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bstract. We present an iterative adaptive hybrid image
estoration algorithm for fast convergence. The local vari-
nce, mean, and maximum values are used to constrain the
olution space. These parameters are computed at each it-
ration step using a partially restored image at each itera-

ion, and they are used to impose the degree of local
moothness on the solution. The resulting iterative algorithm
xhibits increased convergence speed and better perfor-
ance than typical regularized constrained least-squares
pproach. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

n image captured by an imaging system represents the
egraded version of an original image due to blurring and
dditive noise.1,2 For a size M �N image, a typical degra-
ation model can be written as

= Hx + n , �1�

here the vectors x, y, and n are the lexicographically or-
ered original image, the observed image, and the additive
oise of size MN�1, respectively. In addition, H is the
egradation matrix of size MN�MN to represent a spa-
ially invariant or spatially varying point spread function
PSF�.

Regularized constrained least squares �RCLS� have been
idely used to obtain a solution for Eq. �1�, and the solu-

ion is obtained by minimizing the following function with
espect to x,1,2

M�x� = �y − Hx�2 + ��Cx�2, �2�

here � denotes the regularization parameter to control the
radeoff between fidelity to the data and smoothness, and C
ypically represents a high-pass operator.

The prior knowledge used in RCLS is that the original
mage is smooth. However, this is a global requirement and
herefore not effective in terms of local smoothness. Also,
hen an iterative technique is used to obtain the solution of
q. �2�, the iterative solution may suffer from noise ampli-
cation after a certain iteration step when the additive noise

s serious.2–4 Therefore, a more desirable solution can be
btained by imposing reasonable constraints into the solu-
ion space of RCLS.3–5 Projection onto convex sets �POCS�

091-3286/2010/$25.00 © 2010 SPIE
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has been widely used in many areas, since it is effective to
impose nonlinear local properties into the solution space.3,6

In this work, an iterative adaptive hybrid image restora-
tion algorithm using a local smoothing constraint is pre-
sented. We follow the formulation represented by Eq. �2�
and propose to bring knowledge about local properties of
the original image into the restoration process, so that prior
knowledge and spatial adaptivity are incorporated in the
solution. The basic motivation is to constrain local ranges
of values that the restored image can take, leading to in-
creased convergence speed of the iterative algorithm and
performance improvement compared to RCLS.

This work is organized as follows. In Sec. 2, the pro-
posed hybrid gradient-projection restoration algorithm is
explained. Experimental results and conclusions are pre-
sented in Sec. 3.

2 Proposed Algorithm

The gradient iteration of the regularized smoothing func-
tional in Eq. �2� can be written as

xk+1 = xk + �HTy − �HTH + �CTC�xk� = Gxk. �3�

There exist various ways for determining the regularization
parameter �.1,2,7 According to Ref. 7, we determine the
regularization parameter by

��xk� = �y − Hxk�2/�� − �Cxk�2� , �4�

where ��2�y�2. The iterative solution in Eq. �3� reflects
only global smoothing requirements and therefore it is not
effective in terms of local smoothness. When a local
smoothing constraint is imposed into the solution space of
RCLS, the iteration in Eq. �3� can take the form

x̂k = Gxk,

xk+1 = Px̂k = PGxk, �5�

where P represents a projection operator of a signal onto a
set with desirable local properties. The proposed projection
set is defined by the local statistics of the partially restored
image at each iteration step. For a pixel of the partially
restored image x̂k�i , j�, the local mean and variance at co-
ordinate �i , j� with window W are defined as

mx̂k,W�i, j� = W−1 �
p=i−U

i+U

�
q=j−V

j+V

x̂k�p,q� ,

�x̂k,W
2 �i, j� = W−1 �

p=i−U

i+U

�
q=j−V

j+V

�x̂k�p,q� − mx̂k,W�i, j��2, �6�

where W= �2U+1�� �2V+1� is the extent of the analysis
window that is symmetric about the point �i , j�. In addition,
the local maximum of the partially restored image at point
�i , j� is defined as

x̂k,W,max�i, j� = max�p,q��S�i,j�
x̂k�p,q� , �7�

where S�i,j� is the support region that determines the local
maximum about the point �i , j�. In this work, it is same
August 2010/Vol. 49�8�1
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ith the analysis window used for the local mean and vari-
nce. Using the local information in Eqs. �6� and �7�, a
arameter controlling the degree of local smoothing is de-
ned as

