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Abstract. The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are
estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry
(LDF). The DRS spectra (450 to 850 nm) are assessed at two source—detector separations (0.4 and 1.2 mm), allowing
for a relative calibration routine, whereas LDF spectra are assessed at 1.2 mm in the same fiber-optic probe. Data are
analyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayered
tissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information.
Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluate
the method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1
percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and
23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations are
presented. The method offers several advantages such as simultaneous quantification of RBC tissue fraction
and oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speed
resolved, absolute (% RBC x mm/s), and more accurate due to the combination with DRS. © The Authors. Published
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1 Introduction

The microcirculation involves the smallest vessels in the tissue:
the arterioles, the capillaries, and the venules. These vessels are
arranged into a refined microvascular network with a primary
function of delivering oxygen to the surrounding tissue. This
function depends strongly on the oxygen gradients in the micro-
circulation, a property that is governed by the balance between
blood flow and tissue oxygen demand.' In tissues such as the
brain, with a high-metabolic oxygen demand that is balanced
by a high-blood flow, the oxygen transport to tissue mainly
occurs in the capillaries. However, in resting muscle, with
a lower oxygen demand and a low-blood flow, the oxygen
transport occurs already in the arterioles. The above-mentioned
study clearly indicates that both oxygenation and blood flow
are important parameters to assess when evaluating the micro-
circulation. This article describes a method for measuring blood
flow and oxygenation parameters in the microcirculation by
integrating diffuse reflectance spectroscopy (DRS) and laser
Doppler flowmetry (LDF).

In the visible to near-infrared wavelength range, the
absorption spectra of oxygenized and reduced hemoglobin
show distinct characteristics, which are advantageous for the
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determination of tissue oxygenation using DRS. However,
the large dynamic range in the absorption coefficient, as dis-
played by the tissue chromophores in this wavelength range,
has proven difficult to model accurately in the presence of a tis-
sue-scattering coefficient in the same magnitude. For setups
using small source—detector separations, at about 1 mm and
below, diffusion theory fails to accurately describe light propa-
gation in tissue.>? Instead, numerical simulations using Monte
Carlo techniques provide a way to overcome these deficiencies.

Quantitative measures of the amount of tissue chromophores
can be attained by analyzing calibrated DRS data using an
inverse Monte Carlo technique, assuming that the included tis-
sue chromophores are known.* To obtain accurate estimations,
all tissue chromophores of importance need to be included in the
model, or else included chromophores will falsely compensate
for excluded ones.> The effect of confining blood to vessels
rather than assuming a homogeneous distribution must also
be taken into account.”” Still, it has been shown that using
inverse Monte Carlo with a single-layer model fails to describe
how light propagates through skin tissue and how it is detected
at multiple source—detector separations.® This result strongly
indicates that DRS data from skin should be analyzed using
a multilayered model, in order to accurately estimate the
chromophore content.

Inverse analysis techniques using Monte Carlo simulations
of two-layered models for estimating the tissue optical pro-
perties (OPs) have previously been used by Wang et al.'”
and Yudovsky.!! By analyzing the spatial frequency domain
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reflectance, Yudovsky showed that it is possible to estimate both
dermis absorption and reduced scattering, while epidermal opti-
cal thickness could only be determined with limited accuracy.
Wang et al. showed that it is difficult to accurately estimate
the OP of both layers when analyzing the spatially resolved dif-
fuse reflectance. These studies essentially determine OP using
absolute calibrated reflectance at one wavelength, but imply
extension to spectroscopic use.

When light is scattered by moving red blood cells (RBCs),
a small frequency shift will occur. The effect of this frequency
shift can be studied with an LDF instrument in order to indi-
rectly estimate the microcirculatory blood flow. Commonly,
an estimate is formed by calculating the first moment of the
detected Doppler power spectrum.'>!> This measure increases
linearly with the RBC speed and nonlinearly with the RBC con-
centration.'* It is also highly affected by the tissue OPs and the
structure of the tissue and the microvasculature. Consequently,
it is given in nonabsolute units, a fact that complicates compar-
isons between and within individuals. Neither can this measure
be used to differentiate between flow speeds. Previous results
indicate that these shortcomings can be overcome by using
a model-based data analysis approach based on presimulated
Monte Carlo data.!>!

The combination of LDF and DRS in the same fiber-optic
probe has been presented by other groups.'”"'® These approaches
involved conventional LDF and a modified Beer—Lambert law'’
or Kubelka-Munk algorithm'®!® for DRS. These simplified
light transport algorithms have problems compensating for
the effect of tissue OPs, reduced scattering and melanin absorp-
tion in epidermis, and source—detector separation.!” The total
hemoglobin concentration during occlusion release was, for
example, highly affected by source—detector separation in
Ref. 17.

The two studies by Wang et al. and Yudovsky mentioned
above indicate that there is a need for a more sophisticated
light transport model when merging DRS and LDF. The
approach of joining DRS and LDF, as proposed in this article,
was based on previously presented algorithms, where either of
the two modalities has been used in combination with an adap-
tive tissue model.'>?° Each of these algorithms uses a subset of
presimulated Monte Carlo data for a limited number of tissue
geometry and scattering parameters, while both Doppler and
absorption effects are directly added in the inverse Monte
Carlo algorithm. By using recordings at two source—detector
separations, the sensitivity to the layered structure of the tissue
is increased. Furthermore, the use of two source—detector sep-
arations enables a relative calibration, where only the relative
intensity difference between the two DRS channels has to be
calibrated. This eliminates the need for an absolute calibration
of the DRS system, which is difficult to perform accurately in
a clinical setting.

The aim of this article was to present an inverse Monte Carlo
method that uses a multilayered tissue model to estimate the
microcirculatory parameters in a setup based on a fiber-optic
probe that integrates the DRS and LDF modalities. The tissue
model parameters are found by comparing measured DRS spec-
tra at two different source—detector separations (0.4 and 1.2 mm)
and measured LDF spectra at one separation (1.2 mm) with cal-
culated DRS and LDF spectra from the tissue model. When the
optimal fit is found, the output data are given from the model.
We present the tissue fraction of RBCs in mass percentage (%)
[equal to (g RBC/100 g tissue)], the hemoglobin oxygen
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saturation in (%), and the perfusion in the absolute unit
(% RBC x mm/s), resolved in three different speed regions:
below 1 mm/s, 1 to 10 mm/s, and above 10 mm/s. A signifi-
cant part of the work has been spent on finding a fast and robust
way of solving the inverse nonlinear Monte Carlo optimization
problem.

The accuracy of the method is evaluated using Monte Carlo
simulations of well-known tissue-like models containing dis-
crete blood vessels. The performance of the method is compared
with conventional perfusion estimates. Examples of in vivo mea-
surements are also given.

2  Method
2.1 Adaptive Skin Model

The skin was modeled in the wavelength range 450 to 850 nm as
a three-layer structure consisting of a bloodless epidermis layer
and two dermis layers containing different amounts of blood
with variable speed distributions and equal blood oxygen satu-
rations. The thickness of the epidermis layer was variable,
whereas the upper dermis layer had a fixed thickness of
0.5 mm and the lower had an infinite thickness. All layers
had the same wavelength-dependent scattering coefficient.
The model also contained an average vessel diameter, twice
as large in the deeper dermis layer as in the upper, which
was used to compensate for the vessel-packaging effect.”
The model has previously been described in Ref. 15, 20, and
21, and a brief summary of the parameters is given below.

