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Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic

substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-

condensed material. These materials include model biophysical systems as well as in situ living tissue

at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films

with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and

A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13,

4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades,

NR has evolved to become a key tool in the characterization of biological and biomimetic thin films.

In the current report, the authors would like to highlight some of our recent accomplishments in utiliz-

ing NR to study highly complex systems, including in-situ experiments. Such studies will result in a

much better understanding of complex biological problems, have significant medical impact by sug-

gesting innovative treatment, and advance the development of highly functionalized biomimetic

materials. VC 2015 American Vacuum Society. [http://dx.doi.org/10.1116/1.4914948]

I. INTRODUCTION

Understanding biological systems on a nanometer-

resolution scale1–3 is important for solving complex biologi-

cal problems, develop innovative treatment, and advance the

development of highly functionalized biomimetic materials.

A multitude of techniques exist for studying biorelated sys-

tems of various complexity, such as interference reflection

microscopy,4–8 fluorescence interference contrast micros-

copy,9–11 total internal reflection fluorescence micros-

copy,12–16 surface plasmon resonance microscopy,17,18

transendothelial electrical resistance,19–22 atomic force

microscopy (AFM),23–26 electrical impedance spectros-

copy,27–29 and numerous more.

Over the past decades, neutron reflectometry (NR) has

become a key tool in the characterization of biological and

biomimetic thin films.2,30 Typically, NR measurements are

performed on homogeneous model systems, such as phos-

pholipid monolayers at the air–liquid interface,31 pure and

hybrid phospholipid bilayers on silicon and quartz sub-

strates,32–35 and supported phospholipid bilayers mimicking

biological membranes.36–38 For more information, we refer

the interested reader to several recent reviews and publica-

tions.3,30,39–42 Small angle neutron scattering is also fre-

quently employed to study living matter. One of the many

recent examples are studies of suspensions of activelya)Electronic mail: jarek@lanl.gov
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metabolizing human erythrocytes and thermal fluctuations of

hemoglobin.43,44 In the current paper, we would like to high-

light recent advances in utilizing neutron scattering to study

biorelated structure in dynamic conditions (under the shear

flow) including in-situ investigations of the interfacial prop-

erties of living cells. NR can be applied in the study of living

tissue to better understand biological mechanisms such as

cellular adhesion within the vascular system and the differ-

ences that may be specifically associated with brain tumor

invasion.45–47

II. METHOD

NR is an excellent tool for studying the structure of bio-

logical molecules and living tissue at the solid–liquid inter-

face in situ. Due to the penetrability of neutrons, NR is

commonly used to probe thin films with thicknesses of

5–5000 Å at buried solid–liquid interfaces. Neutrons are

highly sensitive to the scattering contrast between hydrogen-

ated and deuterated materials. An example is neutron scatter-

ing from hydrogenated alkyl tails of phospholipid bilayers

(which are not capable of an isotopic exchange with the sol-

vent) measured in a deuterated subphase (D2O). During a

NR experiment, neutrons penetrate through the support sub-

strate (e.g., quartz wafer), which is in contact with the liquid

subphase. The roughness and nature of this substrate is cru-

cial for the measurements.48–51 The neutrons are scattered

from the structure of interest, for example, living cells de-

posited on the substrate, at a small angle, h [Fig. 1(b)]. In

NR, the ratio of elastically and specularly scattered neutrons

to incident neutrons is measured. This ratio is defined as the

reflectivity, R, and is measured as a function of the momen-

tum transfer vector, Qz, where Qz¼ 4p sin[h]k�1 and k is the

neutron wavelength. For monochromatic neutron beams, fre-

quently employed at nuclear reactor source, the variation in

the magnitude of Qz vector is achieved via changes in the

angle of incidence h. In experiments performed at neutron

spallation facilities, changes in the magnitude of the Qz vec-

tor are obtained by both k and h variation. In these cases, k
is measured by the time-of-flight method (ToF). If not other-