P�x̂k�i, j�� = �E1�i, j� if x̂k�i, j� � E1�i, j�
E2�i, j� if x̂k�i, j� � E2�i, j�
x̂k�i, j� otherwise

� ,

1�i, j� = max�0,mx̂k,SW�i, j� − Tk � B�i, j�� ,

2�i, j� = min�2L − 1,mx̂k,SW�i, j� + Tk � B�i, j�� , �8�

or L bits per pixel. In Eq. �8�, Tk is a threshold to be
etermined and B�i , j� is defined as

�i, j� =
�x̂k,LW

2 �i, j�

�x̂k,SW
2 �i, j�

�
x̂k,SW,max�i, j�
mx̂k,SW�i, j�

. �9�

n Eq. �9�, SW and LW represent the relatively small and
arge window sizes centered at point �i , j�.

In general, noise amplification contributes to the prob-
em of restoration, and therefore desirable properties such
s detection of noisy pixels and the degree of local activity
hould be incorporated into the restoration process to effec-
ively suppress noise amplification. It is clear how the local
tatistics affect B�i , j�. Let us assume that x̂k�i , j� is a noisy
ixel belonging to an element of a homogeneous activity
egion. In such a case, �x̂k,SW

2 �i , j� is greater than �x̂k,LW

2 �i , j�,
nd therefore local smoothing is necessary to suppress the

ig. 1 Experimental results with Lena image: �a� noisy blurred im-
ge �7�7 Gaussian blur with variance of 5- and 10-dB Gaussian
oise�, �b� restored image with RCLS �39 iterations, MSE=493, and
SIM=0.432�, and �c� restored image with proposed hybrid method

ten iterations, MSE=260, and SSIM=0.677�.

ig. 2 Performance comparisons with Lena image: �a� MSE as a
unction of iteration number, and �b� convergence rate as a function
f iteration number.
ptical Engineering 080503-
noise amplification. As the noise increases, the variance
ratio decreases, leading to smaller B�i , j�. In addition, when
the same noise is added to low and high activity regions,
the noise within the low activity region is more visible than
that within the high activity region. Therefore, tighter
bounds should be applied to the noisy pixel within the low
activity region than to that within the high activity region.
x̂k,SW,max�i , j� /mx̂k,SW

�i , j� in Eq. �9� is used as a way to rep-
resent the degree of local activity in this work. As the local
activity decreases, B�i , j� decreases. A smaller B�i , j� leads
to tighter bounds, while looser bounds are for a larger
B�i , j�, so that the noise amplification is effectively sup-
pressed. They are in agreement with the noise masking
property in areas of high spatial activity of the human vi-
sual system.8

Local information has the limit to effectively suppress
noise amplification. Therefore, global information about the
noise can help to effectively reduce noise amplification. For
example, tighter bounds are more desirable as the additive
noise increases. Tk in Eq. �8� is used to incorporate global
information into the restoration process, so that it can con-
trol the degree of bounds that is computed at each iteration
step, such as

Tk = exp	Z �

�
i

�
j


xk−1�i, j�


�
i

�
j


nk−1�i, j�
� , �10�

where Z represents a constant, and nk−1=y−Hxk−1.
The proposed algorithm is used to obtain a solution that

is an element of the intersection set between a solution
space using the gradient approach reflecting the global
smoothing constraint, and a projection set incorporating the
local smoothing constraint.