The thickness of the bloodless epidermis layer was given by
one parameter.

The wavelength-dependent scattering coefficient, p (1), was
described by three parameters: @, f, and y according to

ps(2) = al(1 =y)(A/20) " +y(2/2) 7). (D

where 4 is the wavelength in nm and 4y = 600 nm. A fixed
Henyey—Greenstein scattering phase function with g = 0.8
was used.

The melanin content of the epidermis layer was given by one
parameter, f,, and the absorption coefficient of the epidermis
layer was modeled as

Ha,0 (/1) = fmeliua,mel (’1)’ (2)

where?
iua.mel(/l) =6.6X 10'01_10/3_ 3)

The blood was assumed to have a hematocrit of 43%,
a hemoglobin concentration of 145 g/1 blood, and a mean cell
hemoglobin concentration of 345 g/1 RBC. The wavelength-
dependent absorption coefficients for oxygenated and deoxy-
genated blood (i, oxy and Uy geoxy) Were derived from Ziljstra
et al.”> A scattering coefficient of blood of 222 mm™' at the
laser wavelength (780 nm) was used, and at the same wave-
length, a Gegenbauer kernel phase function with parameters
gok = 0.948 and ag, = 1.0, resulting in an anisotropy
factor of 0.991, was used.”’ The oxygen saturation (s) was
given by one parameter and was assumed to be equal in the
two dermal layers. The absorption coefficient of blood in layer
n was calculated as

December 2013 « Vol. 18(12)



Fredriksson et al.: Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy. . .

Ha blood,n (’1) = [Sﬂa,oxy (’1) + (1 - S)/"a,deoxy (l)]cvp,n’ (4)

where ¢, , is a factor compensating for the so called vessel-
packaging effect. This factor is given by’3

1- exp[_Dnﬂa blood (’1)}
A/ = . 9
Cvp,n ( ) Dn/’ta,blood (A)

®

where D, is the average vessel diameter in layer n (variable
parameter twice as high for the deeper dermis layer). It can
be realized that c,,,(4) = 1 when D,, = 0 or g, pi0a(4) = 0.
The absorption coefficient of the two dermal layers was
given by (n € [1,2])

Han (/1) = fblood.nﬂa.blood.n(’l)! (6)

where fy004.» Was the volume fraction in the two dermis layers
given by two parameters.

The blood in the dermis layers had a speed distribution that
was given by 10 parameters. All these 10 parameters had a rec-
tangular speed distribution between 0 and twice the mean speed
of each parameter, in order to resemble the parabolic flow profile
that can be expected in the blood vessels.

In total, the model was controlled by 1 (epidermal thickness) +
3 (scattering) +1 (melanin fraction) +2 (blood tissue fraction) +
1 (oxygen saturation) +1 (mean vessel diameter) +10 (speed
distribution), i.e., 19 variable parameters. As will be seen in
Sec. 2.3, the first nine parameters are determined by fitting
DRS spectra and the 10 speed parameters by fitting the LDF
spectra.

2.2  Forward Problem

The forward problem of calculating DRS? and LDF spectra'®
from the model has previously been described. A summary is
given in the following subsections. The vessel-packaging effect
for LDF is given extra attention, since that has not been
described before but yet has a high impact on the resulting
spectra.

2.2.1 CGeneration of path length distributions

The forward calculations are based on a limited number of
base simulations with various levels of the scattering coeffi-
cient of the three layers (u, = 2%,x € [0,0.5,...,6.5] mm~!,
14 levels) and various thicknesses of the epidermis layer
(tepi € [0.05,0.1, ... ,0.7]> mm, 14 levels), i.e., in total 196
simulations.

The path lengths in each of the three layers were stored for
each detected photon in the base simulations. These were used
to generate path length distributions that were used in the for-
ward calculations. Path length distributions were generated for
the epidermis layer for photons that had only been propagating
in the epidermis layer, for the epidermis and first dermis layers
for photons that had only been propagating in those two layers,
and for all three layers for photons that had been propagating in
all three layers. In total this gives six path length distributions
per simulation. The notation used for these distributions
throughout this article is py,, ,(d), where d is the path length,
m is the layer number, and # is the number of the deepest layer
that the photon reached, i.e., m < n (see Ref. 20 for more details
and for an example). These simulations, as well as the evaluation
simulations presented in Sec. 2.5, were performed with the
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previously presented and validated in-house Monte Carlo
software.”

2.2.2 DRS forward calculation

The DRS spectra are calculated by first interpolating the base
simulations based on the scattering coefficient and the epidermis
thickness of each wavelength of the current model. Linear inter-
polation was used in the dimension of the scattering coefficient,
whereas the thickness dimension was interpolated using a cosi-
nus-shaped kernel covering the three closest thickness levels.
For the latter dimension, this kind of smoothing was aimed
at preventing the appearance of local minima in the inverse
solution. The absorption effect was then added in each layer
by applying Beer—Lambert’s law for each path length in
the path length distributions. Equations (7)—(9) describe this
mathematically.

For each wavelength, the total intensity /,, for photons that
had reached layer n was calculated as

Iy, = prl.m,n(d)v (7
d

where I, is independent of m < n. The path length distribu-
tions were then normalized to unity p;l‘m‘n(d) = Pptmn(d) /1o
The path length distributions were modified for all path lengths
d by adding the absorption using Beer—Lambert’s law

p[/)l/mn (d) = p[/Jl.m.n(d) exp(_dﬂa.m)7 (8)

where y, ,, is the absorption coefficient of layer m [Eqs. (2) and
(6) for the epidermis layer and the dermis layers, respectively].

The detected intensity for all photons that had propagated
down to layer n and back was then calculated by multiplying
Iy, with the total absorption effect from all layers the photon
had propagated through as

[n = IO,n H Z p];l)l’,m,n(dj)v (9)
m=1 j

and the total detected intensity / for each wavelength was then
simply calculated as the sum of the /,’s

1=%1, (10)

An example of the accuracy of this forward calculation can
be found elsewhere.?’

2.2.3 LDF forward calculation

The forward calculation of LDF spectra starts with the same
steps as for the DRS forward calculation, but only with the
laser wavelength (780 nm in this study). In Ref. 15, it is
described how single-shifted optical Doppler spectra are calcu-
lated and summarized using shift distributions that are based on
the path length distributions. Here, taking the vessel-packaging
effect into account, the optical Doppler spectra resulting from
the passing through a single vessel are calculated and summa-
rized using a distribution of the number of vessels the light
passes through. This is a small but important difference from
Ref. 15 and essentially compensates for a vessel-packaging
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effect in LDF. A mathematical description of the forward
calculation of LDF spectra is given in Eqgs. (11)—(17).

Consider a single-shifted optical Doppler spectrum originat-
ing from a certain evenly distributed speed distribution between
0 and 2vmm/s, y;,(f). The calculation of a single-shifted
optical Doppler spectrum for a single speed is described in
the Appendix. The optical Doppler spectrum for any number
of shifts is given by cross-correlating the single-shifted optical
Doppler spectrum as

Vsolf)

where * denotes the cross-correlation function.

