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Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative
imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision
of the estimated quantitative value without requiring repeated measurements and without requiring a gold stan-
dard. However, applying these techniques to patient data presents several practical difficulties including assess-
ing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability
of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the
underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is inte-
grated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The devel-
oped NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-
deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of pre-
cisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmenta-
tion method as the most precise method. The proposed framework provided confidence in these results, even
when gold-standard data were not available. The bootstrap-based methodology indicated improved perfor-
mance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent
results as long as data from more than 80 lesions were available for the analysis. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.1.011011]
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1 Introduction
Quantitative imaging, i.e., the measurement and use of numeri-
cal or statistical features from medical images to facilitate clini-
cal decision making,1 is finding applications in many diagnostic
and therapeutic procedures. A particularly important application
is quantitative imaging biomarkers (QIBs). Various QIBs are
being explored for clinical usage, including tumor standardized
uptake value (SUV), metabolic tumor volume (MTV), and total
lesion glycolysis (TLG) measured from 18F-Fluoro-2-deoxyglu-
cose positron emission tomography (18F-FDG PET),2–10 appar-
ent diffusion coefficient measured with diffusion magnetic
resonance imaging,11,12–13 and dopamine transporter using
single-photon emission computed tomography.14

A major challenge in QIB development is that the quantita-
tive metrics should be measured precisely.15–17 Precision
is related to variability and defined as the closeness of agreement
between measured quantity values obtained by replicate mea-
surements on the same experimental units under specified
conditions.18,19 To illustrate the importance of precision, con-
sider a longitudinal study where a change in the MTV value
at different time points in a treatment is being proposed to assess
whether a patient is responding to therapy, and thus decide if the

treatment should be continued. If the measured MTV values at
different time points are highly imprecise, then it will be com-
plicated to determine if the measured change in MTV value is
due to an actual change in the MTVor simply due to a random
error in the measurement.

There could be different sources of imprecision in the imag-
ing chain in a clinical study, ranging from variabilities arising
due to tumor biology, patient state, scanner calibration, and the
imaging method, where the imaging method includes any com-
bination of image-reconstruction, image-analysis or metric-esti-
mation procedures.20 In a clinical setting, it is usually impossible
to separate these sources of variability. In this context, it is
highly desirable, as also recommended by the Quantitative
Imaging Biomarkers Alliance (QIBA) Terminology Working
Group, that the different sources of imprecision be separated.18

In this manuscript, the focus is on isolating and quantifying the
imprecision arising due to the imaging method, and more spe-
cifically, to develop a framework to evaluate imaging methods
based on how precisely they measure the true quantitative metric.

Typically, imaging methods are evaluated using animal,
physical-phantom, and realistic simulation studies where infor-
mation about the ground truth quantitative metric is available.
While these studies are important, they suffer from limitations,
mainly in their inability to model the complex anatomy and
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physiology of human systems.20,21 Thus, there is an important
need for a procedure to evaluate precision of imaging methods
with patient studies. One such procedure could be acquiring
repeated measurements of the same quantitative metric in the
patient, for example, via test–retest studies.18 In these studies,
two or more scans of a patient are acquired assuming there is no
biological change in the quantitative metric in the time between
these measurements.18,20 However, such studies are expensive,
time consuming, and may lead to increased patient dose and
patient inconvenience.16,20 Furthermore, the computed precision
value could include the variability arising due to the biological,
patient, and scanner-calibration-related factors.18,20 Finally, these
studies are typically limited to a single repeated measure due to
possible risks to patients from reimaging. Thus, the computed
precision often includes substantial uncertainty. Therefore, a pro-
cedure to estimate the precision of the imaging method without
requiring repeated measurements is highly desirable.

While test–retest studies are difficult to perform, obtaining
measurements of quantitative values from a population of
patients is much easier. If the true quantitative values for these
patients were known, or a reliable gold standard was available as
a substitute for the true value, and if a relationship between the
true and measured quantitative values could be assumed, then a
measurement of the precision of the quantitative value over the
patient population could be easily obtained using regression
techniques. This is explained in detail in Sec. 2.1. However,
the true values are typically unknown and gold standards are
not easily available with patient data. A procedure to compute
the precision of the imaging methods with patient data in the
absence of a gold standard would help resolve this issue.

To compute the precision of quantitative imaging methods in
the absence of a gold standard, a regression-without-truth (RWT)
technique has been proposed.22,23 This technique assumes that
the measured quantitative values obtained using each imaging
method are linearly related to the true quantitative values,
and that the true quantitative values have been sampled from
a distribution with known upper and lower limits. This approach
has been used to compare software packages24 and segmentation
methods25 on the task of measuring the cardiac ejection fraction.
However, for some quantitative metrics, such as the MTV, the
upper and lower limits on the distribution of true values are not
known a priori. To overcome this issue, the RWT procedure has
been extended to a more general no-gold-standard (NGS) tech-
nique. This technique does not require knowledge of the exact
lower and upper bounds of the distribution of true values.21 The
technique estimates figures of merit (FoMs) that can quantify the
performance of the imaging method based on how precisely
they measure the true quantitative value over a population of
patients. Validations with numerical experiments21 and realistic
simulation studies conducted in the context of evaluating
reconstruction methods for quantitative nuclear-medicine imag-
ing21,26 and segmentation methods for diffusion MRI27,28 have
provided strong evidence in support of the technique. How-
ever, the NGS technique has not yet been applied to patient data.

