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Abstract. We analyzed the spatial diversity of tumor habitats, regions with distinctly different intensity character-
istics of a tumor, using various measurements of habitat diversity within tumor regions. These features were then
used for investigating the association with a 12-month survival status in glioblastoma (GBM) patients and for the
identification of epidermal growth factor receptor (EGFR)-driven tumors. T1 postcontrast and T2 fluid attenuated
inversion recovery images from 65 GBM patients were analyzed in this study. A total of 36 spatial diversity
features were obtained based on pixel abundances within regions of interest. Performance in both the classi-
fication tasks was assessed using receiver operating characteristic (ROC) analysis. For association with 12-
month overall survival, area under the ROC curve was 0.74 with confidence intervals [0.630 to 0.858]. The sen-
sitivity and specificity at the optimal operating point (threshold ¼ 0.5) on the ROC were 0.59 and 0.75, respec-
tively. For the identification of EGFR-driven tumors, the area under the ROC curve (AUC) was 0.85 with
confidence intervals [0.750 to 0.945]. The sensitivity and specificity at the optimal operating point
(threshold ¼ 0.166) on the ROC were 0.76 and 0.83, respectively. Our findings suggest that these spatial habitat
diversity features are associated with these clinical characteristics and could be a useful prognostic tool for
magnetic resonance imaging studies of patients with GBM. © 2015 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JMI.2.4.041006]
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1 Introduction
Glioblastoma (GBM) is the most common primary brain tumor
known for its aggressive malignant behavior. Generally, the
treatment of GBM involves surgical resection followed by a
combination of radiation therapy and temozolomide. Despite
multimodality treatment, the median survival time of GBM
patients remains poor between 12 and 15 months.1,2

Medical image analysis plays an essential role for phenotyp-
ing disease and has tremendous applications in clinical decision
support. Several computer-based medical image analyses have
been studied in GBM.3–6 Specifically, identifying the image-
derived phenotype of the tumor is essential to understand and
quantify treatment response and prognosis. For example,
gray-level intensity heterogeneity within a tumor is indicative
of multiple, potentially distinct subregions within the tumor
and analysis of such heterogeneity has the potential to aid treat-
ment of GBM.7–9 Tumor texture has been investigated as one
surrogate for tumor heterogeneity. It has been shown to be asso-
ciated with the malignancy of the tumor10 and can provide
essential prognostic information.11–13 Several texture analyses
have been investigated in multiple tumor contexts based on

imaging methods, such as computed tomography, positron emis-
sion tomography, and magnetic resonance imaging (MRI).14–18

In an orthogonal approach, researchers have investigated the
spatial heterogeneity of tumors using the concept of radiologi-
cally defined “tumor habitats,” where the tumor regions have
distinctly different MRI-derived intensity characteristics.8

Cancer is considered a disease that involves the clonal evolution
of genes associated with cancer risk19 and the spatial cellular
heterogeneity of tumors is clearly evident in the imaging char-
acteristics of tumors.

Many tumors show spatially heterogeneous patterns in con-
trast to enhancement in their medical images and such spatial
patterns of the tumor represent various biological tissue proper-
ties based on water content, cellular density, fibrosis, and
necrosis. In ecology, methods such as spatial species diversity
or biodiversity analysis20 have been proven to be useful in
understanding the distribution and abundance of different spe-
cies or types in a spatial region. One recent study has suggested
that ecologic and evolutionary principles might provide a theo-
retical framework for linking diversity analysis from clinical im-
aging with regional variations in blood flow, cell density, and
necrosis.21 Drawing upon these studies, we investigated the
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spatial heterogeneity characteristics of the tumor by using hab-
itat diversity analysis, drawing from methodology in ecological
statistics literature. The tumor region is treated as an ecological
community, and the spatial diversity of multiple tumor habitats
[defined radiologically based on T1 postcontrast and T2-fluid
attenuated inversion recovery (FLAIR)22 intensity] is assessed.
T1 postcontrast images and T2 FLAIR MR images represent
different tissue characteristics within the tumor. For example,
characteristics such as perfusion and extravasation of the con-
trast agent could be determined by T1-weighted MRI sequences,
and interstitial edema and cell density could be determined by
T2 FLAIR MRI sequences.

