’s color
channels and input these ROIs into the R, G, and B channels,
respectively. Thus, we fine-tuned the network on these artifi-
cially made RGB lesion ROIs [Fig. 3(a)].10

Table 1 Clinical characteristics of the UC dataset, studied for benign
versus malignant lesion discrimination.

Benign/malignant
prevalence: # of cases (%)

Benign: 221 (31.4%)

Malignant: 482 (68.6%)

Total: 703

Age: mean (STD) 54.5 (13.2)

Unknown: 103

Benign tumor characteristics

Tumor subtypes Fibroadenoma: 92

Fibrocystic change: 79

Papilloma: 14

Unknown: 36

Malignant tumor characteristics

Tumor subtypes Invasive ductal carcinoma: 135

Ductal carcinoma in situ: 20

Invasive ductal carcinoma +
ductal carcinoma in situ: 264

Invasive lobular carcinoma: 20

Invasive lobular carcinoma mixed: 19

Unknown: 24

Estrogen receptor status:
# of cases

Positive: 328

Negative: 108

Unknown: 46

Progesterone receptor
status: # of cases

Positive: 274

Negative: 159

Unknown: 49

HER2 status: # of cases Positive: 72

Negative: 349

Equivocal: 3

Unknown: 58
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2.3 Multilevel Image Features

Next, the fine-tuned VGGNet was utilized to extract feature vec-
tors from DCE-MRIs for LSTM training and evaluation. To cap-
ture intraclass changes, i.e., contrast enhancement changes of
one lesion, the feature vectors were extracted at various network
depths from the five max-pooling layers of VGGNet. These
features from each level were average-pooled and normalized
with Euclidian distance. The pooled features were further
concatenated to form a CNN feature vector for a given ROI.10

For a given slice of a 3-D MRI, the image feature vectors
were extracted at each DCE timepoint. The resulting sequence
of feature vectors was used as an input into LSTM network.
Since the DCE-MRI sequences were of variable lengths across
the dataset, the sequences were padded with zeros to the length
of the longest sequence. The padded part of the sequences was
not taken into account when calculating the loss of the model,
described further in Sec. 2.5. Figure 3(b) demonstrates the end-
to-end lesion classification pipeline with LSTM network based
on DCE-MRIs.

2.4 Long Short-Term Memory Network

The multilevel feature vector sequences were utilized to train an
LSTM network. During its training, the model captures the
changes presented in a given sequences. Let x0, x1, x2; : : : xn

represent a sequence of n inputs, where each xi is an input at
timestep t ¼ i. In our work, xi represents image feature vector
obtained from lesion ROI at DCE timepoint i. An RNN has an
internal hidden state at time t, ht, which gets updated based on
the current input xt and its previous hidden state ht−1 (Fig. 4).

An LSTM, a type of RNN, takes this idea further by main-
taining an additional distinctive feature, a “memory cell.” Along
with the hidden state ht, a memory cell’s state ct is updated as
the network steps through the sequence of the inputs. This
update is based on the previous step’s hidden state ht−1 and
the current input xt and is performed by mechanisms called
gates, i.e., the “input gate,” the “forget gate,” and the “output
gate.” Each gate has its own responsibility in information reten-
tion from ht−1 and xt and regulates it with a sigmoid activation
function

EQ-TARGET;temp:intralink-;e001;326;180σðxÞ ¼ 1

1þ e−x
; (1)

which takes values from 0 to 1, where x is a linear combination
of ht−1 and xt.

The hidden state update involves multiple steps. First, an
LSTM cell receives two inputs, the current input xt and previous
hidden state ht−1, and transforms them into candidate value to be
added to the cell state cint by

Fig. 1 DSE-MRI sequence consisting of a series of 3-D images, with one 3-D image acquired prior to
contrast injection and multiple 3-D images acquired after contrast injection.

Fig. 2 A histogram of the dynamic sequence lengths for the DCE-MRIs in the database. Green bars
represent the distribution of benign cases. Red bars represent the distribution of malignant cases.
The length of the dynamic sequence is plotted on the x -axis. The fraction of cases relative to the
total number of benign/malignant cases is plotted on the y -axis.
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EQ-TARGET;temp:intralink-;e002;63;168cint ¼ tanhðWin;xxt þWin;hht−1 þ binÞ: (2)

Simultaneously, the three gates, described above, monitor the
flow of information into and out of the memory cell state:

1. The “input gate” chooses the values of the network to
be updated

EQ-TARGET;temp:intralink-;e003;63;86it ¼ σðWin;xxt þWin;hht−1 þ biÞ. (3)

2. The “forget gate” decides on which information from
the past to keep and which to discard

EQ-TARGET;temp:intralink-;e004;326;145ft ¼ σðWf;xxt þWf;hht−1 þ bfÞ. (4)

3. The “output gate” controls which information to let
through to the hidden state update

EQ-TARGET;temp:intralink-;e005;326;86ot ¼ σðWo;xxt þWo;hht−1 þ boÞ; (5)

Fig. 3 (a) Lesion classification methodologies: first, VGGNet was fine-tuned on RGB ROIs (RGB ROI is
formed by ROIs at the precontrast, first, and second postcontrast DCE timepoints) and its performance
was taken as a baseline and (b) image feature was extracted from various levels of VGGNet from the
lesion ROIs at each DCE timepoint and utilized for LSTM network training.
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where Win;x, Wf;x, Wo;x;Win;h;Wf;h; and Wo;h are the
weight matrices, responsible for updating the current
input vectors xt, and the previous hidden state of the
cell ht−1 and bin, bi, bf, and bo represent the bias terms
for the corresponding update operation.