Application of the NGS technique to patient data poses sev-
eral practical difficulties. First, the NGS technique assumes that
the true and measured quantitative values using each of the
methods are related linearly. It has been observed that the tech-
nique does not evaluate the methods accurately when this
assumption is violated.21 However, it is impossible to validate
this assumption in the absence of a gold standard. Another
challenge is the difficulty in verifying the reliability of the

FoMs estimated by the NGS technique in the absence of a
gold standard. Finally, the NGS technique is applied to a random
subset of the patient population. This yields an uncertainty in the
estimated FoM. This uncertainty must be accounted for so that
the results are generalizable to larger patient populations. In this
manuscript, our primary objective was to develop an NGS
framework that consisted of strategies to overcome these prac-
tical challenges in applying the NGS technique.

The NGS framework was applied to evaluate FDG-PET
tumor-segmentation methods on the task of estimating the MTV.
The tumor segmentation task in PET is complicated due to ran-
dom factors, such as noise and variability in the shape, texture,
and location of tumors.29 A segmentation procedure that is sub-
stantially affected by these random factors could yield an impre-
cise MTV value. Thus, evaluating PET segmentation methods
on the task of precisely measuring the MTV value is essential.
This evaluation is facilitated by the knowledge of the true MTV
value or a suitable gold standard for comparison, but these are
often very difficult to obtain for patients. Typically, the only
reference standards are obtained from manual segmentations,
but these suffer from substantial inter- and intrareader variability.30

Thus, an NGS methodology for the task of evaluating PET seg-
mentation methods is highly significant. Consequently, we chose
this task to demonstrate the application of the NGS framework.

2 Development of the No-Gold-Standard
Framework

2.1 No-Gold-Standard Evaluation Technique:
Theory

A detailed mathematical description and validation of the NGS
evaluation technique has been presented previously.21 We pro-
vide a brief summary of the NGS evaluation technique here,
with a focus on the intuition behind the technique.

Consider the case where a quantitative value is estimated for
a particular patient. Suppose that there are K different imaging
methods available to measure this value. For example, in the
context of FDG-PET imaging, the quantitative value could
be the MTV. To measure the MTV, the tumor must be delin-
eated, for which different segmentation methods are available.
Suppose that we intend to evaluate K different imaging methods
based on their performance in measuring the true quantitative
value. Denote the number of measurements from all the patient
images by P. For the p’th measurement, denote the true value
and the value measured using the k’th segmentation method by
ap and âp;k, respectively. Further, let ¯̂ap;k denote the mean value
of âp;k. For this case, the precision for the k’th method, denoted
by ωk, is defined as Ref. 20:

EQ-TARGET;temp:intralink-;e001;326;220ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP
p¼1

ðâp;k − ¯̂ap;kÞ2
vuut : (1)

The NGS evaluation method assumes that the true and mea-
sured values using each of the methods are related. The relation-
ship consists of a deterministic and a random component. The
deterministic component is assumed to be linear, characterized
by a slope and bias term. The random component is character-
ized by a normally distributed noise term. It is assumed that the
slope, bias, and noise terms are unique for the different methods
and independent of the true value. Denote the slope, bias, and
the standard deviation of the noise term for the k’th segmentation
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method by uk, vk, and σk, respectively. The linear relationship
between the true and measured values for the k’th imaging
method is given as follows:

EQ-TARGET;temp:intralink-;e002;63;719âp;k ¼ ukap þ vk þ ϵp;k; (2)

where ϵp;k denotes a zero-mean normally distributed noise term
with standard deviation σk. Under this assumption, the mean
value of âp;k is given as follows:

EQ-TARGET;temp:intralink-;e003;63;660

¯̂ap;k ¼ ukap þ vk: (3)

Substituting the expressions from Eqs. (2) and (3) into
Eq. (1) shows that the precision ωk is equal to the standard
deviation term ðσkÞ. Intuitively also, as illustrated in Fig. 1,
the method with the highest value of the noise standard
deviation would be the most imprecise.20 Thus, under the
assumption of this linear relationship, if we could estimate
these linear relationship terms, we could design FoMs to evalu-
ate the different methods.

Denote the parameters in Eq. (1) by the vector Θ ¼
fuk; vk; σk; k ¼ 1;2; : : : ; Kg. Furthermore, assume that the true
values have been sampled from a four-parameter beta distribu-
tion (FPBD). The FPBD is characterized by two shape param-
eters (α and β) and upper and lower limits, denoted by g and l,
respectively. The reason for choosing this form for the distribu-
tion of true values has been previously described in detail.21

Denote the parameters of the FPBD by the vector Ω ¼ fα;
β; g; lg. Under these assumptions, using properties of condi-
tional probability, a mathematical expression for the distribution
of the values âp;k can be obtained that depends only on the linear
relationship and FPBD parameters, and does not depend on the
true values ap.

21 Using a maximum-likelihood (ML) approach,
the linear relationship and FPBD parameters that maximize the
probabilities of the measured values using all the imaging methods
can be estimated. Denoting the ML estimates of Θ and Ω by Θ̂
and Ω̂, respectively, the equation to be solved is given as follows:
EQ-TARGET;temp:intralink-;e004;63;357

fΘ̂; Ω̂g ¼ argmaxΘ;ΩP log

�
1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p �

þ
XP
p¼1

log

Z
dapprðapjΩÞ

× exp

"XK
k¼1

−
ðâp;k − ukap − vkÞ2

2σ2k

#
: (4)

Note that solving the above equation does not require
any knowledge of the true values, ap. Therefore, the above-for-
malism allows estimating the linear-relationship parameters
without any knowledge of the true values.