The non-Doppler shifted spectrum, y,,(f), equals the
Dirac’s delta function. Since y, ,(f) can be assumed to be sym-
metric around f = 0 (equal amount of positive and negative
Doppler shifts), the cross-correlation is equal to a convolution.
Fourier transforming (F{-}) the optical Doppler spectrum
results in ¥, () = F{y,(f)} and thus F{y,,(f)} = ¥i(7)
[i.e., Y,(y) to the power of s], which is a more convenient
form.

Then consider a vessel with diameter D with a parabolic
flow profile with mean speed ». When light passes perpendicu-
larly through the center axis of that vessel, the light will be
Doppler shifted a number of times following a Poisson distri-
bution with expectation value 7ig;ns = Dygpiooq (nEglecting
a slightly increased path length due to scattering). The light
will thus on average be Doppler shifted 7y, times when pass-
ing the vessel, under the assumption that the average path length
through the vessel is D (some will propagate through the periph-
ery of the vessel and thus a shorter way, and some will propagate
through the vessel with a rather oblique angle and thus a longer
way). The Fourier-transformed optical Doppler spectrum from
a single vessel is then given by

vessel 1 E :Y

where pp, (8; gy ) denotes the probability of s shifts given by
the Poisson distribution with 7g,¢,. Summarizing these Fourier-
transformed optical Doppler spectra over the whole distribution
of vessels with various flow speeds in the layer results in

vessel va J* vessel,v; ) (13)

:ys—l.v(f)*yl.v(f)’ (11)

pPo S5 nshlfts) (12)

where p, ; denotes the fraction of blood moving with speed v;.

For each path length d; in a certain layer m, the distribution
of the number of vessels that are intersected can be assumed
to follow a Poisson distribution with parameter piyegersm =
d;foiocodm/Dm. Thus, the distribution of intersected vessels
can be calculated from the normalized absorption-modified

path length distribution p’. . (d) = py,, ,(d)/3_; pplmn( )

B . Fplmn .
(normalized since the distribution of intersected vessels is not

dependent on the total light intensity of p;l.m,n) by
ZP pl.m, n

The Fourier-transformed optical Doppler-shifted spectrum
for light that has passed several vessels for all photons in
layer m that have been propagating down to layer n can then
be calculated as

pPo(s Hyessels, m) (14)

Pressels,m, n
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ms m, n E Pressels,m, n

where V is the maximum number of vessels that the light has
passed through.

The next step is to summarize the multiple-shifted optical
Doppler spectra from all layers by cross-correlating them,
i.e., calculating the product in the Fourier domain

N n
1) =Y L [T Yo ) (16)
n=1 m=1

where I, = 1,,/>,,1,, and N is the index of the deepest dermis
layer (i.e., 2). Finally, the Doppler power spectrum yp(f) is
calculated as

vessel,m,n (7), (15)

yo(f) = FH{Yn} (17)

2.3 Inverse Problem

The inverse problem is to find a model and its parameters that fit
measured DRS spectra at two source—detector separations (0.4
and 1.2 mm) and LDF spectra at one source—detector separation
(1.2 mm). The use of two source—detector separations is needed
in the DRS case in order to avoid multiple solutions to a single
measurement. In the case of DRS, the use of two source—detec-
tor separations also makes the calibration routine more simple
and reliable in practice, as only the relative intensity difference
between the two separations then has to be considered when
solving the inverse problem, not the absolute levels. In fact,
the importance of an accurate relative intensity calibration
between the two separations can be reduced by introducing
an adaptive amplification factor g for one of the separations,
too (see Sec. 2.3.1). The negative impact on the solution that
the introduction of ¢ may lead to is limited by penalizing sol-
utions which requires a ¢ other than a unity.

2.3.1 Fitting DRS spectra

The inverse problem of finding a set of parameters that generates
forward-calculated DRS spectra as similar to the measured
spectra as possible is solved by using the trust region reflec-
tive algorithm (Matlab R2012b, MathWorks Inc., Natick,
Massachusetts).

All parameters except the speed parameters, i.e., nine param-
eters, are determined by solving the inverse problem of fitting
DRS spectra. The spectral interval used in this study is 450 to
850 nm, and 32 wavelengths within this interval are chosen. The
wavelengths are chosen more densely where the absorption
spectra of hemoglobin display a highly dynamic shape, such
as around the absorption peaks at 520 to 600 nm. The resulting
optimization problem is given by

minF g, prs(X) subject to ¢;(x) <0, ie€Z, (18)

X
where Fop prs (x) is the objective function of the nine param-
eters X, and 7 is a set of inequality constraints determined

by lower and upper bounds for each of the nine parameters.
Furthermore, the objective function is given by
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F intensity (X) 2
F X
Fagors0) = w1 (19)

F parameters (X) 2

where || - ||, denotes the Euclidian norm. The first part,
Finensity (X), Tepresents a weighted intensity difference between
the calculated spectra from the model with parameters x and the
measurement at both source—detector separations with emphasis
for wavelengths at the hemoglobin absorption peaks between
about 520 and 600 nm. The second part, Fg,p.(X), represents
some shape properties within the same wavelength interval,
e.g., the relative amplitude difference between the absorption
peaks and valleys. The third part, F,(x), represents the deviation
from unity in the parameter g [see Eq. (20)]. The last part,
Fparameters (X), serves for penalizing unwanted behavior in the
model parameters x directly including a very uneven distribution
of blood between the upper and lower dermis layers and a too
small vessel diameter (<15 pm).

The spectral fitting is performed in three steps. First, the epi-
dermal thickness, the three scattering parameters, the melanin
fraction, and the average blood tissue fraction are fitted (prelimi-
nary) to the spectra for wavelengths above 700 nm, in order to
quickly and robustly find appropriate starting points for the sec-
ond and third optimization steps. The rationale for this is that
hemoglobin absorption is relatively weak for wavelengths
above 700 nm and therefore has a rather low impact on the spec-
tra here. Thus, the details about the hemoglobin absorption (dif-
ference in fraction between layers, oxygen saturation, and vessel
diameter) are unnecessary to fit in this step. This is done for
several random starting points of these six parameters, and
the best candidates (those with best fit above 700 nm but
with essentially different optimal values of the six parameters)
are chosen for the second step.

In the second step, the average blood tissue fraction, the rel-
ative blood tissue fraction, the oxygen saturation, and the aver-
age vessel diameter are fitted. The epidermal thickness, the three
scattering parameters, and the melanin fraction are locked to the
values found in the first step. The average blood tissue fraction
value has a starting point that is the result from the first step, and
random starting points are chosen for the relative blood tissue
fraction, the oxygen saturation, and the average vessel diameter.

In the third step, all nine parameters are fitted to the whole
spectrum with starting points from the best candidates in the
second step. The point with the smallest error is then regarded
as the global minimum when this point is repeatedly obtained.
The convergence properties are improved when performing the
optimization in three steps like this.