In this study, we obtained various ecological diversity indices
such as Shannon index, Simpson index, and Fisher’s alpha to
quantify the habitat diversity of the tumor. These measurements
(features) were then used to investigate the association with 12-
month overall survival (OS) status as well as driver status of the
epidermal growth factor receptor (EGFR) gene (i.e., identifying
those tumors driven by EGFR alteration), using a classification
framework. Our goal was to determine if such radiographic fea-
tures could be used as reliable surrogates for OS and tumor
molecular (specifically, EGFR driven) status. Driver genes per-
tain to tumor initiating or maintaining molecular alterations and
have been defined based on the combination of mutation events
as well as DNA copy number changes (like amplifications or
deletions). Several driver genes for GBM have been defined and
include genes like phosphatase and tensin homolog (PTEN),
EGFR, DNA-damage-inducible transcript, platelet-derived growth
factor receptor (PDGFRA), and neurofibromin 1.23 EGFR is the
main regulator of cell function and tumorigenesis in GBM and is
one of the most widely recognized driver alterations in this dis-
ease. EGFR signaling has been shown to modulate gliomagen-
esis and constitutes one of the key molecular events underlying
the classical subtype.24 EGFR alterations also provide the basis
for therapeutic intervention based on receptor tyrosine kinase
(RTK) inhibitor therapies.25

To the best of our knowledge, spatial diversity analysis of
tumor habitats for quantitative imaging data is a novel investi-
gation in neuroradiology as well as in radiomics. The goal of this
study was to examine the feasibility of using spatial diversity
features obtained from tumor habitats within MR images as reli-
able surrogates of 12-month OS status as well as tumor driver
gene status in patients with GBM. This study was formulated
based on reported observations about phenotypic consequences
of molecular aberrations in GBM, specifically, changes in pro-
liferation, invasion characteristics of the tumor, as well as asso-
ciated patient survival. Apart from examining such feasibility,
this work attempts to provide a characterization of the spatial
variation in radiological habitat abundance across the tumor
region, complementing previous studies of habitat abun-
dance.21,22 In addition, aside from providing a new set of fea-
tures for radiomic characterization of GBMs, our study of
associations with both survival and EGFR status pertains to vari-
ous ongoing investigations in imaging-genomics analysis as
well.26,27

2 Materials and Methods

2.1 Data

A dataset of 65 patients (21 females and 44 males) with primary,
untreated GBM were studied based on the availability of post-
contrast T1-weighted and T2-weighted FLAIR image from The

Cancer Imaging Archive (TCIA).28 These patients were selected
such that their genomic (specifically EGFR mutation and copy
number status), clinical, and companion imaging data were
available from either The Cancer Genome Atlas (TCGA) portal
or TCIA portal. Clinical data regarding tumor driver gene status
and OS were obtained from the cBioPortal.29 Patient demo-
graphics are summarized in Table 1.

2.2 Genomic and Survival Data Processing

The first classification task pertains to the assessment of EGFR
driver status in the tumor based on image-derived spatial diver-
sity features from radiologically defined tumor habitats.
Specifically, we aim to identify EGFR-driven GBMs from non-
EGFR driven GBMs based on image-derived spatial diversity
characteristics of tumor habitats. Tumor driver gene status
was assessed using the combination of gene mutation and copy
number change. Specifically, a gene is designated a “driver” if it
has both a mutation as well as an amplification or deletion event
in a tumor sample. Using prior studies of driver alterations in
GBM,23,30 we assessed the frequency of driver status for each
of the 32 genes studied for GBM. We only focused on drivers
with a frequency larger than 20% in the dataset to avoid minor-
ity-sampling biases during classifier training. Table 2 shows the
top five frequencies of each driver gene in the dataset. Only one
of the 32 genes met this threshold—EGFR. We designated each
of the 65 tumor cases to be EGFR driven or not, based on
whether or not EGFR was both mutated and altered (by copy
number) in that patient’s tumor. This binary designation is sub-
sequently used as the class label in the classification task.

In this study, we also investigated if the image-derived spatial
diversity features (specifically, diversity characteristics of radio-
logically defined tumor habitats) are associated with OS status at
the 12-month time point. This choice of cutoff is based on the
median survival times of GBM (12 to 15 months) and has been

Table 1 Patients demographics.