The NGS technique has been developed and implemented in
software running under MATLAB® using a previously
described procedure.21 To determine the ML estimates fΘ̂; Ω̂g,
a constrained-optimization technique based on the interior-point
algorithm was used. This optimization routine searches between
reasonable values of the Θ and Ω parameters. This search space
typically depends on the evaluation task. The procedure for
defining the search space to evaluate the FDG-PET segmenta-
tion methods is described in Sec. 3.1.

We have shown through numerical simulations that the noise
standard deviation and the slope terms are estimated accurately
using the above-described NGS technique.21 As mentioned ear-
lier, the noise term σk quantifies the precision. Since the slope is
estimated accurately, the measured values could be recalibrated
using the slope term. In that case, using Eq. (2), the noise stan-
dard deviation term would be scaled by the reciprocal of the
slope term. It is easy to show that the precision would then be
given by the ratio of the noise standard deviation to the slope for
each method, also referred to as the noise-to-slope ratio (NSR).
The NSR metric has been widely used for evaluating imaging
methods using NGS techniques on the basis of precision.21,22,24–27

However, to evaluate the imaging methods, instead of directly
comparing the NSRs for the different methods, we suggest an
alternative strategy that accounts for the uncertainty in the NSR
metric. Before describing that strategy, we provide an intuitive
explanation for how the NGS technique estimates the linear-
relationship parameters for the different methods.

2.2 Intuitive Explanation of the No-Gold-Standard
Technique

For the sake of simplicity, consider the case where the true val-
ues are drawn from a beta distribution, which is a specific case
of an FPBD but with the upper and lower limits, i.e., g and l,
equal to 1 and 0, respectively. This beta distribution is only char-
acterized by the two terms α and β, which describe the shape of
this distribution.

Consider that the output from the k’th imaging method fol-
lows the relationship defined in Eq. (2). In that case, as illus-
trated pictorially in Fig. 2, the distribution of measured values
for the k’th imaging method can be described by the parameters

Fig. 1 Scatter plots of the true versus measured MTV values using three different segmentation meth-
ods. The corresponding linear relationships for the three methods are superimposed on each scatter plot.
The solid line is the line defined by the slope and bias terms, while the dashed lines denote one standard
deviation above and below. The plots illustrate that under the linearity assumption, the segmentation
methods that are most imprecise (method 1) over the range of true values have the highest noise stan-
dard deviation.
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fα; β; uk; vk; σkg. Thus, theoretically, a statistical technique
could be designed to estimate fα; β; uk; vk; σkg from all the mea-
surements made with the k’th imaging method. For example, we
could design an ML technique that estimates those values of
fα; β; uk; vk; σkg that maximize the probability of all the
observed measurements. However, numerical studies indicate
that the estimation of these parameters is an ill-posed problem
when measurements from just one imaging method are used. This
is because, in that case, the parameters fα; β; uk; vk; σkg are not
always identifiable, i.e., two different combinations of these
parameters can yield the same distribution of measured values.

The parameters fα; β; uk; vk; σkg become more identifiable,
or uniquely defined, when we consider measurements from all
the K imaging methods. This is because the K different sets of
independent measurements are all characterized by the same
parameters fα; βg but each has a different set of fuk; vk; σkg,
as illustrated in Fig. 3. Thus, an ML-based technique, similar
to the RWT technique, or a method-of-moments technique,
similar to that proposed in Dunn and Roberts,31 could be

used to estimate these parameters. It has been observed through
numerical experiments with the RWT technique that, when data
from three or more imaging methods are available, the slope,
bias, and standard deviation terms of the different methods
are estimated accurately.22

Now, consider the case where both the upper and lower limits
of the FPBD are unknown. In this case, the distribution of the
measured values with the k’th imaging method is depicted as in
Fig. 4. Note that, in this case, the bias term vk always appears in
the expressions for the distribution of the measured values in the
form vk þ l. Thus, it can be argued that the statistical identifi-
ability of the bias term is poor. In fact, it has been observed in
several numerical experiments that when the upper and lower
limits of the GBD are not known, the bias term is not estimated
reliably using the ML-based NGS technique described in
Sec. 2.1.21 The slope and noise terms, however, are still esti-
mated reliably.21 Therefore, even when the upper and lower
limits of the FPBD are unknown, the NGS method estimates
the NSR reliably.

Fig. 2 Schematic illustrating the parameterized form for the distribution of measured values.

Fig. 3 Schematic illustrating the intuition behind how the NGS technique estimates the model
parameters.
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2.3 Checking the Linearity Assumption with Patient
Data

The NGS technique assumes that the measured and true quan-
titative values are linearly related for each of the imaging meth-
ods. In the absence of a gold standard, this assumption cannot be
directly validated. However, if the true values are linearly related
to the measured value for each of the methods, then the mea-
surements using two different methods must also be linearly
related. Stated alternatively, linearity between the measurements
using the different methods is a necessary condition for the mea-
surements to be related linearly to the true values, as formally
proved in the Appendix.

Using this fact, the linearity between the values from the dif-
ferent imaging methods was assessed before applying the NGS
technique. A scatter plot of the measured values using different
pairs of segmentation methods was constructed to verify the lin-
earity. Furthermore, the strength of the linearity was quantified
using the Pearson’s correlation coefficient between the mea-
sured values for different pairs of imaging methods. A value
close to unity provided evidence of a linear relationship between
the measured values from different pairs of methods.

