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Abstract. Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learn-
ing features directly from the image data instead of using analytically extracted features. However, CNNs are
difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations.
Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally
pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast
lesions (607 full-field digital mammographic images). We compared support vector machine classifiers
based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of dis-
tinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted
with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show
that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using
analytically extracted features [area under the ROC curve ðAUCÞ ¼ 0.81]. Further, the performance of ensemble
classifiers based on both types was significantly better than that of either classifier type alone (AUC ¼ 0.86
versus 0.81, p ¼ 0.022). We conclude that transfer learning can improve current CADx methods while also
providing standalone classifiers without large datasets, facilitating machine-learning methods in radiomics and
precision medicine. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.3.034501]
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1 Introduction
Computer-aided diagnosis (CADx) systems have been success-
fully used to support human decision-making in radiological
image analysis and precision medicine in general.1–3 In particu-
lar, many research efforts have been made to use CADx in the
task of diagnosing breast cancer by using classification algo-
rithms to determine whether a lesion is malignant or benign
based on features extracted from the image data.

Traditional approaches to breast cancer CADx involve ana-
lytically extracting clinically specified tumor features (e.g.,
shape and density) and estimating malignancy probabilities
based on those analytically extracted hand-crafted lesion
features.1–3 Alternative approaches involve learning features
directly from the full images through methods such as convolu-
tional neural networks (CNNs), in the hopes that learning fea-
tures directly will yield unintuitive, hidden features that contain
more information than analytically extracted features.4–6

Indeed, advances in recent years in deep learning and com-
puter vision have been remarkable, with CNNs seeing great suc-
cess in many benchmark image classification tasks.7–9 However,
CNNs are contingent on very large and properly labeled data-
sets, as well as substantial computational resources. As a result,
training CNNs from scratch is often infeasible for CADx and
medical image data.

Surprisingly, it has been shown that generic features can be
transferred from pretrained CNNs to create powerful classifiers

for a new target task different from the original task of the
CNN—a process known as transfer learning.10–13 In particular,
success has been found in transferring knowledge from general
object recognition tasks to classification tasks in which catego-
ries are visually similar. Examples include categorizing species
of dogs or types of indoor scenes using CNNs trained on
classifying everyday objects.12,13 Since CADx includes similar
subtle classification tasks, we hypothesized that structures
within a CNN trained on everyday objects could be used to cre-
ate a classifier for breast cancer CADx, thereby harnessing the
predictive power of deep neural networks without the computa-
tional costs or large dataset requirements.

In this study, we present a breast imaging CADx system
based on deep neural networks with transfer learning. We tested
the optimal point at which to extract features from the pretrained
CNN, identifying the specific utility of transfer learning in
CADx. Further, we evaluated three different classifiers: one
trained on our previously developed analytically extracted
hand-crafted CADx features, one trained on pretrained CNN-
extracted features, and an ensemble classifier trained on both
types of features.

2 Materials and Methods

2.1 Overview

An overview of the classification methodology—in the task
of distinguishing malignant and benign lesions in digital
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mammograms—is illustrated in Fig. 1. First, features were
obtained from the images by two different methods: extracting
them automatically from pixel data via a pretrained CNN
(Method A) and extracting them via segmented-tumor-based
analytical methods (Method B). Support vector machine (SVM)
classifiers were then trained on each of these feature sets, as well
as an ensemble classifier averaged from both individual classi-
fiers (Method C). From there, receiver operating characteristic
(ROC) analysis and cross validation (by lesion) were used to
evaluate and compare models.