Characteristics
Group 1

(≤12months)
Group 2

(>12months) Total

No. of men 17 27 44

No. of women 9 12 21

Age (years) 60.53�15.9 55.05�14.6 57.2�15.6

Overall survival
(months)

6.06�2.96 24.41�12.8 17.1�13.5

The values in age and overall survival are mean�standard deviation.

Table 2 Top five driver events in the dataset (based on mutation and
copy number change). Numbers represent the percentage frequency
of those driver events in the dataset.

Drivers EGFR PDGFRA DDIT3 PTEN KIT

Frequencies (%) 36.9 10.8 9.2 9.2 7.7

EGFR, epidermal growth factor receptor; PDGFRA, platelet-derived
growth factor receptor; DDIT3, DNA-damage-inducible transcript 3.
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used in other studies as well.31 For this analysis, the patients
were assigned to one of two groups according to their OS at
12 months.31 One group had 26 patients with OS of 12 months
or less, and the other group had 39 patients with OS greater than
12 months.

2.3 Image Preprocessing

Image registration, nonuniformity correction, reslicing, and
intensity normalization were performed as preprocessing proce-
dures before analyzing the data for spatial diversity features. The
registration of the T1 postcontrast images and T2 FLAIR images
as well as nonuniformity correction for the artifacts in MRI were
performed using medical image processing, analysis, and visu-
alization software.32 Images were subsequently resliced for iso-
tropic pixel resolution using the NIFTI toolbox in MATLAB.
Example T1 postcontrast and T2 FLAIR images are shown
in Fig. 1.

2.4 Delineation of Tumor Habitats and Their Spatial
Point Patterns in the Tumor Region of Interest

The segmentation of the tumor region was performed by experts
(J.M. and G.R.) semiautomatically using the Medical Image
Interaction Toolkit.33 The slice with the largest tumor area in
T1 postcontrast image and the corresponding slice in the T2
FLAIR image was selected for analysis. Each pixel in the
tumor region from the T1 postcontrast and T2 FLAIR images
was assigned to one of two groups according to its intensity,
respectively. The threshold between the two intensity groups
was determined based on a Gaussian mixture model34 to assign
each tumor pixel to a low-intensity or high-intensity group.
These two (T1 postcontrast and T2 FLAIR) regions are com-
bined into a region of interest (ROI) for habitat analysis, as the
union of T1 postcontrast and T2 FLAIR tumor regions. The
tumor ROI is treated as an ecological community.20,21 For spatial
diversity analysis, the tumor ROI is divided into 8 × 8 pixel
square regions, called “quadrats.” Each pixel in each quadrat is
designated a “type” (or species) based on the intensity group it
belongs to (T1-low, T1-high, FLAIR-low, and FLAIR-high).
This creates a spatial point pattern across all the quadrats in the
tumor region. Figure 2 illustrates this paradigm.

2.5 Spatial Diversity Features

Using the spatial point pattern obtained above, we obtained a
range of diversity features over the tumor habitats,22 based
on their relative abundance in the tumor region.35 First, the num-
ber of pixels in each quadrat was counted for each “type” (low or
high intensity in T1 and FLAIR images), which gave us the
abundance of each point type (or species) within the given quad-
rat. Subsequently, a species-abundance matrix was obtained.
Each row represents a quadrat, and each column represents
the abundance of each of the four species (T1-low, T1-high,

Fig. 1 Example (a) T1 postcontrast image and (b) T2 FLAIR image
after preprocessing. An arrow points to the enhanced tumor area in
each sequence.

Fig. 2 An example of region of interest (ROI) spatial habitat map combining the low- and high-intensity in
T1 postcontrast and T2 FLAIR ROIs (left of the figure). Two-dimensional grid lines were overlaid on each
binary mask and were equally spaced at with the distance of 8 pixels. Each square site in the partitioned
tumor region is called a “quadrat.” The different gray level intensity areas represent radiologically defined
combinations of different types. Top-left of the figure shows an example quadrat (32nd site) of this ROI
and the species abundance matrix can be constructed from these quadrats by enumerating the pixels
belonging to each of the four intensity groups (bottom-left of the figure).
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FLAIR-low, FLAIR-high intensity groups) in that quadrat.
Next, the various diversity features were calculated from this
species-abundance matrix. In this study, 36 diversity features
were calculated (across all the quadrats in the tumor ROI)
using the R package (vegan),36 all of which are listed in Table 3.