3 Experimental Results and Conclusions

The proposed adaptive hybrid image restoration algorithm
is tested with various noisy blurred images and degrada-
tion, and it is compared to typical RCLS. In the set of such
experiments, the 256�256 pixels Lena and Cameraman
images are described here. The original images were
blurred by 7�7 motion blur and Gaussian blur with vari-
ance of 5. A Gaussian-distributed noise signal was added to
the blurred images. We tested the proposed algorithm for
various SNRs. In addition, a 2-D Laplacian operator was
used for the high-pass operator in Eq. �2�.2 For evaluating
the objective and subjective performance of the algorithm,
the mean squared error �MSE� and structural similarity in-
dex �SSIM� in Ref. 9 were used, where SSIM takes a value
between −1 �the worst value� and 1 �the best value�. Also,

�xk+1 − xk�2

�xk�2 � 10−m �11�

was used for terminating the iteration. In these experiments,
m=5 was used for 5- and 10-dB noises. Also, m=6 and
m=7 were used for 20- and 30-dB noises, respectively. In
addition, SW=3 and LW=7 were used for small and large
size windows in Eq. �9�.

Figures 1�a�–1�c� show the degraded Lena image �7
�7 Gaussian blur with variance of 5- and 10-dB Gaussian
August 2010/Vol. 49�8�2
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oise�, the restored image with RCLS, and the restored im-
ge with the proposed method, respectively. For Z=0.07,
he proposed algorithm converges after ten iterations
MSE=260 and SSIM=0.677�, while RCLS requires 39 it-
rations �MSE=493 and SSIM=0.432�. The results show
hat RCLS leads to noise amplification in the restored im-
ge. On the other hand, the proposed hybrid algorithm ef-
ectively suppresses the noise amplification. When tighter
ounds �smaller Z� are used, the convergence becomes
aster. However, tighter bounds result in oversmoothed im-
ges. On the basis of our experiments, 0.05�Z�0.1 is a
ood range with convergence speed and performance.

Figures 2�a� and 2�b� show MSE and convergence speed
omparisons as a function of iteration number for Lena
mage when 10-dB Gaussian noise is added. The results
how that the proposed algorithm has the capability to keep
minimum mean squared error, while RCLS is very sensi-

ive to the terminating criterion, since the noise is amplified
fter a certain iteration number. Also, it is verified that the
roposed algorithm is faster than RCLS for all cases.

Tables 1 and 2 summarize the performance comparisons
MSE, SSIM, and iteration number� at convergence for
aussian blur and motion blur, respectively. As expected,

he performance gain of the proposed algorithm increases
s the additive noise increases. However, as the additive
oise decreases, looser bounds are necessary to avoid over-
moothed images. As shown in Tables 1 and 2, the pro-
osed algorithm performs similarly to RCLS for additive
oise less than 30 dB.

The novelty of the proposed algorithm is that it leads to
aster convergence speed, and subjectively and objectively
etter performance than typical RCLS without prior infor-
ation of an original image by incorporating the local

moothing constraint.
We propose an iterative adaptive hybrid image restora-

ion algorithm using a local smoothing constraint. Each

Table 1 Performance comparisons at convergence �Lena�.

oise
dB� Method

Gaussian
blur

Motion
blur

MSE SSIM
Iteration
Number MSE SSIM

Iteration
Number

RCLS 1799 0.230 66 2336 0.204 66

Hybrid 303 0.612 10 288 0.633 9

0 RCLS 493 0.432 39 797 0.352 49

Hybrid 260 0.677 10 245 0.703 9

0 RCLS 212 0.647 64 241 0.598 74

Hybrid 189 0.730 38 174 0.734 53

0 RCLS 139 0.772 123 125 0.773 127

Hybrid 139 0.772 123 125 0.773 127
ptical Engineering 080503-
pixel in an image is projected onto a local smoothing set
determined by the local mean, variance, and maximum in-
tensity value of the partially restored image. The ratio of
these parameters is used to define the convex set, resulting
in effective suppression of the noise amplification and
faster convergence speed.
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