2.2 Imaging Data

The data were retrospectively obtained under an Institutional
Review Board-approved protocol from the University of
Chicago Medical Center. The dataset consisted of 219 lesions
on full-field digital mammography images from which within
each image, a region of interest (ROI) about each lesion had
been extracted, yielding 607 ROIs.14 To extract the ROI from
the full mammographic image, an expert mammographer marked
the center of each lesion, and a 512 × 512 box was cropped
around the center, with a pixel size of 0.1 mm. Note that initially,
there were 287 lesions with 739 ROIs, but 132 ROIs were
removed from the dataset prior to analysis due to visual artifacts
obscuring the image data, including paddles within magnification
views or location markers. The number of ROIs per lesion varied
between 1 and 13, with most lesions having two to three ROI
images. The ROIs had been labeled as either benign or malignant,
based on pathologic reports. For our study, 261 of the ROIs were
labeled as benign and 346 were labeled as malignant. The benign
lesions ranged in diameter from 0.32 to 3.17 cm, with a mean
diameter of 1.09 cm and a standard deviation of 0.52 cm. The
malignant lesions ranged in diameter from 0.28 to 3.21 cm,
with a mean diameter of 1.40 cm and a standard deviation
of 0.56 cm.

2.3 Method A: Pretrained Convolutional Neural
Network Features

AlexNet is a CNN model with three fully connected layers and
five convolutional layers, three of which are followed by max-
pooling layers.7 A publicly available version of AlexNet is pre-
trained on the ImageNet15 dataset, which consists of over 1 M
images and 1 K possible classes. By using a pretrained version,
the weights of the model are preinitialized, as opposed to being
randomly initialized when training from scratch. For further
explanation of AlexNet’s architecture, see the definitive work
by Krizhevsky et al.7

AlexNet was used to extract features directly from the ROIs,
without the need for lesion segmentation. Since the outputs of
each convolutional, pooling, and fully connected layer can be
extracted as features, there are 11 layers from which features
can be extracted and used as inputs for classification. Given
the sparsity of the extracted features, all zero-variance columns
were eliminated prior to input to classification. The illustration
of extraction process is shown in Fig. 2.

Although it has been shown11 that features from earlier layers
in the architecture of a neural network are more generalizable to
different tasks and that features from later layers tend to be more
specific to their original task, it was unclear which layer of
AlexNet in particular would be best suited for classification
of breast tumor images. Thus, classifiers based on each layer
were trained to determine the optimal layer. Features from
each layer were extracted and used to train SVM classifiers,
which were then evaluated via ROC analysis and five-fold
cross validation, as detailed in Sec. 2.6. The best classifier
was then selected based on predictive performance and compu-
tational costs, as discussed in Sec. 3.1.

2.4 Method B: Analytically Extracted Computer-
Aided Diagnosis Features

To classify the breast lesion images based on analytically
extracted features, the lesion was first segmented from the sur-
rounding parenchymal background within the 512 × 512 ROI.
The center of the lesion was manually indicated, then an auto-
matic lesion segmentation was performed, based on a multiple-
transition-point, gray-level, region-growing technique. Further
details of the automatic lesion segmentation process can be
found in the work of Li et al.14 After the lesion was segmented
from the rest of the image, image features (i.e., mathematical
descriptors) were extracted from the lesion, including lesion
size, shape, intensity (e.g., average gray level, contrast, and
texture), and margin (e.g., spiculation and sharpness) of the
mass. Extensive descriptions of the lesion features and how
they were extracted can be found in various papers from our
laboratory.14,16,17 Finally, an SVM classifier was trained on
the extracted features and evaluated as described in Sec. 2.6.

2.5 Method C: Ensemble Classifier

After individually performing classification with CNN features
(Method A) and analytically extracted features (Method B),
a simple ensemble technique known as soft voting18 was
used to combine the outputs from both individual classifiers.
Through this technique, the output probabilities from the indi-
vidual classifiers were averaged and then used as the final pre-
dicted probabilities. To be more precise, the soft-voting output
was computed as p3 ¼ ½ðp1 þ p2Þ∕2�, where p1 and p2 are the
output probability vectors from the individual classifiers.