Before calculating the objective function, the measured
[ 1meas o (4)] and modeled [/,,04c1,,(4)] spectra at the two source—
detector separations (p € [0.4, 1.2]) are normalized according to

Imeas,OA (’1) (_qlmeas.OA (’1) ’ where

As mentioned above, the normalization in Eq. (21) allows for
avoiding an absolute calibration of the spectrometers, and the
introduction of the factor ¢ in Eq. (20) releases the necessity
of an exact relative intensity calibration between the two
source—detector separations. The factor g is penalized when
deviating from unity in order to avoid multiple solutions.

2.3.2 Fitting LDF spectra

The 10 speed parameters, p,; (j € [0,...,9]) are fitted to the
LDF spectra. The other nine model parameters have, in this step,
fixed values obtained from fitting the DRS spectra. Each of the
10 speed parameters consists of speeds between 0 and 2v, where
v is the average speed of each speed parameter evenly distrib-
uted in the logarithmic plane between 0.2 and 75 mm/s.

The resulting optimization problem is given by

min Fi;pp(P,) subject to
P

Z . (22)
prO, pl}jslaje[099]»
J

where p, = [p,.0,---» Puo]’, and the objective function has the

form
FopiLor(Py) = || Faitr(py)113- (23)

The inner part, Fg(p,), of the objective function is given

by Fdiff(pv) = {W[FMl,model(pv) - FMl,meas}}’ where W is a
diagonal weight matrix. Here, Fyj moqel (P,) 1S given by

fj[Ul fyD,mode] (f7 pv)df

Fyvimodel(Py) = [l . @4

Fimax—1 fyD,model (fv pv)df
-f[max
ffo fyD,model (fa pu)df

where yp model (f, P»y) is the Doppler power spectrum calculated
from the model and

fi=(fo+iaf)>?, (25)

where f. is a low frequency above 0, and A is a frequency step
that depends on the sampling frequency and the number of
points used in the FFT. In analogy, Fyjj meas 1S given by replac-
ing yp model (f» Pv) With ¥p meas (f) in Eq. (24). Note that the last
element of the vectors Fymeas and Fiyppmeger €quals the
conventional perfusion estimate, i.e., the first-order moment
of the Doppler power spectrum. The other elements represent
the first-order moment in certain frequency intervals.

We observed that fymodel(P») changes approximately
linearly with the 10 speed parameters p, j, i.e.,

Frit model (Py) + J(00)8 = Fyi model (P, +8) +-8, (26)

I I (20)
= < <7Odel'0'4;l>700§§ Im0d81'1'2>>l>700 , where J(p,) denotes the Jacobian matrix, i.e., the derivative of
meas,0.4/1>700/ \meas,1.2/1>700 each element in Fyjj noger(P,) With respect to p, for each
where (-) denotes the average, and then element iq p,- Here, S'is a 'change in p,, an.d e is the fieyiat?on
from the linear approximation. Based on this, the optimization
1,.(3) L, (1) problem is solved by iterating the following steps:
&
m.p s
(Lo u>>i>700>ﬂ0€[°-4‘1~2} 2D 1. Choose an initial p,;
m € [model, meas], p € [0.4, 1.2]. 2. Calculate Fy poger (P):
Journal of Biomedical Optics 127004-5 December 2013 « Vol. 18(12)
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3. Approximate the Jacobian at p, using finite
differences;

4. Use constrained regression for finding 8§, which
approximately solves the optimization problem;

Calculate FMl.model(pU + 6)’
Calculate & from Eq. (26);
If & is small enough, STOP;

® N W

Else, use Broyden’s update to estimate the Jacobian
at p, + §;

9. Go to step 4.

This iterative procedure is based on a special case of Broyden’s
quasi-Newton method with a full-step size (i.e., no line search)
in each iteration.”® The full-step size is possible due to the close
to linear behavior of Fyi mode(Py)- In Broyden’s method, the
Jacobian is successively approximated over the step & with
use of the updating formula

[Fit modet (Py + 8) — Fyii moder (Py) — J(,,)8]87
8067 ’
27

In the proposed algorithm, the time-consuming part is to cal-
culate the spectra from the model, which is done once in step 2,
10 times in step 3, and once in step 5. Since only step 5 is iter-
ated among the expensive steps, this optimization procedure
is known to be very fast, which is also the case in practice as
it converges to the global minimum on average in about four
iterations from a randomly generated initial p,,.

2.4 Model Output

When the optimal model is identified, some output parameters
are directly obtained from that model. The quantities that will be
considered in detail in this study are the RBC tissue fraction, the
RBC oxygen saturation, and the perfusion (RBC tissue fraction
times speed) in three different speed regions (0 to 1 mm/s, 1 to
10 mm/s, and above 10 mm/s). The oxygen saturation is given
directly by one model parameter, whereas the RBC tissue frac-
tion and perfusion may be different in the two dermal layers and
must therefore be averaged depending on the actual sampling
volume.

The sampling volume used to calculate the output parameters
is generated by randomly choosing at least 25,000 points among
the trajectories of each detected photon in the Monte Carlo sim-
ulations of the fitted three-layered model. This is done for all
wavelengths and source—detector separations included in the
spectral fit and results in a point cloud. Based on the number
of points located in each layer, the desired quantities are calcu-
lated. The same point cloud is applied on the evaluation simula-
tions described in the next section in order to calculate the “true”
parameters in those models. In this way, the accuracy of the
output parameters from the fitted model can be determined.

2.5 Evaluation Simulations

In order to evaluate the accuracy of the proposed method,
250 models of complex geometry, including an epidermis
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layer and a dermis layer containing 150 to 2000 individual
blood vessels of various orientation, diameter (6 to 400 pm),
oxygen saturation (0% to 100%), and speed distribution (0 to
200 mm/s), were generated using a number of probability dis-
tributions. The models were generated similarly to the models
described in Ref. 20. The average and standard deviation of the
diameter varied between the 250 models (mean 12 to 50 mm,
standard deviation 5 to 43 mm), that of the oxygen saturation
(29% to 66% £ 15% to 32%), and that of the speed distribution
(0.005 to 7.4+ 0.07 to 20 mm/s). The epidermis thickness
ranged from 7 to 220 pum and the melanin fraction from
0.1% to 17%. The reduced scattering coefficient was different
in the epidermis and in the dermis layers and followed the shape
given by Eq. (1). In the epidermis layer, it ranged from 1.2 to
11 mm~! with a difference between 450 and 850 nm ranging
from 1.6 to 5.5 mm~!. Corresponding numbers for the dermis
layer was 0.9 to 10 mm™! and 1.8 to 6.8 mm™!, respectively.

Photon transport in these models was then Monte Carlo
simulated with OPs valid at 33 selected wavelengths (32 for
DRS and 1 wavelength for LDF) from 450 to 850 nm at the
two source—detector separations 0.4 and 1.2 mm. The DRS and
LDF spectra were generated from the detected photons at the
two source—detector separations for DRS and one source—detec-
tor separation for LDF, and the three-layered model was fitted to
the resulting spectra. In this way, the accuracy could be evalu-
ated for tissue-like models.

For the 32 DRS simulations and for each model and each
source—detector separation, enough photons were simulated
in order to achieve a signal-to-noise ratio (SNR) of at least
100, where SNR was approximated by

UON
<W> n .
SNR = W, = i 0,....,n—-1],
Sd(W) Vn, W; ; wi, j €| n—1]
=

(28)

where w; denotes the weight of detected photon /, and n was set
to 10. For the LDF simulations, at least 180,000 photons were
detected.