Shannon, Simpson, inverse Simpson, Fisher indices, and
Pielou’s evenness are popular diversity indices representing
quantitative measures that reflect the abundance of different
point types in a spatial region. The definitions of these indices
are explained in the Appendix. In addition to the aforementioned
indices, we used functions from the “vegan” R-package for nest-
edness indices, Kendall indices (Kendall coefficient of concord-
ance), and alpha, beta, as well as gamma diversity.36 Nestedness
indices find multiarea dissimilarities and decomposes these into
components of turnover and nestedness,37 and the Kendall index
performs a posteriori tests of the contributions of individual
types to the concordance of their group.36 Alpha, beta, and
gamma diversity were introduced by Whittaker38,39 to represent
the species richness of an area or the number of species in a
habitat, differentiation among sites, and the richness of species
present within a large area, respectively.

2.6 Statistical Analysis

A total of 36 diversity features that consist of the mean, standard
deviation, skewness, and kurtosis (computed across all the quad-
rats in the tumor region) of the diversity indices such as the
Shannon index, Simpson diversity index, inverse Simpson
index, Fisher’s alpha, Pielou’s evenness index, nestedness
and Kendall indices, and spatial measure of richness (alpha,
beta, and gamma diversity) were computed from the measure-
ment of abundance from the quadrats of ROIs. For examining
association with 12-month survival, we used five diversity fea-
tures: Kendall index (T1-high), Kendall index (T1-low), mean
Fisher’s alpha, skewness of the inverse Simpson, and standard
deviation of Fisher’s alpha. These five features were selected
based on the overall coefficient of variation (CoV) across the

dataset. These features were used to discriminate OS at the
12-month time point (>12 months or ≤12 months). For classi-
fier modeling, we used a symbolic regression method,40 with
threefold cross validation for assessment of classifier perfor-
mance. Difference of the classifier’s performance [using area
under the receiver operating characteristic (ROC) curve, AUC]41

relative to random classification (AUC ¼ 0.5) is assessed via
p-value from a Mann–Whitney hypothesis test (using R-pack-
age, “verification”).42 We used the Brier score to measure the
accuracy of prediction using Eq. (1). The Brier score is a com-
monly used performance measure for assessing the accuracy of
probability predictions, defined as

EQ-TARGET;temp:intralink-;e001;326;315BS ¼ 1

N

XN
i¼1

ðfi − oiÞ2; (1)

where N is the sample size, fi is the probability that was fore-
cast, and oi is the actual outcome of the event at instant i. This
score ranges from 0 (for a perfect prediction) to 1 (for a predic-
tion that is incorrect on every case). The predictive accuracy of
the diversity features, true positive rate (TPR), and true negative
rate (TNR) for the survival groups were assessed based on an
operating point selected along the ROC to maximize the sum of
sensitivity and specificity. The accuracy was calculated using
Eq. (2) for the optimal model:

EQ-TARGET;temp:intralink-;e002;326;167ACC ¼ TPþ TN

TPþ FNþ TNþ FP
; (2)

where TP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative rates, respectively. The same
procedure was followed to obtain a classifier to discriminate
EGFR-driven tumors from tumors that were not EGFR driven
using the top five features based on CoV: Kendall index of the
T1-high species, Kendall index of the T1-low species, mean
Fisher’s alpha, skewness of the inverse Simpson, and standard

Table 3 36 spatial diversity features.

No. Diversity index No. Diversity index No. Diversity index

1 Mean Shannon 13 Mean Fisher alpha 25 Jaccard (nestedness)

2 Std-dev Shannon 14 Std-dev Fisher alpha 26 Jaccard

3 Skewness Shannon 15 Skewness Fisher alpha 27 Kendall index (T1-low)

4 Kurtosis Shannon 16 Kurtosis Fisher alpha 28 Kendall index (T1-high)

5 Mean Simpson 17 Mean Pielou’s evenness 29 Kendall index (T2-low)

6 Std-dev Simpson 18 Std Pielou’s evenness 30 Kendall index (T2-high)

7 Skewness Simpson 19 Skewness Pielou’s evenness 31 α-diversity

8 Kurtosis Simpson 20 Kurtosis Pielou’s evenness 32 β-diversity

9 Mean inv. Simpson 21 Sorensen (turnover) 33 γ-diversity

10 Std-dev inv. Simpson 22 Sorensen (nestedness) 34 No. of types (α-div.)

11 Skewness inv. Simpson 23 Sorensen 35 No. of types (β-div.)

12 Kurtosis inv. Simpson 24 Jaccard (turnover) 36 No. of types (γ-div.)
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deviation of Fisher’s alpha, across all quadrats within the
tumor.