The memory cell state is updated based on the transformed
input from Eq. (2) and the “input gate” and “forget gate” deci-
sions from Eqs. (3) and (4)

EQ-TARGET;temp:intralink-;e006;63;487ct ¼ σðftct−1 þ itcint Þ: (6)

Finally, the hidden state is updated based on memory cell
state from Eq. (6) and the “output gate” decision Eq. (5)

EQ-TARGET;temp:intralink-;e007;63;433ht ¼ ot tanhðctÞ: (7)

2.5 Model Training and Evaluation

The prediction errors of our models were evaluated with binary
cross entropy loss. As we iterate through model training, the loss
function calculates the amount of penalty the algorithm receives
for making a wrong prediction and is used to evaluate the algo-
rithm’s performance. For N training examples, the binary cross
entropy loss function L is defined as

EQ-TARGET;temp:intralink-;e008;63;306Lðy; ŷÞ ¼ −
XN

i

yi logðŷiÞ; (8)

where yi and ŷi are the true and predicted label for the case i,
respectively.

We utilized stochastic gradient descent as an optimizer and
set batch size to 64 for VGGNet fine-tuning and LSTM training.
The hyperparameters of the LSTM network were optimized
using a validation set. To avoid overfitting, early stopping
was used to stop network training, when validation loss started
increasing.

The dataset was separated into training + validation (80%)
and testing (20%) sets by lesion, with cancer prevalence
among the cases being constant across the sets. All transverse
slices of the MRIs containing a lesion were utilized to train the
models. This totaled ∼12;000 slices for the training set. The
model was tested and evaluated only on the lesion center slices
in the validation and test subsets. To avoid bias, all image slices
from the same lesion were retained in either the training, vali-
dation, or testing subsets, but not shared across the three.

2.6 Evaluation Metrics

Receiver operating characteristic (ROC) analysis was applied to
evaluate binary classification performance of the models in
the task of distinguishing benign and malignant lesions.21 We
measured their ability to discriminate the two classes using
area under the ROC curve (AUC). The statistical difference in
AUC values was evaluated using Delong tests.22 Furthermore,
specificity, positive predictive value (PPV), and negative predic-
tive value (NPV) were compared between the models for the
same sensitivity threshold. Specificity measures the fraction of
negative cases correctly identified. PPV and NPV measure the
probabilities of a positive classification actually being positive
and a negative classification actually being negative.

2.7 Implementation Details

The ROI extraction was performed with the MATLAB software,
developed specifically for the tasks. The deep learning-based
methods were implemented in Python using the Keras library
with Tensorflow backend.23 Training and evaluation of the
models were performed on an NVIDIA Titan X GPU.

2.8 Experiments and Results

All of the lesions in the study had undergone biopsy, resulting in
sensitivity of 100% and specificity of 0% for an expert radiolo-
gist. For the testing set, Table 2 summarizes the performance
metrics, specificity, PPV, and NPV, for varying the decision
thresholds for the two deep learning methods studied, i.e.,
the fine-tuned VGGNet and the LSTM. For a sensitivity of
0.92 and below, LSTM results in higher specificity and PPV
and NPV, as compared with the performance of VGGNet. These
results demonstrate that the LSTM method achieves reduced
number of false positives and calls a higher number of benign
lesions as benign and malignant lesions as malignant. Above
a sensitivity of 0.92, VGGNet shows slightly better specificity
and predictive values.

Even though both PPV and NPV are useful metrics in the
performance evaluation, class prevalence directly influences
them. While holding all other variables constant and increasing
just the class prevalence, PPV will increase and NPV will
decrease. Our work was performed on an unbalanced dataset,
with 68.6% malignant and 31.4% benign lesions. Given that,
we conducted ROC analysis, which yields AUC values, a metric
independent of class prevalence. Figure 5 shows the ROC curves
for the lesion classification performance of the two models. This
figure demonstrates that LSTM significantly outperformed the
fine-tuned VGGNet, resulting in AUCLSTM ¼ 0.88 (se = 0.01)
and AUCfine-tuned ¼ 0.84 (se = 0.01), with p ¼ 0.00085, in the
task of distinguishing benign and malignant lesions.

Note that the ROC curves cross, showing some ambiguity in
the performances. Thus, we calculated the partial AUCs for the
sensitivity range from 1 to 0.9 and the specificity range of 1 to
0.9.24 LSTM yielded improved partial AUCs of 0.064 and 0.037
as compared to those of the fine-tuned VGGNet, 0.041 and
0.025, for sensitivity and specificity ranges, respectively.