2.4 Using the No-Gold-Standard Technique Outputs
to Evaluate the Segmentation Methods

The ultimate objective with the NGS technique is to determine
the most precise of all the compared segmentation methods. As
described above, the NGS technique yields the NSR value for
each method from one set of patient data. However, this patient
dataset is a randomly drawn subset from the entire population of
patients. Due to this random sampling, there is an uncertainty in
the FoM estimated using the NGS technique. Quantifying this
uncertainty and accounting for it while predicting the most pre-
cise imaging method is important.

To accomplish this task, we developed a bootstrap-based
approach similar to that suggested by Obuchowski et al.20 The
basic idea of bootstrapping is that information about some sta-
tistic of interest about a population can be obtained from sample
data by resampling the sample data with replacement many
times and computing the statistic of interest from these. We
chose the statistic of interest to be the difference of the NSR
values between a candidate for the best imaging method and
the other imaging methods. The motivation behind choosing
this difference as the statistic of interest was the following.
Consider two methods, method A and method B, with their
NSR values denoted by NSRA and NSRB, respectively. A
common test to declare that method A is superior to, i.e., in this
case, more precise than, method B is to show that the one-sided

100 × ð1 − αÞ% confidence interval (CI) for NSRA − NSRB is
included in ð−∞; 0Þ.20 In other words, if Cu denotes the
upper limit of the CI, then we need to check if Cu < 0. Thus, by
determining the CI forNSRA − NSRB using the bootstrap-based
procedure, we can assess whether method A is more precise than
method B. As is standard practice, we determined the 95% CI by
setting α ¼ 2.5%.

The following procedure was used to determine the best im-
aging method using the NGS technique. Denote the vector of
measurements for the p’th patient using all K imaging methods,
i.e., fâp;1; âp;2; : : : âp;Kg; by the vector Âp. The vector of mea-
surements from the P patients fÂ1; Â2: : : ÂPg was sampled P
times with replacement to form a bootstrap dataset. This boot-
strap dataset was input to the NGS technique and the NSR val-
ues for all theK imaging methods were estimated. The bootstrap
process was repeated for multiple trials. The method with the
lowest NSR for a majority of the bootstrap trials was chosen
as a candidate for the most precise method. Denote the NSR
for the candidate for the most precise method by NSRmp, and
the NSR for the k’th method by NSRk.

Next, the difference of the NSR values between the candidate
method and other methods, i.e., NSRmp − NSRk, denoted by
ΔNSRk, was computed. From the multiple bootstrap trials,
the 2.5 and 97.5 percentiles of ΔNSRk were computed, provid-
ing the upper and lower limits of the 95% CI. We checked
whether the upper limit of this CI was less than 0 for each
of the considered pair of methods. If so, this demonstrated
that the superiority of the candidate method was statistically
significant.

2.5 Consistency Checks

In the absence of a gold standard, it is not possible to verify
whether the NGS technique has yielded the correct rankings.
However, tests can be implemented to indicate whether the
parameters estimated using the NGS technique are consistent
with the measured data. For this purpose, we extend a consis-
tency check initially proposed in Kupinski et al.24

This consistency check uses the fact that the NGS technique
yields parameters that relate the gold standard to measurements
from a method with the relationship given in Eq. (2). Using these
estimated parameters, we can predict the relationship between
the measurements using two different methods. Mathemati-
cally, consider the k’th and the l’th segmentation methods. The
relationship between the measurements from these methods, as
predicted using the NGS technique, is obtained by solving for
the gold standard ap for each of the measurements âpk and âpl,
as follows:

Fig. 4 The distribution of measured values when the true values are sampled from a GBDwith upper and
lower limits of g and l. Note that in a heuristic description of the distribution of measured values, the bias
term vk always appears with the lower limit l as one unit, vk þ l .
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EQ-TARGET;temp:intralink-;e005;63;549âp;k ¼
ul
uk

âp;l þ
�
vl −

vkul
uj

�
: (5)

If the NGS technique estimated the bias and the slope terms
accurately, then the above-predicted relationship between the
measurements obtained using the k’th and l’th segmentation
methods should match the actual relationship of the measure-
ments using these methods. In other words, the line defined
by Eq. (5) should overlap with the scatter plot of the actual mea-
surements obtained using the k’th and l’th methods. We quantify
this overlap using the R2 coefficient of determination. If the
R2 value is close to unity, this indicates that the relationship
between the measured values matches the relationship defined
by Eq. (5); smaller values of the coefficient are an indication that
the output from the NGS technique is inaccurate.

It must be pointed that the success of this consistency check
does not guarantee that the NGS technique has yielded accurate
NSR values. However, a failure of this check indicates that the
output using the NGS technique must be used with caution.

A schematic of the proposed NGS framework is as shown
in Fig. 5.

3 Application of the No-Gold-Standard
Framework to Patient Data

3.1 Patient-Data Acquisition

We retrospectively conducted a PET segmentation study includ-
ing data from a total of 128 patients (mean age 59� 9 years old,
range 29 to 83 years old) with histologically proven newly diag-
nosed oropharyngeal head and neck squamous cell carcinoma.
The patients underwent a baseline 18F-FDG PET/CT staging
between 2007 and 2014. This was an Institutional review
board approved, HIPAA-compliant, retrospective study, with a
waiver for obtaining informed consent. None of the patients had
surgical intervention, radiation therapy or systemic chemo-
therapy before being scanned with 18F-FDG PET/CT. Patients
with uncontrolled diabetes, active inflammation, or with a sec-
ond primary malignancy, were excluded.