3 Results
We dichotomized the OS at 12 months,1,2 yielding a binary label
on the cases. This was used to build the classifier using symbolic
regression. We computed the p-value and Brier score to assess
the classifier’s prediction of 12-month survival. The AUC was
0.74 and the corresponding p-value is 0.00021 indicating that
the AUC for association with survival status at the 12-month
point (>12 months or ≤12 months) is significantly different
from random classification (AUC ¼ 0.5). The Brier score (mea-
sures the accuracy of probabilistic predictions) was 0.197 for the
survival prediction task. Figure 3 shows the ROC curve with
AUC and confidence intervals to illustrate the performance of
this binary classifier. At the chosen operating point along the
ROC (chosen to maximize the sum of sensitivity and specific-
ity), the sensitivity ¼ 0.75 and specificity ¼ 0.59. The results of
the ROC analysis with confidence intervals are shown in Fig. 3
and Table 4.

In the ROC analysis for EGFR-driven tumor identification,
the AUC is 0.845 and the corresponding p-value is 1.56 × 10−7

indicating that this AUC is also significantly different from

random classification (AUC ¼ 0.5). At an operating point
(sensitivity ¼ 0.83, 1 − specificity ¼ 0.24) determined by
maximizing the sum of sensitivity and specificity, the TPR
and TNR are thus 0.77 and 0.83, respectively. The correspond-
ing accuracy is 0.79. The Brier score, for the task of predicting
driver gene status of EGFR, was 0.147, again suggesting good
classifier performance. Figure 4 shows the ROC curve with con-
fidence intervals for identification of EGFR-driven tumors, and
the results are summarized in Table 5.

4 Discussion
In this work, we present a methodology to determine the ability
of spatial habitat diversity features from radiologically defined
tumor habitats to investigate the association with the 12-month
survival of patients with GBM as well as the driver status of the
EGFR gene. The case IDs for the 65 glioblastoma patients are
listed in Table 6. In this study, we defined four distinct groups
based on tumor intensity obtained from different MR sequences.
These groups are considered as different species within an ROI;
subsequently, we performed spatial diversity analysis using vari-
ous measures of species distribution within the tumor. Our find-
ings show that diversity features obtained from MR images are
associated with 12-month OS and EGFR driver status in GBM

Fig. 3 Receiver operating characteristic (ROC) curve with confidence
intervals for association with 12-month survival status (i.e., patient
survival at the 12-month time point). The x -axis is the true negative
rate (TNR) or specificity; the y -axis is the true positive rate (TPR) or
sensitivity. The area under the ROC curve (AUC) is 0.74 with confi-
dence intervals [0.630 to 0.858]. The vertical and horizontal bars at
the optimal operating point (threshold ¼ 0.5, specificity ¼ 0.59,
sensitivity ¼ 0.75) indicate confidence intervals on sensitivity and
specificity, respectively.

Table 4 The results for association with 12-month OS (TPR, TNR,
and ACC are determined at an operating point that maximizes the
sum of sensitivity and specificity).

AUC TPR TNR ACC p-value Brier score

0.74 0.59 0.75 0.67 0.00021 0.197

Note: AUC, area under the ROC curve; TPR, true positive rate; TNR,
true negative rate; ACC, accuracy.

Fig. 4 ROC curve for the identification of epidermal growth factor
receptor (EGFR) driver status (i.e., discriminating EGFR-driven
tumors from those not driven by EGFR). The x -axis is the TNR or
specificity; the y -axis is the TPR or sensitivity. The area under the
ROC curve for EGFR status prediction is 0.848 with confidence inter-
vals [0.750 to 0.945]. The vertical and horizontal bars at an optimal
operating point (threshold ¼ 0.166, specificity ¼ 0.76, sensitivity ¼
0.83) indicate confidence intervals on sensitivity and specificity,
respectively.