2.6 In Vivo Measurements

Measurements were performed on a healthy male with
Caucasian skin of age 37. Two different measurements were
conducted on the volar side of the lower forearm: a systolic
and a venous occlusion, and one measurement was performed
on the volar surface of the foot: a heating provocation where the
tissue was heated to 44°C locally. The two occlusions lasted for
5 min, followed by a 5-min reperfusion phase, and the heating
provocation for 25 min, all during which the subject was sitting
comfortable with arms and legs fully rested. All provocations
were preceded by a 5-min baseline recording. This study was
approved by the regional ethics committee of Linkoping (D.
no M83-09).

The measurements were performed using a custom-made
fiber-optic probe with two emitting fibers and nine detecting
fibers: two detecting fibers connected to one spectroscope
each (AvaSpec-ULS2048L, Avantes BV, The Netherlands) and
six detecting fibers connected to a single detector in a modified
Periflux 5000 system (Perimed AB, Jirfilla, Sweden). The emit-
ting fibers consisted of one fiber delivering light from
a broadband white-light source (Avalight-HAL-S, Avantes BV,
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Apeldoorn, The Netherlands) and the other delivering light from
a laser light source (780 nm). The multiple-detecting fibers for
the DRS system were placed at a distance of 0.4 and 1.2 mm
from the white-light illuminating fiber, and the six detecting
fibers for the LDF system were placed at a distance of 1.2 mm
to the laser light source. The fibers used in the probe were made
of fused silica with a radius of 100 ym and a numerical aperture
of 0.37. A notch filter to attenuate wavelengths of 790 4+ 20 nm
was added between the probe and the two spectroscopes to
ensure minimal influence from the laser light on the DRS
spectra. The DRS spectra were analyzed in the 450- to 850-
nm wavelength interval. During the measurements, the probe
was placed in a thermostatic probe holder (PF 450, Perimed
AB, Jidrfdlla, Sweden) to ensure a stable skin temperature
and a good tissue contact.

The spectrometers were calibrated in three steps as previ-
ously described.?’ First, a dark reference spectrum was sub-
tracted. Then, the spectrum was normalized to a white
reference spectrum, and finally, a relative calibration between
the two detector channels was performed by normalizing the
spectrum with the average intensity of a calibration measure-
ment, where the fibers at both source—detector separations
were evenly illuminated.

The laser Doppler units were calibrated by measuring noise
levels at various DC levels, subtracting the estimated noise level
for the DC level at the time of the measurement, and normaliz-
ing with the frequency characteristics of the noise that can be
assumed to be white. Finally, the spectra were normalized
with the first-order moment of a spectrum originating from
a measurement in motility standard. This calibration routine is
described in detail elsewhere?’ and results in intensity and fre-
quency-calibrated spectra that can be compared with the spectra
calculated from the model.

2.7 DRS Analysis for Comparison

For comparison, an existing state-of-the-art DRS analysis algo-
rithm based on a modified Beer—Lambert’s law expression,
according to Bargo et al.,”® was implemented. In that method,
an absolute calibration was performed using a grid of phantoms
with varying p, and p. covering the range of expected values.
For each level of u/, three parameters (Cy, L, and C,) were
fitted to all , levels in the intensity grid I(u,, p!) in the follow-
ing modified Beer—Lambert expression

T
4

051

(@) 21

1.5

Intensity [-]
[

O i i i i i i i J
450 500 550 600 650 700 750 800 850
Wavelength [nm]

(b)

Intensity [-]

I(pas 1) = Cr(pg) expl—pa Ly ()] + Co(pg).  (29)

The parameters Cy, L, and C, were then fitted to polyno-
mials of orders 4, 15, and 15, respectively. For more details,
see the original paper.?®

Bargo’s method was essentially used to calculate the forward
problem in an alternative way. The original method was, how-
ever, slightly adapted to better reflect the setting in the evalu-
ation simulations using the same source—detector separations
(one at a time), same wavelengths, same scattering model
[Eq. (1)] and absorbers, and the same model for describing
the vessel packaging [Eq. (5)]. The model parameters describing
the epidermis thickness and the relative difference in blood
tissue fraction between the two layers were excluded, as the
original Bargo method is based on a homogeneous medium
assumption. Thus, seven free parameters remained to fit to
the measured spectra in this alternative method. For comparison,
the same fitting strategy, as outlined in Sec. 2.3.1, was used.

Before comparing the two methods, the Bargo algorithm
was calibrated using a range of Monte Carlo-simulated homo-
geneous phantoms covering the range of OPs found in the 250
evaluation simulations. When calculating the true RBC tissue
fraction from the simulated models, the sampling volume for
the current source—detector separation was considered, in con-
trast to our proposed method where the average sampling vol-
ume from both source—detector separations was considered.

3 Results

3.1 Evaluation Simulations

The average relative root mean square (RMS) error in the fit of
the DRS spectra for the 250 evaluation simulations was 0.9% for
the 0.4-mm fiber separation and 2.0% for the 1.2-mm fiber
separation. The average relative RMS error in the fit for LDF
spectra for frequencies [Eq. (25)], where the power exceeded
1073 Hz™!, was 4.5%. These RMS errors indicate rather good
spectral fits for both DRS and LDF for the 250 simulated mod-
els. An example for the simulated model with the median DRS
fit [Eq. (18)] is shown in Fig. 1 and with the median LDF fit
in Fig. 2.

The RMS deviation between estimated and true RBC tissue
fraction [{(RBCey — RBCyye)?)]'/? in the actual sampling vol-
ume in the evaluation simulations was 0.099 percentage units,
which should be compared with an average RBC tissue

0.35
031
0.25
0.21
0.15
0.1r

0.05

0 i i i i i i i J
450 500 550 600 650 700 750 800 850
Wavelength [nm]

Fig. 1 Simulated (thick black) and fitted (thin yellow) diffuse reflectance spectroscopy (DRS) spectra at 0.4 (a) and 1.2 (b) mm source-detector
separations. The example shown is the one of the 250 models with the median DRS fit.
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Power [HZ‘I]

0 5 10 15 20
Frequency [kHz|

Fig. 2 Simulated (thick black) and fitted (thin yellow) laser Doppler
flowmetry (LDF) spectra at source—detector separation 1.2 mm. The
example shown is the one of the 250 models with the median LDF fit.

fraction in the 250 simulated models of 0.56%. When only
considering fractions below 0.5%, the absolute RMS devia-
tion was 0.058 percentage units. The relative RMS devia-
tion between the estimated and true RBC tissue fraction
[((RBCey/RBCyye — 1)?)]'/? was 19% (16% for fraction above
0.5%). The absolute RMS deviation of the oxygen saturation
was 4.1 percentage units (4.9 and 2.7 percentage units for
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RBC tissue fractions below and above 0.5%, respectively),
which should be compared with an average oxygen saturation
of 45% in the 250 simulated models. Scatter plots of true and
estimated RBC tissue fraction and oxygen saturation are shown
in Fig. 3.