All patients were instructed to fast for at least 4 h before scan-
ning, and the weight, height, and blood glucose level was
recorded for each patient before FDG administration. The mean
blood glucose level was 102.6 mg∕dL (range, 61 to 173 mg∕
dL), and the average injected dose was 16.7 mCi (617.9 MBq)

[range, 9.4 to 24.7 mCi (347.8 to 913.9 MBq)]. Patients were
initially scanned from the base of the skull to mid-thigh region,
and then with a second dedicated PET/CT acquisition of the
head and neck region acquired in a single field-of-view (FoV).
The mean time interval between the injection of 18F-FDG and
the scan was 63.5� 6.5 min (range, 51 to 81 min).

Patients were scanned using a 64-MDCT lutetium oxyortho-
silicate crystal scanner (Discovery DVT, GE Healthcare), in 3-D
acquisition mode with 4.15 min per bed position. The images
were reconstructed using the ordered subset-expectation maxi-
mization (OS-EM) algorithm, a 128 × 128matrix, two iterations
of 21 subsets, a 3-mm postreconstruction Gaussian filter and
standard Z filter, a 4.7-mm pixel size, and a 3.27-mm slice thick-
ness. All PET data were reconstructed with and without CT-
based attenuation compensation using a noncontrast CT acquis-
ition for attenuation correction and for anatomical co-registra-
tion. The CT parameters were 50-cm axial dynamic FoV,
weight-based amperage (20 to 200 automated mA), 120 to
40 kVp, 3.75-mm reconstructed slice thickness, pitch of
0.984, 0.5-s gantry rotation speed and 512 × 512 matrix.2

3.2 Image Analysis and Segmentation Methods
Compared

An experienced board-certified nuclear medicine physician
reviewed the FDG-PET/CT images using a MIM workstation
(MIM Vista Software, version 5.2). Since inter-reader reliability
for automatic PET volumetric segmentation has been previously
established,30 only one reader was used for the image analysis.
Axial, coronal, and sagittal PET, CT and fused PET/CT images
were used for the visual qualitative identification of the oropha-
ryngeal primary malignancy and the cervical lymph node
involvement sites. A total of 80 primary tumors and 62 cervical
lymph nodes were assessed using an automated semiquantitative
PET segmentation. MTV values expressed as tumor volumes in
cubic cm (cc) units within the FDG uptake for each lesion were
extracted using four different segmentation methods: a gradient-
based method32 and fixed intensity thresholds of 50%, 40%, and
30% of SUVmax.

33

The gradient-based method, based on an edge-detection
tool, required placing the cursor at the center of the lesion and
dragging it out until the three orthogonal guiding lines reached
the boundaries of the FDG-avid lesion, while avoiding adja-
cent structures. The method generated an automated tumor

Fig. 5 A schematic of the proposed NGS framework in the context of evaluating four image-segmenta-
tion methods.
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volume-of-interest (VoI) within the tumor lesion outlined in
axial, transverse, and sagittal views. For the fixed-percentage
threshold segmentation techniques, a spherical VoI predefined
by the MIM software tool was placed over the lesion. The
VoI was adjusted to include the entire FDG-avid tumor, exclud-
ing adjacent structures. Subsequently, all voxels with gray level
values more than 50%, 40%, and 30% of the SUVmax were clas-
sified as lesion voxels, for the 50% SUVmax, 40% SUVmax, and
30% SUVmax segmentation methods, respectively, thus defining
the tumor boundary with each of these methods.

Subsequently, the physician verified the drawn boundaries in
all three orthogonal planes for the four segmentation methods.
The MTV values were extracted from the segmented tumor vol-
umes for each of the segmentation methods and exported in a
tabulated Excel (version 12.3.6, Microsoft) spreadsheet.

3.3 Application of the No-Gold-Standard Technique

We first verified, using the tests described in Sec. 2.3, if there
was a linear relationship between the MTV values measured
using different pairs of segmentation methods. If so, the mea-
sured MTV values were input to the NGS technique.

In the NGS optimization routine, the search space for the
different parameters was set such that the routine searched
between reasonable values of these parameters. The search
space should be large enough to model all possible relationships
between the true and estimated values. However, having the
search space too large would increase the possibility of the opti-
mization routine being trapped in local minima. Based on these
considerations, the search ranges for the α and β parameters
were chosen to lie in [1, 20]. This allowed modeling a wide
variety of shapes of the FPBD distribution, as described
previously.21 Similarly, the search range for the slope parameter
was chosen to lie in [0.6, 1.4] to model methods that substan-
tially scaled the MTV value. To determine the search ranges for
the other parameters, we studied the range of measured MTV
values yielded by the different methods. It was observed that
the minimum measured MTV values obtained using the four
segmentation methods were between 2.4 cc and 3 cc. Similarly,
the maximum measured MTV values were between 90 and
170 cc. Using this information, the search ranges for the
upper and lower value of the GBD were set to [2.4, 3.0] cc
and [90, 170] cc, respectively, and the search ranges for the
bias and standard deviation of the noise terms were set to
[−10; 10] cc and [1,10] cc, respectively.

The NGS technique was executed for a total of 500 bootstrap
realizations of the MTV data from all the methods, as described
in Sec. 2.4, yielding 500 NSR values. The CI of the difference in
the NSR values between the candidate for the most precise
method and other methods, i.e., ΔNSRk; was obtained. Analysis
of these CIs was performed to determine the most precise seg-
mentation method. We also implemented the consistency check
described in Sec. 2.5 on the output of the NGS technique.