2.6 Classification and Evaluation Methods

For all evaluation tasks, unless otherwise stated, the following
methods were used. First, preprocessing was conducted by cen-
tering and scaling each feature to have zero mean and unit vari-
ance. For classification using extracted features, an SVM19 with
a polynomial kernel was employed. The kernel is defined as
Kðx; yÞ ¼ ðaxTyþ cÞd,20 and optimized values of a, c, and d,
were selected by cross validated grid-search with five folds. In
the task of distinguishing between benign and malignant lesions,

Fig. 1 An overview of the various methods used in the task of distin-
guishing between benign and malignant tumors.
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classifiers were evaluated with ROC analysis,21,22 with the area
under the ROC curve (AUC) as the performance metric. AUC
was calculated by five-fold cross validation by lesion. Cross val-
idation was conducted by lesion instead of by ROI since there
were often multiple images, i.e., ROIs, of the same lesion. This
method of cross validation is preferred in CADx and other
image interpretation analyses due to correlations among ROIs
of the same lesion, which would cause erroneous inflation of
AUC values if one were to simultaneously train and test
ROIs from the same lesion. Performance comparison t-tests
as described by Hothorn et al.23 were used to test for statistical
significance between classifier AUC scores, with Bonferroni
corrections for multiple comparisons.

3 Results

3.1 Layer Comparisons

Figure 3 shows the AUC performance of the SVM classifiers
trained on CNN features extracted from each layer of the pre-
trained AlexNet. As shown, the performance increases with the
number of layers until it peaks at the Conv4 layer, after which

performance starts to drop slightly. There are sharp drops in per-
formance after the Fc6 layer and the Fc7 layer.

We chose the Fc6 layer as the optimal layer due to its high
predictive performance and relatively low dimensionality. The
convolutional and pooling layers all had feature vector lengths
one to two orders of magnitude higher than the fully connected
layers, vastly increasing computational costs. Although the
classifier based on features from Conv4 had the highest AUC,
the difference between Conv4 and Fc6 was small (AUC ¼ 0.83
versus 0.81).

3.2 Model Evaluation and Comparison

The ensemble classifier was shown to be significantly better
than the classifier based on analytically extracted features after
Bonferroni correction (AUC ¼ 0.86 versus 0.81, p ¼ 0.022).
Table 1 and Fig. 4 show the AUC performance of each of
the three classifiers. SVM1 is the SVM classifier based on
the features extracted from the pretrained CNN. SVM2 is the
SVM classifier based on the analytically extracted features.
The ensemble classifier is the soft-voting classifier based on
SVM1 and SVM2.

Fig. 2 A schematic of how features are extracted using a pretrained AlexNet. It should be noted that the
ROI has three channels despite being grayscale to fit the original architecture that was designed for color
images. Additionally, the ROIs are down-sampled to 256 × 256 from 512 × 512 to fit the architecture of
the network. Each ROI is sent through the network and the outputs from each layer are preprocessed to
be used as sets of features for an SVM. The filtered image outputs from some of the layers can be seen in
the left column. The numbers in parentheses for the center column denote the dimensionality of the out-
puts from each layer. The numbers in parentheses for the right column denote the length of the feature
vector per ROI used as an input for the SVM after zero-variance removal. For example, Pool1 outputs
96 31 × 31 images, which are all combined and flattened into a 92,256-length feature vector, which is
then reduced to an 85,614-length vector to be used in an SVM. After a feature vector has been extracted
from each ROI, the SVM is then trained and evaluated by cross validation.
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4 Discussion
We have shown that transfer learning from nonmedical tasks can
be used to significantly improve current methods of classifica-
tion for CADx while also individually yielding competitive

predictive performances. CNNs specifically trained for a
given task are generally expected to outperform transfer learning
methods, but only given sufficient data. As discussed in the
introduction, modern advances in computer vision are often
dependent on large, annotated datasets, which are not readily
available for medical images. Thus, small-sample-size methods
like the ones used in this study may continue to be vital in the
future for CADx.