wise noted, NR measurements presented in this paper were

performed at the Surface Profile Analysis Reflectometer

beam line [Fig. 1(a)] at the Los Alamos Lujan Neutron

Scattering Center.52 The neutron beam is produced from a

spallation source and moderated by liquid H2. The different

k are discriminated by a ToF position-sensitive detector. The

range of k utilized in this work was from 4.5 to 16 Å. The

reflectivity data are plotted as R/RFresnel versus the perpen-

dicular scattering vector Qz, thus accounting for the Qz
�4

decrease of the reflectivity due to Fresnel’s law.53

Unlike x-rays, neutron scattering lengths (amplitudes

indicating the strength of interactions of neutron with the

atomic nucleus) can vary for different isotopes of the same

element. Frequently the so called isotopic substitution is

used to increase or decrease the neutron scattering contrast

of the measured system and its components. For that reason

hydrogenous materials are frequently measured in D2O rich

subphases or vice-versa.

Analysis of the specular reflectivity versus Qz enables de-

velopment of the scattering length density (SLD) distribution

normal to the sample surface.54 SLD is a function of chemi-

cal composition and density of the material. The SLD profile

obtained from NR measurements provides structural

information at a very high spatial resolution (<10 Å).

Specifications of NR measurements and modeling of the

data have been detailed elsewhere.52,54 If not noted other-

wise, modeling of the SLD distributions was performed

using an open-source reflectivity package, MOTOFIT, which

runs in the IGOR Pro environment.55 MOTOFIT approxi-

mates the continuous SLD function by a number of layers

with constant SLDs. An error function centered between two

adjacent interfaces is used to address the interfacial rough-

ness. A theoretical reflectometry curve can be calculated

using Abeles matrix formalism. Both Genetic optimization

and Levenberg–Marquardt nonlinear least-square methods

were employed to obtain the best fits with the lowest v2 val-

ues and structurally meaningful parameters for the NR data.

To model the NR data, the SLD value of the quartz substrate

was fixed at 4.18� 10�6 Å�2 in all cases.

To illustrate the changes detectable by an NR experiment,

simulated SLD distributions and corresponding calculated

NR spectra are shown in Fig. 2. If any component of the sys-

tem changes, e.g., the packing density of a lipid bilayer, the

scattering length density distribution will change and will be

immediately apparent in the neutron scattering. For example,

FIG. 1. Schematic of NR and solid–liquid interface flow cell. (a) Diagram of specular NR. The momentum transfer perpendicular to the interface, Qz, given by

the change in the incoming wave vector (ki) and outgoing wavevector (kf) on reflection at the boundary (kf). (b) Side view of the flow cell used for the experi-

ments. (c) Schematic of a lipid bilayer on a quartz wafer. (Not drawn to scale.) After deposition of the lipid bilayer, the quartz substrate was clamped against a

Macor disk with a 0.1–0.3 mm thick, subphase-filled gap created by an O-ring. The neutron beam penetrated the lateral face of the quartz substrate and was

scattered from the solid–liquid interface.
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a rearrangement in the density or chemical composition of

the bilayer, e.g., upon shear, can be observed as a change in

the reflectivity signal. A modification of the thickness of the

bilayer would result in altered fringe spacings. This is illus-

trated in Figs. 2(a) and 2(b) where the density, hydration,

and interfacial roughness of all components were kept con-

stant while the thickness of the lipid bilayer was varied.

Figures 2(c) and 2(d) represent another case where the thick-

ness and interfacial roughness of all the scattering compo-

nents was kept constant but the amount of lipids in the

bilayer, and hence the surface coverage, was decreased. This

case would be visible as an increase of the SLD due to

replacement of the regions not covered by the bilayer by the

D2O subphase.

We will discuss several cases of the NR experiments

starting from the most simple and ending with the most com-

plex systems.