3.4 Sensitivity to Patient Dataset

The objective of this experiment was to study the sensitivity of the
output of the NGS technique to the choice of the set of MTV
measurements considered in the dataset. As mentioned above,
the available patient dataset provided MTV measurements from
214 lesions for each method. We created a group of MTV mea-
surements from 150 tumors by sampling without replacement
from this dataset. The value of 150 was chosen since that allowed

for each combination to have different sets of MTV measure-
ments. Next, using the bootstrap-based procedure, the CI for
the difference in the NSR values between the various segmenta-
tion methods and the most precise segmentation method, i.e.,
ΔNSRk, was computed. The experiment was repeated for 50 tri-
als. The variation in the estimated CIs over the trials was assessed.

3.5 Effect of Reducing the Number of Patient
Studies

In the NGS technique, a number of parameters are estimated.
For example, when comparing three segmentation methods,
13 parameters are estimated. To estimate these parameters, mea-
sured quantitative values from a large number of patient studies
are required. This requirement could limit the utility of the NGS
approach to applications where large numbers of patient datasets
are available. It was thus of interest to study the reliability of the
NGS technique in determining the most precise segmentation
method as the number of patient images was reduced.

To study the effect of reducing the number of patient studies
on the performance of the NGS technique, we varied the number
of lesion measurements input to the NGS technique from 40 to
214. The CI of the difference in the NSR values for the various
segmentation methods relative to the most precise method, as
determined using data from all 214 MTV measurements, was
obtained. The upper limit of the estimated CI and the width
of the 95% CI were analyzed.

4 Results

4.1 Testing for Linearity

Scatter plots of the measured MTV values between different
pairs of segmentation methods are shown in Fig. 6. Pearson’s
correlation coefficient between the measurements using the dif-
ferent pairs of methods is reported on the scatter plots. A visual
inspection of the plots indicates that these measurements were
linearly related. Furthermore, the values of the correlation coeffi-
cient were close to unity, providing stronger evidence of this linear
relationship. We thus proceeded to apply the NGS technique.

4.2 Determining the Most Precise Segmentation
Method

The estimated NSR value for the four segmentation methods for
the first 100 bootstrap trials is plotted in Fig. 7. It was observed
that the 40% SUVmax method consistently had the lowest NSR.
Thus, the 40%SUVmax method was chosen as the candidate for
the most precise method, and the CI of the difference between
the NSR using this method and the other three segmentation
methods was obtained. The upper limit of the 95% CIs for
this difference estimate was always greater than 0, as shown
in Table 1. This result shows that the superiority of the 40%
SUVmax method was statistically significant.

4.3 Consistency Check

The results for the consistency check are shown in Fig. 8 for a
representative bootstrap realization. It was observed that the
relationship predicted by the NGS technique between the
MTV values obtained using the different segmentation methods
coincided with the scatter plot, with the R2 coefficient of deter-
mination values close to unity. The same trend was observed in
the results with all the bootstrap realizations, as evident from the
summary statistics of the R2 values presented in Table 2.
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4.4 Sensitivity to Patient Dataset

The upper and lower limits of the CI of the difference in the NSR
estimates between the 40% SUVmax method and other segmen-
tation methods for different combinations of 150 patient datasets
are shown in Figs. 9(a) and 9(b), respectively. It was observed
that both limits were robust to the choice of the patient dataset.
Furthermore, the upper limit was less than 0 for all combinations
of patient datasets, indicating that the 40% SUVmax method was
the most precise. These experimental results provided evidence
that the output of the NGS technique was robust to the choice of
the patient dataset.

4.5 Effect of Reducing the Number of Measured
Metabolic Tumor Volume Measurements

The upper limit of the CI for the difference estimate in the NSR
of the 40% SUVmax method and the other segmentation meth-
ods, as a function of the number of MTV measurements input to

the NGS technique, is shown in Fig. 10(a). The upper limit of
the CI was smaller than 0 cc when MTV measurements from up
to 80 lesions were available, so that the NGS technique pre-
dicted that the same segmentation method of 40% SUVmax was
the most precise. However, as the number of MTV measure-
ments was further reduced, the upper limit of the CI approached
the value 0, and eventually became greater than 0 for the case of
60 patient studies. Thus, assuming that the output of the NGS
framework with the 214-lesion dataset was accurate, we infer

Fig. 7 The NSR for the different segmentation methods for the first
100 bootstrap trials.

Fig. 6 Scatter plots depicting the relationships between the true and measured MTV values for different
pairs of segmentation methods. The Pearson’s correlation coefficient is given on each plot.

Table 2 The mean and standard deviation of the R2 coefficient of
determination values over all the bootstrap realizations.

Method pairs R2 value

40% SUVmax versus gradient 0.956� 0.002

40% SUVmax versus 50% SUVmax 0.980� 0.001

40% SUVmax versus 30% SUVmax 0.990� 0.000

50% SUVmax versus gradient 0.917� 0.001

50% SUVmax versus 30% SUVmax 0.951� 0.002

30% SUVmax versus gradient 0.959� 0.002

Table 1 The upper and lower limits of the CI of the difference in the
NSR estimates between the 40% SUVmax and the other segmentation
methods.

40% SUVmax
versus
gradient

40% SUVmax
versus

50% SUVmax

40% SUVmax
versus

30% SUVmax

Lower limit
of 95% CI

−3.48 −2.33 −1.14

Upper limit
of 95% CI

−1.83 −1.06 −0.34
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Fig. 8 The linear relationship between the measurements of the MTV values from the different methods,
as predicted by the NGS technique for a representative bootstrap realization, overlaid on the scatter plot
between the MTV values measured using the different methods.

Fig. 9 The (a) upper limit and (b) lower limit of the CI of 95% CI for the estimate of the NSR difference
between the 40% SUVmax method and other three segmentation methods for different trials, where in
each trial different combinations of lesion datasets input to the NGS technique.