Table 5 The results for discrimination of EGFR-driven tumors (TPR,
TNR, and ACC are measured at an operating point chosen to maxi-
mize the sum of sensitivity and specificity along the ROC).

AUC TPR TNR ACC p-value Brier score

0.85 0.76 0.83 0.79 1.56 × 10−7 0.147

Note: AUC, area under the ROC curve; TPR, true positive rate; TNR,
true negative rate; ACC, accuracy.
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patients. In this study, we used the top five features based on
CoV, which are Kendall index (from the T1-high group),
Kendall index (T1-low group), mean Fisher’s alpha, standard
deviation of Fisher’s alpha, and skewness of the inverse
Simpson, across the tumor’s quadrats. These spatial diversity
features are based on the following diversity indices: the
Kendall coefficient of concordance is a nonparametric statistic
and is a measure of agreement or association among species.
Fisher’s alpha is a parametric diversity index and assumes

that species abundance follows logarithmic distribution,
which can predict the number of types at different levels of indi-
vidual points. Inverse Simpson diversity index is a reciprocal
Simpson’s index and Simpson’s index measures the probability
that two individuals (points) randomly selected from a sample
will belong to the same type. In our case, the Kendall index eval-
uates the degree of similarity of individual species to the overall
concordance of their groups. The mean and standard deviation
of Fisher’s alpha indices indicate that the average and the

Table 6 Listing of the case IDs for the 65 glioblastoma patients.

# Case ID # Case ID # Case ID # Case ID # Case ID

1 TCGA-02-0011 14 TCGA-02-0086 27 TCGA-06-0158 40 TCGA-06-0187 53 TCGA-08-0385

2 TCGA-02-0027 15 TCGA-02-0087 28 TCGA-06-0162 41 TCGA-06-0189 54 TCGA-08-0390

3 TCGA-02-0033 16 TCGA-02-0102 29 TCGA-06-0164 42 TCGA-06-0190 55 TCGA-08-0392

4 TCGA-02-0034 17 TCGA-02-0106 30 TCGA-06-0166 43 TCGA-06-0210 56 TCGA-08-0509

5 TCGA-02-0046 18 TCGA-06-0122 31 TCGA-06-0168 44 TCGA-06-0237 57 TCGA-08-0510

6 TCGA-02-0047 19 TCGA-06-0127 32 TCGA-06-0171 45 TCGA-06-0238 58 TCGA-08-0511

7 TCGA-02-0060 20 TCGA-06-0129 33 TCGA-06-0173 46 TCGA-06-0241 59 TCGA-08-0512

8 TCGA-02-0064 21 TCGA-06-0133 34 TCGA-06-0174 47 TCGA-06-0644 60 TCGA-08-0518

9 TCGA-02-0068 22 TCGA-06-0137 35 TCGA-06-0175 48 TCGA-08-0350 61 TCGA-08-0520

10 TCGA-02-0069 23 TCGA-06-0145 36 TCGA-06-0176 49 TCGA-08-0353 62 TCGA-08-0521

11 TCGA-02-0070 24 TCGA-06-0147 37 TCGA-06-0177 50 TCGA-08-0357 63 TCGA-08-0522

12 TCGA-02-0075 25 TCGA-06-0149 38 TCGA-06-0179 51 TCGA-08-0358 64 TCGA-08-0524

13 TCGA-02-0085 26 TCGA-06-0154 39 TCGA-06-0185 52 TCGA-08-0360 65 TCGA-08-0529

Fig. 5 Examples of ROI spatial habitat map combining the low- and high-intensity groups in T1 post-
contrast and T2 FLAIR ROIs in (a) a low survival patient (4.8 months) and (b) a high survival patient
(57.8 months). The values of the five spatial diversity features such as Kendall index of T1-high,
Kendall index of the T1-low, mean Fisher’s alpha, skewness of the inverse Simpson, and standard
deviation of Fisher’s alpha are 0.004, 0.004, 3.2 × 107, 0.48, and 2.3 × 108 in the low survival patient,
and 0.14, 0.75, 5.3 × 107, −0.075, and 4.0 × 108 in the high survival patient, respectively. Also, patient
(a) represents a patient with EGFR-driven glioblastoma, whereas patient (b) is not EGFR-driven.
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amount of variation of Fisher’s alpha across all the quadrats in
the tumor region. Skewness of the inverse Simpson indicates a
measure of the asymmetry of the distribution of the inverse
Simpson indices across all the quadrats in the tumor region.