III. RESULTS

A. Simple systems

NR is frequently executed to evaluate film thickness,

roughness, packing, and chemical composition, but can also

reveal the response of a (multi-)layer to external stimuli such

as UV light,56 shear,46,57,58 electric fields,59–61 change in

temperature,38,62,63 hydration,38,64,65 or pH.66–68

In the following text, we will briefly discuss a few recent

exemplary studies of our group, illustrating the potential and

broadness of neutron reflectivity measurements for biore-

lated surfaces. The provided examples are by no means com-

prehensive and we invite the interested reader to study the

above mentioned literature to gain a deeper understanding of

the history and future potential of neutron reflectivity for the

investigation of biorelated surfaces and interfaces.

1. Shear (stability of lipid bilayer)

Mechanical forces play a vital role in all living systems.

For example, shear rates in the human body are in the order

of �100 s�1 in large veins to �1500 s�1 in capillaries and

arterioles.69 In contrast, ocular shear rates range from 5000

to 28 000 s�1 based on the thickness of tear film of either

40 lm (Ref. 70) or 3 lm (Ref. 71) and a blink velocity of

�20 cm/s.72 Hence, understanding the response of compo-

nent properties of biological systems from lipid membranes

to cell colonies and tissue to mechanical stress is of great im-

portance in a variety of medical application.

In the human body, most interfaces are covered by lipid

membranes and are exposed to flow, such as blood, air, bile,

etc., and subsequent shear stress. Understanding how such

thin films withstand these stimuli, and how their behavior

deviates from tissue, has huge implications in many biomed-

ical applications and problems.

To further our comprehension of such systems, we con-

ducted several shear experiments in a custom-built neutron

scattering solid–liquid interface flow cell (Fig. 3), similar to

the ones that were presented by Hamiliton et al.103 and

Baker et al.104 The measurement cell consists of two main

parts: a base made of Macor ceramic [Fig. 3(a)] and a mono-

crystalline quartz wafer. The studied system (thin film,

bilayer, living cells, etc.) is deposited on the bottom of the

quartz disk [shown schematically in Fig. 3(b)]. The Macor

part is equipped with a fluid inlet, outlet, and an O-ring

FIG. 2. Simulated SLD distributions and corresponding calculated NR spectra of a lipid bilayer in D2O. Left panel (a)—three SLD distributions corresponding

to the same (100% surface occupancy) density of the scattering components but with the thickness of the bilayer varied: 50, 100, and 25 Å. Right panel (b)—

simulated Fresnel divided NR spectra corresponding to the SLD profiles shown in (a). (c) SLD distributions corresponding to the same thickness of the scatter-

ing components but with the SLD of the bilayer varied, simulating its different surface coverages: 100%, 75%, and 50%. (d) Calculated NR spectra corre-

sponding to the SLD profiles shown in (c). (e) SLD distributions corresponding to the same thickness and SLD of the scattering components but with the

roughness of the bilayer varied, simulating an undulating layer. (f) Calculated NR spectra corresponding to the SLD profiles shown in (e). (g) SLD distribu-

tions corresponding to the same thickness and SLD of the scattering components but with the solvation of the bilayer varied, simulating the effect of solvent

penetration of 0%, 25%, and 50%. This has the same impact as changing the surface coverage shown in (c) and (d). (h) Calculated NR spectra corresponding

to the SLD profiles shown in (g). For simplicity, in all cases the scattering contribution of the bilayer headgroups has been neglected and except for (e) and (d)

the roughness parameter for all interfaces was set to 5 Å.
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groove. The O-ring separates the ceramic base from the

quartz crystal. Both parts are kept together by a clamping

mechanism. The distance between the ceramic base and the

crystal is approximately 0.2 mm and can be regulated by the

tension on the clamping system. The geometry of the mea-

surement cell’s inlets and outlets are designed to allow a

laminar flow of liquid between the ceramic and the quartz.