It should be noted that many of our methodological choices
were not necessarily optimal in terms of predictive performance.
We chose AlexNet as a pretrained CNN due to its simplicity and
surrounding literature, but there are newer, more advanced net-
works, like Simonyan and Zisserman’s “very deep” network,8

that are known to be better for transfer learning.24 Further,
our ensembling method of soft voting was also chosen for sim-
plicity. Some combination of advanced ensembling and feature
selection methods could possibly yield higher predictive perfor-
mance results. Finally, we chose to extract features from the Fc6
layer instead of the Conv4 layer despite their performance
differences due to concerns of overfitting and computational
costs. A 86,400-length feature vector seemed too unwieldy
given a dataset of only 607 images, but Conv4 may be the better
choice given a larger dataset.

It is also important to note that using a pretrained CNN
restricts us to using its original architecture. Consequently, we
had to fit our data to an architecture that is likely suboptimal for
medical image data. While we could modify the input images
and choose the layers for output, our ability to change the archi-
tecture of AlexNet was limited.

To our knowledge, this is the first study to use pretrained
CNNs as fixed feature extractors in comparison and in combi-
nation with CADx-specific features for the task of diagnosing
medical images. Bar et al.25 and Anavi et al.26 demonstrated
the effectiveness of CNN-extracted features in characterizing
chest x-rays, but did not provide comparison with traditional
CADx methods as we report here. More specifically, Bar
et al. compared CNN-extracted features with general image
descriptors such as GIST instead of CADx-specific features.
Wang et al.27 used an ensembling method similar to ours to com-
bine analytically extracted features and CNN features for the
task of mitosis detection, but they did not use transfer learning
and thus had to train a full CNN from scratch. Carneiro et al.28

Fig. 3 Performance in terms of AUC for classifiers based on features from each layer of AlexNet in the
task of distinguishing between malignant and benign tumors. The error bars represent the standard error
of each AUC value, calculated by dividing the standard deviation by the square root of the number of
cross validation folds.

Table 1 Model performance and evaluation.

Model AUC AUC.SD Time

1 Pretrained CNN features (SVM1) 0.81 0.04 ∼7 min

2 Analytically extracted features (SVM2) 0.81 0.03 ∼5 min

3 Ensemble classifier (SVM1 and SVM2) 0.86 0.01 ∼10 min

Note: AUC is the area under the ROC curve, averaged for each fold of
cross validation. AUC.SD is the standard deviation of the AUC, also
averaged for each fold of cross validation. Time denotes the esti-
mated computational time to extract features and train a classifier
with five-fold cross validation over all 607 lesions.

Fig. 4 Fitted binormal ROC curves depicting the performances of
each classifier in the task of distinguishing between malignant and
benign ROIs. Each curve corresponds to its respective classifier listed
in Table 1.
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implemented a similar transfer learning technique—fine-tuning,
wherein a CNN is retrained on top of its original initialized
weights—also to estimate malignancy probabilities in mammo-
gram images. However, since it entails retraining a full network,
fine-tuning thus requires the computational resources and train-
ing time that our method avoids. Further, we empirically found
that a fine-tuned CNN performed only slightly better than
an uninitialized one and worse than our methods. Yosinski
et al.11 suggest that fine-tuning should be used when the new
dataset is large and similar to the original task and fixed feature
extraction should be used when the new dataset is small and
different from the original task, so our methods seem more
appropriate given the task and size of our breast image datasets.

In this preliminary study, we demonstrated the potential use-
fulness of transfer learning for the task of CADx. Predictive
performance is crucial to CADx and we believe that the perfor-
mance gains from our transfer learning techniques could
improve current applications of CADx in a variety of contexts.
Comparing CNN-extracted features with human-designed fea-
tures may allow for better interpretation and understanding of
CADx output by clarifying the relationship between CNN-
extracted features and calculated physical descriptors of lesions.
We see these comparisons as important since CNN-extracted
features are not intuitive or easily interpretable on their own.
Other aspects, such as identifying classifier agreement rates
or exploring how the different classifiers relate to specific physi-
cal qualities of lesions, may be investigated in the future. We
believe that transfer learning for CADx can be further investi-
gated in terms of types of training data, architectures used, and
ensembling methods, further paving the way for improved
CADx and precision medicine in general.
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