The relative RMS deviation between estimated and true total
perfusion was 23%. By normalizing the conventional perfusion
estimate with the mean of the true perfusion for perfusion values
below 0.1% RBC x mm/s, the accuracy of the normalized
conventional perfusion can also be calculated. This deviation
was 49%. For the perfusion for the three individual speed
regions (0 to 1, 1 to 10, and above 10 mm/s, respectively),
the relative RMS deviation in relation to the total perfusion
{<[(perfv.est - perfv.true)/perftol.true]2>}1/2 was 7~7%’ 17%’ and
18%, respectively. Scatter plots of true and estimated perfusions
are shown in Fig. 4.

The estimated average vessel diameter is a quantity which
could potentially be clinically very interesting. This quantity
also affects how accurately the other quantities, especially the
RBC tissue fraction and perfusion, are estimated. The absolute
RMS deviation of the average vessel diameter was 10 ym
(8.3 um for RBC tissue fractions above 0.5%), which should
be compared with an average value of 27 pm in all the 250 mod-
els. There was a strong correlation between the accuracy in esti-
mated vessel diameter and accuracy in estimated RBC tissue
fraction and total perfusion (correlation coefficients of 0.83
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Fig. 3 Scatter plots of estimated versus true red blood cell (RBC) tissue fraction (a) and oxygen saturation (b, open circles—RBC tissue fractions below

0.5%, filled circles—RBC tissue fractions above 0.5%).
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Fig. 4 Scatter plots of true total perfusion versus estimated and normalized conventional perfusions (a, black dots—model-based estimation, red
crosses—normalized conventional perfusion) and perfusions for the individual speed regions (b).
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Table 1 Accuracy of estimated model parameters for all evaluation models and those with a RBC tissue fraction (t.f.) >0.5%.

All 250 models RBC t.f. >0.5% (n=137)
Correlation Absolute Relative Relative
coefficient Average Range RMS RMS (%) Absolute RMS RMS (%)
RBC tissue fraction (%) 0.98 0.56 0.06 to 3.2 0.099 19 0.13 16
Oxygen saturation (%) 0.94 45 21t075 4.1 9.6 2.7 6.7
Total perfusion (% x mm/s) 0.96 0.61 8x10%1t06.7 0.25 23 0.35 20
Perf. <1.0 mm/s (% x mm/s)° 0.93 0.088 8x104100.5 0.037 7.7 0.047 6.9
Perf. 1to 10 mm/s (% xmm/s)® 0.90 0.27 Oto 1.6 0.15 17 0.19 16
Perf. >10 mm/s (% x mm/s)® 0.96 0.25 Oto 5.5 0.16 18 0.22 13
Vessel diameter (um) 0.60 27 12 to 81 10 40 8.3 31
Average (mm~') 0.89 3.3 2.0t0 5.1 0.31 11 0.32 11
Relative RBC between layers () 0.72 0.0 -1.0t0 1.0 0.33 b 0.29 b
Melanin content (% x mm) 0.96 0.29 4x1073%101.8 0.11 b 0.13 b
Epidermis thickness (um) 0.32 79 7.110218 81 b 62 b

“Relative values given relative to total perfusion.
PNot relevant because values close to zero cause large relative differences.

and 0.75, respectively). Only a weak correlation was seen to the
accuracy of the estimated RBC oxygen saturation. Omitting the
vessel-packaging effect, i.e., setting that model parameter to 0,
leads to a worsened spectral fit of DRS spectra and a general
underestimation of RBC tissue fraction and perfusion of 34%
and 37%, respectively, for the 250 models.

The correlation between estimated and true values for a num-
ber of estimated model parameters and their RMS deviations are
given in Table 1.

The relaxation factor g [Eq. (20)] was 0.998 £ 0.043
(mean =+ standard deviation) for the 250 simulated models.
For six of the models, g was below 0.9. In Eq. (21), the normali-
zation factor was 4.4% =+ 7.6% lower for the simulated spectra
than for the fitted spectra. The simulated models were also fitted
in an absolute manner, i.e., by omitting Eq. (21) and/or by omit-
ting the relaxation factor ¢. Interestingly enough, the accuracy of
the estimations of the oxygen saturation, the RBC tissue frac-
tion, as well as the total perfusion decreased when omitting any
or both of these equations. The decrease was significant in
all cases (paired t-test, p < 0.02), except for the RBC tissue
fraction, when only omitting Eq. (20), ie., the relaxation
parameter q.

3.2 Evaluation Simulations with Alternative DRS
Analysis

The Bargo method for analyzing DRS spectra, outlined in
Sec. 2.7, was applied on the 250 evaluation simulations, with
one source—detector separation at a time. As with our proposed
method, a good spectral fit (average RMS deviation of 5.7% and
3.9% for 0.4 and 1.2 mm source—detector separation, respec-
tively) was achieved. The relative RMS deviations between
true and estimated RBC tissue fraction were 123% and 52%
for the source—detector separations of 0.4 and 1.2 mm,
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respectively. This can be compared with 19% for our proposed
method. The absolute RMS deviations for the oxygen saturation
were 18 and 6.0 percentage units, compared with 4.1% for our
method. Corresponding numbers for the average vessel diameter
were 40 and 25 ym, compared with 10 ym for our method. Our
proposed method was significantly more accurate in all cases
except for the oxygen saturation at 1.2 mm source—detector sep-
aration (p < 0.001; Wilcoxon’s matched pairs test).

3.3 In Vivo Measurements

The RBC tissue fraction, oxygen saturation, and perfusion
during the heat provocation are plotted as functions of time
in Fig. 5. The heating started at 5 min and lasted throughout
the measurement. Examples of the spectral fit at 5 and 25 min,
respectively, are shown in Fig. 6. Note especially the correlation
between the oxygen saturation and the total perfusion and the
somewhat different characteristics of the three speed-resolved
perfusion estimates.

The results of the venous occlusion are shown in Fig. 7. The
occlusion started at 5 min and lasted for another 5 min. Note the
reduction in perfusion although the RBC tissue fraction is
doubled during the provocation.

The results of the systolic occlusion are shown in Fig. 8. The
occlusion started at 5 min and lasted for another 5 min. Note that
the oxygen saturation settles at 0% toward the end of the occlu-
sion (the model allows for negative saturations) and the much
more rapid drop in perfusion component for speeds above
10 mm/s compared with the component 1 to 10 mm/s in the
reperfusion phase. The increase in RBC tissue fraction during
the occlusion phase is likely a result from a regional redistrib-
ution of blood from the arterial (deeper) vessels to the venous
(more superficial) vessels.
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Fig. 5 Time-resolved RBC tissue fraction and oxygen saturation (a) and speed-resolved perfusion (b) during a heat provocation on skin (foot).
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Fig. 6 Example of spectral fit during heat provocation for DRS spectra at 0.4 mm source—detector separation (a), DRS spectra at 1.2 mm source—detector
separation (b), and LDF spectra (c) at 5 (before the start of provocation) and 25 (near the end of provocation) min. Black thick curves correspond to
measured spectra, and yellow thin curves correspond to fitted (modeled) spectra.