The laminarity of the flow was modeled by hydrodynamic

simulations using commercial software [Fig. 3(c)] based on

Navier–Stokes equations. The width and the length of the

measurement cell over which the flow can be considered

laminar is 35 � 50 mm2 and coincides with the size of the

footprint of the neutron beam. A pulse-less gear pump was

used to produce the flow required for the experiments.

At first, we investigated a bilayer made of zwitterionic

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE,

transition temperature 63 �C), which is one of the phospholi-

pids occurring in biological membranes,73 under various

shear stresses. The lipid bilayer was deposited by the

Langmuir–Blodgett/Langmuir–Sch€afer (LB/LS)74,75 method

directly on a monocrystalline quartz surface and investigated

using NR in the above described solid–liquid interface flow

cell. This cell allowed exercising a mechanical stress on the

bilayer through a laminar flow of liquid parallel to the inter-

face. Figure 4 shows the shear stress results. In the presented

case, the shear rate was 55 000 s�1 exceeding the shear stress

in a typical human capillary system by almost one and a half

orders of magnitude. Even at a high shear rate or after chang-

ing the pH to very nonphysiological conditions, we could

not observe a significant loss or rearrangement of the well-

packed lipids during the shear stress experiments. This is im-

portant for the design of biomedical implants such as stents

and grafts or other in situ applications because under condi-

tions of high flow, particularly in the ascending aorta, the

laminar flow of the blood can be disrupted and become tur-

bulent. The above measurements offer a simplified descrip-

tion of the resistance of lipid bilayers to shear stress when

deposited directly on a flat surface of the substrate. This not

only gives interesting insights in the mode of action of our

body but also offers implications for the design of biocom-

patible, functional coatings.

2. pH response of DPPE in phosphate buffered saline
buffer

Thin polyelectrolyte multilayer (PEM) films deposited by

layer-by-layer self-assembly technique76–79 are being

employed for a wide variety of applications such as targeted

drug delivery, water desalination, and biosensors.80–82 We

fabricated lipid bilayers by LB/LS transfer deposited on

PEM cushions.83 Using NR, we discovered that the separa-

tion between a lipid bilayer and a PEM-covered substrate

can be influenced by changing the pH of the aqueous

FIG. 3. Neutron scattering solid–liquid interface flow cell. (a) Picture of Macor flow cell base. (b) Schematic of the solid–liquid cell with clamping mechanism

and pulse-less gear pump. (c) Results of hydrodynamic simulations of the fluid velocity distribution in the flow cell close to the quartz block, at the approxi-

mate location of the investigated systems.

FIG. 4. DPPE bilayer at various pH show no adverse effect of high shear rates. (a) Fresnel normalized neutron reflectivity (R/RF) of DPPE measured in static

and shear (55 000 s�1) conditions in phosphate buffered saline (PBS-D2O) subphase at various pH and (b) the SLD profiles corresponding to the fits.
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environment. Decreasing the pH of the surrounding pure

water subphase, and therefore changing the electrical proper-

ties of the system, significantly increases the distance

between the lipid bilayer and the polyelectrolyte cushion due

to electrostatic repulsion. Returning to the original pH recon-

stitutes the initial separation, with little or no change in the

lipid bilayer structure. Hence, we are able to create a free

floating lipid bilayer that is easy to attach and release to a

substrate in a reversible manner. We hypothesize that this

behavior is due to electrostatic repulsion between the lipid

head groups and the polymer that increases when the pH is

decreased.67

Below we present a case where the pure water subphase

is replaced by PBS and a bilayer composed of 1,2-dipalmi-

toyl-sn-glycero-3-phosphocholine (DPPC, transition temper-

ature 41 �C) molecules is used. Unlike the case of the pure

water subphase, the use of PBS partially screens the charges

on the lipids and polymers. As can be seen in Fig. 5, where

the pH is decreased to pH 2, and the charge of the PEM

changes from a net positive charge (pH 7) to a neutral PEM

charge (pH 2), the bilayer interactions with the polymeric

cushion weakens and the membrane starts to undulate.