In the ROC analysis, we determined an operating point based
on maximizing the sum of sensitivity and specificity. For asso-
ciation with 12-month survival, the TPR (0.59), TNR (0.75),
accuracy (0.67) at this optimal point, and AUC of 0.74 were
relatively high, indicating that species diversity features can dis-
criminate the survival classes of GBM. In addition to assessing
the predictive ability for discriminating survival status of
patients with GBM, we also assessed performance in predicting
the driver status of the EGFR gene in these tumors. Mutation in
the EGFR gene has been associated with a number of cancers
including GBM. Our findings indicate that EGFR-driven GBMs
can be classified with high AUC of 0.85, as well as high TPR
(0.76), high TNR (0.83), and high accuracy of 0.79 (at the
chosen operating point along the ROC) based on the tumor-
derived spatial diversity features. This suggests a potential rela-
tionship between habitat diversity and driver gene status of the
EGFR gene, with potential value for the prioritization of appro-
priate candidate therapies (e.g., RTK inhibitors targeted to
EGFR alteration).25 In this study, EGFR was picked only
because in the dataset of the 65 patients, this was the only gene
with more than 20% frequency of driver-event occurrence
within the dataset. There are multiple known drivers for
GBM (e.g., PTEN, PDGFRA, etc.), and indeed, it would be
very interesting to study their status as a function of spatial
diversity. However, their occurrence in the dataset was low
and thus, it was infeasible to build a classifier to predict driver

status reliably. For future work, other investigations could
include noninvasive assessment of pathway activity (rather
than single gene entities). This would permit the assessment
of groups of genes participating in tumorogenesis, rather than
individual pathway components, perhaps being more relevant
to the systems biology of the disease.

In this study, we have shown that radiologically defined hab-
itat features are potential surrogates of both OS and EGFR status
and can be used as prognostic tools as well as for noninvasive
assessment of EGFR-driven tumors (this could have value for
determining eligibility for EGFR-targeted therapies). However,
there are some limitations. As with almost any retrospective
analysis of multisite radiology data, one potential limitation in
our study was the variation in scanning and acquisition protocols
across MRI systems within the publicly available TCIA database.
Although we performed intensity normalization to account for
some of this variation, the impact of such variation in image res-
olution on spatial diversity features needs to be examined more
systematically. Further, variation across cancer treatment regi-
mens, such as surgery, radiation, and chemotherapy, may have
an effect on the survival rates of the patients as well. Also, the
assessment of the predictive utility of these spatial diversity fea-
tures in an independent validation cohort with matched clinical
characteristics is essential to assess their prognostic reliability
and robustness. Finally, since habitat abundances have been
shown to be associated with survival,22 the role of these diversity
features in the context of clinical variables like age, Karnofsky
score, and habitat abundance will be useful to understand the
added predictive value of these spatial diversity features.