Fig. 10 (a) The upper limit of the CI and (b) the width of the 95%CI for the estimate of the NSR difference
between the 40% SUVmax method and other three segmentation methods.
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that using less than 60 measurements was insufficient to deter-
mine the most precise segmentation method with the NGS
framework.

The effect of reducing the number of patient studies is further
illustrated in Fig. 10(b), where the width of the 95% CI (i.e., the
difference between the upper and lower limits) for the difference
in NSR between the 40% SUVmax method and other segmenta-
tion methods is plotted. Again, a reduction in the number of
MTV measurements led to an increase in the width of the
CI’s, indicating that the availability of a larger number of patient
studies is desirable.

5 Discussions and Conclusions
There has been a growing interest in using quantitative PET
volumetric metrics such as MTVand TLG to assess disease bur-
den and tumor aggressiveness. Several investigations are being
conducted on the role of change in MTV and TLG as an early
predictor of therapy response.34–37 Thus, these metrics could
provide useful measures of response in response-adaptive
therapy regimens. However, for these metrics to be incorporated
as a routine predictive biomarker, a PET segmentation method-
ology that yields precise values of these metrics is needed. Since
several PET segmentation methods are available,38 each with
their own trade-offs, evaluation of these methods on the task
of precisely measuring the metric is highly desirable. The pro-
posed NGS framework is useful in this evaluation by providing
an estimate of the precision of the MTV values under the
assumption that the true and measured metric values are linearly
related.

Conventionally, segmentation methods are evaluated by
quantifying some measure of overlap between a reference seg-
mentation and the output yielded by the segmentation method
under evaluation using metrics, such as Dice’s coefficient39 and
the Jaccard index.40 However, typically, the only reference stan-
dards available for comparison are segmentations produced by
expert observers, which tend to suffer from observer bias and
intra- and interexpert variability.30,41 Obtaining expert segmen-
tation is also tedious, time-consuming, and expensive. More-
over, the precision of manual segmentations depends on the
sharpness of the boundaries, the window-level settings for image
display, the computer monitor and its settings and the operator’s
vision characteristics.42 Consequently, there is an important
need to develop tools to evaluate segmentation methods in the
absence of ground-truth (or reference) segmentation. For this
purpose, algorithms such as simultaneous truth and performance
level estimation (STAPLE)43 have been widely used when seg-
mentation outputs from multiple methods or manual experts
are available. Additionally, other methods have been proposed
to evaluate segmentation methods in the absence of ground
truth.44,45 In these approaches, the evaluation metric is the
amount of region overlap between the output of the segmenta-
tion technique under evaluation and an unknown gold standard
segmentation.

More recently, the idea that segmentation algorithms must be
evaluated based on the specific task that will be performed using
the images has gained interest.24–27,33,46 This is especially true in
the context of evaluating FDG-PET segmentation methods,
where the task of interest is the estimation of volumetric metrics
such as MTVand TLG.33,47,48 However, an issue with these task-
based evaluations is the lack of knowledge about the true value
of the metric. In this manuscript, the use of the NGS framework
to address this issue in evaluating FDG-PET segmentation

methods has been demonstrated. While the NGS evaluation
technique provides a way to evaluate methods on the specific
task of measuring the MTV, in our opinion, it is complementary
to the region-overlap-based approaches and should be used in
conjunction.

A limitation of the NGS evaluation technique is that it cannot
be applied if the relationship between the true and measured val-
ues for any of the imaging methods is not linear. In the context of
delineating tumors in FDG-PET images of patients with head-
and-neck cancer, several segmentation methods are available.47

For some of these methods, it is possible that the true and mea-
sured values are not linearly related. Applying the NGS tech-
nique to evaluate these methods can yield inaccurate results.
Thus, before applying the NGS technique, it is important to
assess whether the linearity assumption is satisfied. We have
proposed a test that helps to check for nonlinearity between the
true and measured values using patient data. In addition to this
test, if measurements using the different methods are available
from experiments where the ground truth is known, such as real-
istic simulations or physical-phantom studies, then this could be
used to further check the assumption of linearity. Also, in some
cases, the linearity assumption could be enforced by the linearity
of the image-formation process. For example, in PET, the im-
aging operator is linear so that the projection data is linearly
related to the activity distribution. Thus, any linear functional
of the projection data will also be related to the corresponding
linear functional of the activity distribution.

In this study, we have compared four segmentation proce-
dures, namely the PET-edge technique and 30%, 40%, and
50% SUVmax intensity thresholding methods. These methods
were chosen due to their wide use in segmenting FDG-PET
images of patients with head-and-neck cancer.30,33,49–53 The
wide usage of these methods is due to their ease of deployment
and their availability in clinical workstations, such as MIM. Our
study concluded that the 40% SUV SUVmax thresholding
method was the most precise of the considered segmentation
methods. At the same time, several other techniques have
been developed to segment FDG-PET images,47 Thus more pre-
cise segmentation methods that were not considered here might
exist. The primary objective of this paper was to develop the
NGS evaluation framework. The use of the framework to evalu-
ate four candidate FDG-PET image-segmentation methods was
primarily meant to demonstrate its application to patient data,
and not to find the best segmentation method of all methods
available. However, the developed framework could be used
to comprehensively evaluate various methods for FDG-PET
tumor segmentation, and thus determine the most precise
method for FDG-PET tumor segmentation. Note that the seg-
mentation outputs could also be affected by the scanner, acquis-
ition, and reconstruction parameters. Thus, for a particular
acquisition protocol, a unique segmentation method might be
most precise. The NGS framework could also be used to deter-
mine this method.