4 Discussion

The most important difference between the proposed model-
based method and other attempts to combine DRS and
LDF'"!8 is that the proposed method integrates not only the
hardware (probe), but also the analysis of the measured spectra.
In our analysis, the tissue model parameters fitted to the DRS
spectra are used when fitting LDF spectra, which make the LDF
analysis more accurate as scattering and vessel-packaging
effects can be accounted for. Thus, the quantitative LDF mea-
sures from the method proposed in this article are more accurate
than in the method we have previously presented, where we
made use of LDF spectra at two source—detector separations
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but without the support from DRS measurements.'> It is possible
to use two source—detector separations for the LDF measure-
ments. This enables the use of a model parameter differentiating
the flow speeds in the two dermal layers. In contrast to the pre-
vious attempts,'® two LDF source—detector separations are not
needed in the combined method in order to avoid multiple sol-
utions to the inverse problem. Therefore, only one separation
was used in this article.

Compared with methods which are not based on an adaptive
tissue model, our proposed method has several advantages.
It enables determination of absolute quantities of RBC tissue
fraction and oxygen saturation, by accounting for scattering
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Fig. 8 Time-resolved RBC tissue fraction and oxygen saturation (a) and speed-resolved perfusion (b) in forearm skin during a systolic occlusion.

and geometrical effects such as layered structures and vessels. It
also enables quantitative speed-resolved estimations of the RBC
flow by feeding the LDF analysis algorithm with the output
from the DRS analysis. Other advantages include the possibility
to give estimates on the uncertainty of the estimated quantities
by analyzing the effect on the objective function by a small
change in the model parameters or to reject the measurements
where an acceptable model fit cannot be found. An estimate of
the sampling volume can also be presented.”

The importance of the vessel-packaging effect for accurate
estimations of the output parameters was outlined in Sec. 3.1,
which states that ignoring this effect in general causes about
35% underestimation of the RBC tissue fraction and perfusion.
The reason why no correlation was found between the accuracy
of the vessel diameter and oxygen saturation estimations is prob-
ably due to a too small range of oxygen saturation. Generally,
the oxygen saturation level was between 25% and 60% in the
250 models. For oxygenation levels lower than 15%, the results
from ignoring the vessel-packaging effect indicated a general
overestimation of about 5 percentage units, and a general under-
estimation of about 10 percentage units was indicated for satu-
ration levels above 70%. The latter is well in line with previous
results.’

While the vessel-packaging effect and its importance have
previously been thoroughly examined for DRS,>%° it has
previously not been accurately described for LDF. In DRS,
the vessel-packaging effect is an effect of inhomogeneous
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light absorption, but for LDF, the main reason for the vessel-
packaging effect is that consecutive Doppler shifts are caused
by RBC’s moving with similar speed (similar in relation to
the speed distribution in the whole tissue). Furthermore, larger
vessels imply that less light will be Doppler shifted for a con-
stant total RBC tissue fraction, but the light that is Doppler
shifted will be more multiple shifted, and this also affects the
Doppler power spectrum. An even better approximation of the
vessel diameter would be beneficial for the proposed method.

The adaptive tissue model contains in total 19 free parame-
ters. We have previously shown that all nine parameters that
are fitted to the DRS spectra are needed in order for a good spec-
tral fit at both source—detector separations, i.e., that all nine
parameters contribute to a significant decrease of the objective
function.”” It is possible that choosing different geometrical
properties could improve the spectral fit further. For example,
allowing a variable thickness of the upper dermis layer, instead
of the epidermis, could enhance the results, as indicated by the
rather poor correlation between estimated and true epidermis
thickness (Table 1).

The 10 speed parameters describe a speed distribution, where
a high degree of cross-talk between neighboring parameters can
be expected. A reduction in the number of speed parameters
could probably reduce over-fitting issues for the 10 parameters.
However, this should not be regarded as crucial, since the output
perfusion is condensed into only three different flow speed
regions.
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A possible expansion of the model is to allow for an adaptive
exponent in the absorption coefficient for melanin [Eq. (3)].
Reported values on this exponent are inconsistent, and it will
depend on the fraction of eumelanin in relation to pheomela-
nin.?! Changing this value from —3/10 to —2 or —5 in the
three-layered adaptive model increased the value of the objective
function at the solution with about 75% (not presented in Sec.3),
which indicates that it may be a good idea to let this parameter
be variable in the adaptive model when used on measured
spectra. The importance of this should be evaluated in a larger
in vivo study.

Water is often included as a chromophore®*? in tissue mod-
els similar to the one presented here, because water can be a
prominent absorber for wavelengths above 750 nm. We have
chosen not to include water, since it has a negligible influence
on the backscattered intensity in the wavelength interval (450 to
850 nm) and source—detector separations (0.4 and 1.2 mm) used.
Similarly, various “yellow” chromophores such as bilirubin,
methemoglobin, and beta-carotene may also be included as
they can have a significant effect on the backscattered intensity
below about 500 nm.>! We have chosen not to include such
chromophores, but instead reduce the influence on the objective
function for overestimations of the backscattered light intensity
for wavelengths below 500 nm. The effect of this relaxation in
the objective function can be noticed in Figs. 1(a) and 6(b).

In the spectral interval 450 to 650 nm, both oxygenated and
deoxygenated hemoglobin have a strong and unique character-
istic footprint. The interval 650 to 850 nm, where tissue absorp-
tion is minimal, strengthens the possibility of determining the
level of scattering throughout the complete spectral range.
These are important reasons for choosing the wavelength inter-
val 450 to 850 nm in the DRS part of this method. Furthermore,
since we primarily want to study the microcirculation, it is an
advantage to use the visible wavelength region compared with
the near-infrared region, in order to reduce the sampling volume.
The reduced sampling volume is also the reason for choosing the
rather small, but well separated, source—detector separations of
0.4 and 1.2 mm.

The design of the objective functions and the order of search
for the optimal fit (three steps in global search for DRS) are
important in order to achieve good convergence properties
when solving the inverse problem. A large part of the develop-
ment of the method has focused on this. In the three-step search
strategy, approximate values for the parameters that are mainly
affecting the spectra above 700 nm are found relatively quickly
in the first step. In the second step, those parameters are locked
using their approximate values from step 1, while the other
parameters are fitted to the entire spectral range. By locking
these parameters in step 2, potential raising conditions, caused
by starting points located far from their optimum, are avoided.
In the third step, all parameters, which are now likely to be
located relatively close to their optimal values, are freely fitted
a last time. In the first and the second steps, multiple random
starting points are used for the fitting parameters until the
same best optimal point is found several times. This is necessary
in order to be sure that the global optimum is found, but is also
the reason that a global search is rather slow. If all nine param-
eters were to be found simultaneously in a single step with
multiple starting points for all parameters, many more random
starting points would be needed (one to two orders of magnitude
more), which would increase the time needed to find the global
minimum.
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Broyden’s method was used for updating the Jacobian in
each iteration. This has a high impact on the time needed for
solving the inverse problem compared with using partial deriv-
atives which requires calculating the forward problem several
times. For Broyden’s method to work smoothly, prescaling of
the model parameters has to be performed, so that a change
in each parameter affects the objective function to a similar
extent.”® For LDF, the prescaling was done by normalizing
each speed parameter with its average speed. For DRS, empiri-
cal scaling factors were used.