Fig. 6 Examples of different ROI spatial habitat maps combining the low- and high-intensity groups in T1
postcontrast and T2 FLAIR ROIs for (a) mean Fisher’s alpha, (b) skewness of the inverse Simpson, and
(c) standard deviation of Fisher’s alpha between low survival patients (<12 months) with EGFR-driven
(upper panel in each column) and high survival patients (>12 months) with non-EGFR driven (bottom
panel in each column).
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In this study, we used spatial diversity analysis of radiologi-
cal habitats to investigate spatial heterogeneity characteristics of
the tumor for their association with 12-month survival and
EGFR driver gene status of patients with GBM. This type of
diversity analysis is, to the best of our knowledge, a novel
way to analyze multiparametric MRI data. As alluded to earlier,
such an investigation is pertinent to both radiomics and radio-
genomic analysis paradigms. Specifically, we have focused on a
new radiomic characterization of tumor diversity, based on
radiologically defined habitats. Further, these features have
been used to assess relationships with genomic events in the
tumor, namely, driver status of EGFR. This radiogenomics or
imaging-genomic analysis reveals that image-derived features
could serve as potential noninvasive surrogates of tumor biol-
ogy. Thus, the spatial diversity of the habitats within the tumor
might have information associated with the biology of the
tumor. Figure 5 shows examples of ROI spatial habitat maps
in a low survival patient (4.8 months) and a high survival patient
(57.8 months). Also, Fig. 6 shows examples of different spatial
habitat maps for three different diversity indices between low
survival patients with EGFR-driven and high survival patients
with non-EGFR driven tumors. The EGFR driver event, though
an early event, could potentially initiate a phenotypic evolution
of the tumor (that manifests itself as distinct spatial distribu-
tions of tumor habitats when assessed by MRI). It has been
reported43,44 that the EGFR pathway regulates multiple key phe-
notypes such as cell proliferation, angiogenesis, invasion, and
metastasis. These phenotypes have distinctly different character-
istics in MRI. Our results suggest that the spatial diversity of
radiologically observed habitats within the tumor region could
act as a surrogate for the altered EGFR status. A mechanistic
relationship can only be reliably inferred via in-vivo experiments
and could be an interesting avenue for follow-up investigation.
Such spatial diversity analysis of the tumor habitats21 might pro-
vide an additional characterization of the tumor ecological land-
scape, complementing previous work on habitat abundance
within tumors.21,22

Our studies in this cohort have shown that several habitat
diversity features are associated with survival and EGFR driver
gene status with ROC prediction accuracies of 0.67 for 12-
month survival and 0.79 for EGFR driver gene status. How-
ever, we note that these results remain to be confirmed in an
independent cohort of patients with GBM. Nonetheless, these
results indicate that such tumor habitat features could potentially
be a useful clinical prognostic tool in radiology studies, in addi-
tion to providing a noninvasive surrogate of tumor biology (via
inference of underlying gene driver status). Further, though this
study has been done using only two sequences, T1 postcontrast
and T2 FLAIR, there is no conceptual barrier to doing this kind
of analysis with more sequences in the multiparametric MRI
context. Also, a principled study of driver status inference
using radiology habitat features for all other GBM drivers23

is a topic of future study, subject to the identification of a suit-
able clinical cohort with sufficient samples in both the driver and
nondriver groups.

Appendix
The Shannon index is a measure for diversity in ecology and
takes into account both the abundance and evenness of point
types present in a region and is defined as

EQ-TARGET;temp:intralink-;e003;326;734H ¼ −
XS
i¼1

pi log pi; (3)

where pi is the proportional abundance of type (species) i and S
is the number of types in an area.

The Simpson diversity index is a measurement that accounts
for the abundance and the proportion of each species (type)
within a region. More specifically, the Simpson diversity index
represents the probability that two randomly selected individual
points in a region belong to different types and is defined as

EQ-TARGET;temp:intralink-;e004;326;616D1 ¼ 1 −
XS
i¼1

p2
i : (4)

The inverse Simpson index represents the number of equally
common types that will produce the observed probability that
two randomly selected individual points in the region belong
to the same “type” and is defined as

EQ-TARGET;temp:intralink-;e005;326;526D2 ¼
1P

S
i¼1 p

2
i
: (5)

The maximum value will be the number of types in the
region, with a high value of the inverse Simpson index repre-
senting a high degree of diversity.

Fisher’s alpha, also known as the log series, is a diversity
index that is used to measure abundance within a spatial region,
and it assumes that species abundance follows a logarithmic dis-
tribution. This index is defined as

EQ-TARGET;temp:intralink-;e006;326;408S ¼ α ln

�
1þ N

α

�
; (6)

where S is the number of species in the region, N is the number
of individuals sampled, and α is a Fisher’s constant derived from
the sample data. Also, the expected number of types with n indi-
viduals can be calculated in Fisher’s logarithmic series:

EQ-TARGET;temp:intralink-;e007;326;322Sn ¼
αxn

n
; (7)

where Sn is the number of types with an abundance of n.
Pielou’s evenness is a measurement representing the species

(type) evenness within a region and is defined as

EQ-TARGET;temp:intralink-;e008;326;250J ¼ H∕ logðkÞ; (8)

where k is the number of point types.
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