In a previous study, Sridhar et al. have observed that, of the
gradient and the 30%, 40%, and 50% SUVmax threshold meth-
ods, the 40% SUVmax thresholding method was not the most
accurate on the task of estimating the MTV.33 However, the NGS
technique evaluates the imaging methods on the basis of preci-
sion, and not accuracy of the estimated metric. Thus, there is no
discrepancy in these results and the results presented in this
manuscript. In fact, the presented results suggest that while a
given segmentation method might yield very accurate values
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of a metric, these might not be the most precise. In applications,
such as radiotherapy, segmentation accuracy might be more
desirable, while in applications such as monitoring therapy
response, precision of the quantitative value measured from
the segmentation results is more important. Thus, care must
be exercised in selecting the evaluation criteria, and must
consider the clinical task.

The limitation of the NGS framework in not being able to
evaluate methods on the basis of accuracy of the estimated met-
ric arises because the NGS technique does not accurately esti-
mate the bias (intercept) term of the linear relationship [Eq. (2)]
when the upper and lower limits of the FPBD are not known.21

However, for some applications, the accuracy of the measured
QIB values is important. Improvements to the NGS technique
for evaluating segmentation methods on the basis of accuracy of
the QIB value are definitely desirable. In this context, if the
upper and lower limits of the distribution of true values are
known, it has been demonstrated using numerical experiments
that the NGS technique can yield accurate estimate of the bias
terms.22

In summary, an NGS framework was developed to overcome
the practical difficulties in applying an NGS technique to patient
data. The framework includes the NGS technique itself, a set of
statistical tests that provide confidence in the assumptions made
by the technique, a bootstrap-based procedure to compute CIs
on the FoMs estimated using the NGS technique, and consis-
tency checks to assess the reliability of these FoMs. The appli-
cation of the framework to patient data was demonstrated by
using the framework to objectively evaluate four tumor-segmen-
tation methods for FDG-PET imaging, namely 30%, 40%, and
50% SUVmax intensity thresholdmethods and a gradient technique,
using data from 128 patients with biopsy-proven head-and-neck
squamous cell carcinoma. The results from the application of
the framework provided evidence that the 40% SUVmax thresh-
olding method yielded the most precise MTV values for segment-
ing tumors in FDG-PET images of head-and-neck cancer acquired
following the described imaging protocol. Additionally, the
results were relatively stable over subsets of the patient data.
Experiments involving application of the NGS framework to
smaller subsets of patient data showed that the 40% SUVmax

threshold method was the most precise as long as MTV mea-
surements from more than 80 lesions were available.

Appendix A

Theorem 1: Consider two random variables y1 and y2 related
to a common variable x. For both y1 and y2 to be linearly related
to x, a necessary condition is that y1 and y2 must be linearly
related to each other.

Proof: Without loss of generality, consider the case where y1
and y2 have a quadratic relationship given as follows:

EQ-TARGET;temp:intralink-;e006;326;730y2 ¼ c2y21 þ c1y1 þ c0; (6)

where c2; c1; c0 are all constants. Also, assume that y1 and x are
linearly related so that

EQ-TARGET;temp:intralink-;e007;326;677y1 ¼ a1xþ a0; (7)

where again a1 and a0 are constants. Substituting Eq. (7) in
Eq. (6), we obtain

EQ-TARGET;temp:intralink-;e008;326;624y2 ¼ c2a21x
2 þ ðc1a1 þ 2c2a1a0Þxþ c2a20 þ c1a0 þ c0:

(8)

Thus, the variables y2 and x are not linearly related. Thus, the
theorem is proved by contraposition.

Appendix B
The NGS technique has been previously validated using numeri-
cal experiments and in the context of evaluating reconstruction
methods for quantitative SPECT.21 To further validate the per-
formance of the NGS technique specifically for the segmenta-
tion task considered in this manuscript, we conducted another
numerical validation study.

The parameters for this validation study were chosen to rep-
licate a scenario similar to the patient study. First, the values of
the four-parameter beta distribution estimated from the patient
data using the NGS technique were used to define a distribution
of true MTV values. 212 MTV values were sampled from this
distribution. Next, the slope, bias, and noise standard deviation
for each of the four segmentation methods, again as estimated
from the patient data using the NGS technique, were used to
numerically obtain noisy measurements of MTV values corre-
sponding to the four segmentation methods using Eq. (1). These
measured values were input to the NGS technique. The NGS
technique, without any knowledge of the true MTV values, esti-
mated the values of the slope, bias, and noise standard deviation
terms. These estimates were used to compute the NSR. The true
NSR value was determined using knowledge of the true slope
and noise standard deviation values. The results, as presented in
Table 3, show the similarity between the NSR estimated using
the NGS technique, without any knowledge of the true MTV
values, and the true NSR, thus numerically validating the NGS
technique in the context of this application.

Table 3 NSR estimated using the NGS technique compared with the true NSR values.

Method True slope Measured slope True std. dev. Measured std. dev. True NSR Measured NSR

PET-edge 1.40 1.36� 0.02 4.80 4.82� 0.28 3.45 3.54� 0.19

50% threshold 0.92 0.89� 0.02 2.34 2.33� 0.13 2.56 2.61� 0.17

40% threshold 1.14 1.11� 0.02 1.00 1.12� 0.06 0.88 1.00� 0.04

30% threshold 1.38 1.36� 0.01 2.29 2.15� 0.20 1.65 1.58� 0.15
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