The use of Eq. (21) leads to an important simplification of
the calibration routine, as no absolute calibration is required,
whereas Eq. (20) limits the effect of inaccuracies in the relative
calibration. This is important since especially an absolute
calibration and also an exact relative calibration are difficult
to perform in practice. The absolute levels in real measurements
may also be largely influenced by the contact between the probe
and the skin, which would influence the results without these
relaxations.

The accuracy of the estimated quantities is, in general,
improved by applying a calibration relaxation according to
Egs. (20) and (21), even for the simulated evaluation simulations
that are absolute calibrated by nature. The fact that the accuracy
and, obviously, the goodness of fit are improved by introducing
Egs. (20) and (21) indicates that they, to some extent, compen-
sate for inhomogeneities that cannot accurately be accounted for
by the three-layered model. Although deviations from unity in
the factor ¢ are penalized by the objective function, it settled at
values below 0.9 for 6 of the 250 simulations. Common for these
cases is a high concentration of blood vessels located directly in
front of the light-emitting fiber or in a layer that is much thinner
than 0.5 mm (the thickness of the upper dermis layer in the
three-layered adaptive model). Modifications to the adaptive
three-layered model, such as introducing an adaptive parameter
that controls the thickness of the upper dermal layer, may avoid
this behavior in ¢g. It should also be noted that the introduction of
arelaxation parameter can result in an impaired estimation of the
scattering properties in contradiction to the general improve-
ment seen in other parameters, especially when ¢ deviates too
much from unity.

For DRS, a variety of methods have been presented, most of
them capable of estimating relative or absolute changes in RBC
tissue fraction (or equivalent) and/or the absolute oxygen satu-
ration,>%17-283334 We have performed a comparison to one of
these methods,”® which is in many senses a state-of-the-art
DRS method based on an absolute calibrated modified Beer—
Lambert’s law model. For the longer source—detector separation
(1.2 mm), the accuracy in RBC oxygen saturation was approx-
imately the same as for our method. The accuracy in RBC tissue
fraction and average vessel diameter was much worse in that
method compared with ours. This indicates that for estimating
the oxygen saturation only, a relatively simple method may be
good enough, but in order to accurately estimate absolute RBC
tissue fractions and many other parameters, a more complex
method, as our proposed method, is necessary. Our method
also has the advantage in that it can be combined with LDF
and that it does not require a cumbersome absolute calibration
which is needed for many other methods.

For LDF, on the other hand, all commercial products use
the first moment of the Doppler power spectrum to calculate
the perfusion index. By normalizing that measure, we were
able to compare our results with the conventional measure
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[Fig. 4(a)]. The known nonlinearity in the conventional measure
can clearly be seen, but except from this, the “noise” to the true
values is similar for our model-based method and the conven-
tional method. Nevertheless, other previously mentioned advan-
tages with the model-based approach including the quantitative
and speed-resolved nature of the estimated perfusion are
important.

In this study, simulations of complex models containing dis-
crete blood vessels were used to evaluate the accuracy of the
proposed method. This evaluation indicates certain accuracy,
but it is not a hard proof of that the method gives accurate esti-
mates for in vivo measurements. As a gold standard does not
exist for measurements in the microcirculation, proving the
accuracy of the method is cumbersome. We have previously
shown that this type of model-based approach works well for
measurements in bio-optical phantoms both for LDF*>*® and
DRS.*” Those phantom measurements constitute the first link
in the chain of proof for the model-based method. The second
link is the accuracy shown by the evaluation simulations in
Sec. 3.1 in this article. The third link is merely the fact that
a single model that fits measured spectra at two source—detector
separations for DRS and one source—detector separation for
LDF well is possible to find, as shown in Sec. 3.2. Some of
the estimated parameters in the fitted model can also be vali-
dated by comparing them with the results obtained using
other bio-optical measurement techniques,*®* which can further
strengthen the trustworthiness of the proposed method. Finally,
expected behavior of the output parameters during in vivo mea-
surements serves as an indicator that the method works accu-
rately. An example of such expected behavior can be seen in
Fig. 8(a), where the oxygen saturation settles at the zero
level at the end of the occlusion.

Methods based on adaptive tissue models are more complex
than comparable conventional methods based on direct calcula-
tions on the measured spectra. The iterative fitting process is
also time consuming and may require recorded spectra with
less noise and more accurate calibration processes. The latter
issue is solved in the presented method by the relaxations in
Egs. (20) and (21) for DRS and by the previously presented cal-
ibration process27 for LDF. The time resolution issues, both for
acquiring high-quality spectra and for solving the inverse prob-
lem, may be a limiting factor in some specialized high-dynamic
measurement situations. Utilizing smart algorithms and hyper-
parallel computing on graphic computing units have reduced the
time to solve the inverse problem of both DRS and LDF on a
standard laptop (NVIDIA Quadro NVS 160M with eight cores)
to the order of 100 ms, reducing this limitation.

5 Conclusions

We have presented an adaptive model-based method for a com-
bined analysis of DRS and LDF data. The accuracy of the
method was evaluated on complex, tissue-like models contain-
ing a high amount of individual blood vessels. The absolute
RMS deviation between estimated and true oxygenation was
4.1 percentage units, whereas the relative RMS deviations for
the RBC tissue fraction and perfusion were 19% and 23%,
respectively. Advantages compared with stand-alone conven-
tional DRS and LDF methods include simultaneous RBC tissue
fraction, oxygen saturation, and speed-resolved perfusion from
the same sampling volume given in absolute quantitative units.
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Appendix: Analytical Calculation of Single-Shifted
Optical Doppler Spectrum

The Doppler frequency shift f that results when light is scattered
an angle @ by an RBC moving with velocity v can be expressed by

2 2 1- 0
fZV’(]Z%SiH(@/Z)COS(pZ%\/%OSCOS(p

=cos ¢ -
= V } = % 1_“5’ (30)
E=cos ¢ A 2

where v = |v|, q is the difference between the wave vectors k; and
k; of the incident and scattered light waves, respectively, 4 is the
laser wavelength, n is the refractive index of the medium, 6 is the
scattering angle, and ¢ is the angle between v and . The single-
shifted optical Doppler spectrum p, ;(f) for a given set of v, 4,
and n can thus be calculated by considering the probability dis-
tributions of the angles 8 and ¢. Specifically, the probability to be
calculated for each f is the probability of

l—p, fA l—p A
V2 ooV —F ad e=1. 6D
A

for all values of x between A and 1, ie., for u € [-1,1 — 2A2].
The probability of y is given by the scattering phase function of
blood (Gegenbauer kernel with gg = 0.948 and ag, =1 is
used), and the probability of £ can be assumed to be rectangularly
distributed between O and 1 for positive frequency shifts. The
probability density function for £ = A/x is given by

pe(x) =—. (32)

The probability density function for y is given by the scatter-
ing phase function (Gegenbauer kernel) which with ag, =1 is
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where K =

The probability density function p,, ; (f) is thus calculated by
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In practice, the probability density function is rather wanted
for a frequency bin f; to f;,;
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Note that this expression is only valid for a Gegenbauer

kernel phase function with ag, = 1. Note also that the expres-
sion is only valid for positive frequency shifts, but the shape is
identical (mirrored) for negative frequency shifts.
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