2.9 Discussion and Conclusions

We present a breast lesion classification pipeline that captures
both morphological and temporal information about a lesion
presented on DCE-MRIs in the task of distinguishing malignant
and benign lesions. Compared to previous works, our method

Fig. 4 General structure of an RNN. The network recurrently com-
putes its hidden state ht based on its previous hidden state ht−1
and the current input x t . The final classification output is computed
based on the hidden state of the network, which depends on the pre-
vious steps.
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enables to incorporate the entire DCE-MRI sequence into
deep learning-based lesion classification. For a given lesion, we
extract a sequence of image feature vectors corresponding to the
DCE-MRI sequence, which is further used to train an LSTM
network. The image feature vectors are obtained from five

max-pooling layers of pretrained VGGNet to capture the
local changes in lesion enhancement.

The LSTM method significantly outperformed the VGGNet,
fine-tuned on RGB MRIs. To make sure that the results are
not just due to higher-feature dimensionality, we also trained a
simple two-layer, fully connected neural network on multilevel
image features extracted from RGB MRIs. This method incor-
porates the features extracted from various levels of VGGNet,
but not the full DCE-MRI sequence. The classification perfor-
mance of the network resulted in AUC value of 0.82, which is
lower than the performance of the fine-tuned VGGNet as well as
the LSTM network.

LSTMs have achieved superior results for machine transla-
tion, language modeling, and image captioning tasks, outper-
forming other recurrent architectures. The main benefit of
LSTMs is that they prevent vanishing or exploding gradients
during error back propagation with long input sequences.
Therefore, the network can retain useful classification informa-
tion from the beginning of the sequence. Furthermore, LSTMs
are well suited for working with sequences of various lengths
as well as time lags between the sequence elements, which is
characteristic of our DCE-MRI data. DCE sequences contain
one image taken prior to contrast injection and 2 to 10 images
taken after contrast injection. We also studied another RNN
type, gated recurrent units (GRUs). GRUs have a similar, but
simpler architecture than LSTMs, resulting in fewer parameters
and more efficient computation.25 However, compared with
LSTMs, GRUs do not control their hidden state with a memory
unit. After investigating both architectures, we observed higher
classification performance with the LSTM network.

The proposed method is inspired by the fact that human
experts base various breast diagnostic and prognostic decisions
on temporal changes in lesion enhancement observed in DCE-
MRIs. Specifically, kinetic enhancement curve patterns are often
visually analyzed during benign versus malignant discrimina-
tion. Benign lesions tend to demonstrate moderate uptake and
slow washout of a contrast agent, while malignant lesions tend
to have both rapid uptake and washout. Therefore, the sequences

Table 2 The performance metrics for fine-tuned VGGNet and LSTM network on the DCE-MRI test subset. For a given sensitivity value, we
compare specificity, PPV, and NPV for the two methods.

Specificity PPV NPV

Sensitivity LSTM Fine-tuned VGGNet LSTM Fine-tuned VGGNet LSTM Fine-tuned VGGNet

0.80 0.82 0.73 0.94 0.91 0.53 0.51

0.82 0.78 0.71 0.93 0.91 0.55 0.53

0.84 0.75 0.68 0.92 0.90 0.57 0.54

0.86 0.70 0.64 0.91 0.90 0.58 0.57

0.88 0.64 0.61 0.90 0.89 0.60 0.59

0.90 0.58 0.56 0.88 0.88 0.62 0.61

0.92 0.50 0.51 0.87 0.87 0.64 0.64

0.94 0.40 0.45 0.85 0.86 0.65 0.68

0.96 0.29 0.37 0.83 0.84 0.67 0.72

0.98 0.15 0.26 0.80 0.82 0.67 0.78

Fig. 5 ROC curves corresponding to fine-tuned VGGNet and LSTM
model performances in discriminating benign and malignant lesions.
Solid line represents LSTM model and dashed line represents
fine-tuned VGGNet. LSTM significantly outperformed the fine-tuned
VGGNet, resulting in AUCLSTM ¼ 0.88 and AUCfine-tuned ¼ 0.84, with
p ¼ 0.00085, in the task of distinguishing benign and malignant
lesions. We note that ROC curves cross. To better understand meth-
ods’ performances, we calculate partial AUC values for specificity
(1 – false positive fraction) range from 0.9 to 1 and sensitivity (true
positive fraction) range from 0.9 to 1. The vertical and horizontal dotted
lines correspond specificity = 0.9 and sensitivity = 0.9, respectively.
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of image features extracted from the DCE-MRIs should be dif-
ferent for benign and malignant lesions. Among other clinical
questions, radiologists’ evaluation of breast cancer response to
therapy is also guided by temporal changes of lesion enhance-
ment. Lesion enhancement patterns and DCE-MRI quantitative
pharmokinetic parameters are used to assess breast cancer’s
response to primary and neoadjuvant chemotherapies.1,26,27

These clinical questions are left for future work due to lack
of availability of sufficient datasets.

Deep learning methods enable capturing of data patterns that
have been previously unexploited, leading to more accurate,
rapid, and accessible medical decision-making. In this work,
we demonstrate a deep learning method that captures clinically
useful information presented in DCE-MRI sequence for breast
lesion malignancy assessment.
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