However, due to diminished electrostatic repulsion, no com-

plete bilayer detachment was observed. The ability of the

bilayer to decouple from the supporting layer, to undulate,

and to induce curvature can be very beneficial for incorporat-

ing proteins or channels in the system, as the local curvature

parameter is known to be crucial for interactions between a

lipid bilayer and membrane proteins.84 Moreover, such a

free-floating bilayer, even if only partially removed from the

underlying substrate, would be a more accurate platform for

in situ studies of a variety of phenomena. Examples include

flip-flop of membrane components, incorporation of trans-

membrane channels or interactions between a lipid bilayer

and soluble proteins, interaction between membrane recep-

tors and proteins, etc. Because most studied supported lipid

bilayers tend to restrict the curvatures and motion of model

membranes, this could result in decreased functionalities and

lead to denaturation of the transmembrane proteins embed-

ded in their structure. It needs to be stated that most

biological systems only function well within a narrow pH

range and changing it drastically might affect their viability.

The authors are currently exploring the possibility of induc-

ing the same repulsion by applying a small electric field,

which would circumvent the drawbacks of an acidic

environment.

B. Investigation of tethered lipid membranes
under applied electric fields

In this example, polarized NR and a magnetic reference

layer were employed to study structural changes in tethered

lipid membranes induced by an electric potential applied

across the bilayer. A tethered lipid membrane typically con-

sists of hydrophilic polymers with functionalized ends such

that one end binds to a substrate and the other incorporates

within a lipid bilayer thereby “tethering” it to the surface.85

Advantages of such architectures include (1) a planar mem-

brane geometry enabling the application of surface sensitive

techniques and use in biomimetic devices and (2) providing

a highly hydrated cushion between membrane and support

enabling fluctuations and facilitating the incorporation of

transmembrane proteins into the bilayer.

Here, tethered lipid membranes were prepared on large

surface area supports suitable for NR experiments using

bifunctionalized polyethylene glycol (PEG) tethering mole-

cules and primarily tail deuterated phospholipids. Sputter de-

posited Au thin films were coated on single crystal Si blocks

(5.0 � 8.0 � 1.5 cm) to provide an electrode surface. A soft

magnetic alloy, permalloy (Ni:Fe 4:1), was used as a binding

layer between the gold and silicon. The permalloy also acted

as a magnetic contrast layer, with a different magnetic SLD

component depending on the spin direction of the atoms in

the layer relative to the spin eigenstate of the incoming neu-

trons. Bifunctionalized PEG molecules (n¼ 114) with thiol

and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (tran-

sition temperature 74 �C) terminal ends were obtained from

Nanocs, Inc. (New York, NY) and used as tethering mole-

cules on these solid supports. Dissolved in ethanol at a con-

centration of 1 mg/ml, the tethering molecule solution was

incubated with the substrate for 5 h to form Au-thiol bonds

FIG. 5. Lipid bilayers deposited on PEM exhibited increased undulation in acidic environment. (a) Fresnel-divided NR measurements and corresponding SLD

profiles, obtained from the fits, (b) of DPPC bilayer deposited on PEM ([PEI-PSS]3-PEI). Measurements were performed in PBS at pH 7.0, pH 2.0, and pH

again restored to 7.0. The error bars denote the standard deviation (SD) for each measurement.
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and yield a robust tethered layer. Subsequently, LB/LS depo-

sition of phospholipids was employed to fill in remaining lipids

and construct near complete coverage tethered lipid bilayer

architectures. This method allowed for precise control of the

constituent lipids of the membrane. For this work, tethered

membranes were formed from either tail deuterated 1,2-dis-

tearoyl-sn-glycero-3-phosphocholine (DSPC, transition tem-

perature 55 �C) or 8:2 M ratios of deuterated DSPC and

protonated 1,2-dioctadecanoyl-sn-glycero-3-phosphoglycerol

(DSPG, transition temperature 55 �C) obtained from Avanti

Polar Lipids (Alabaster, AL). Samples were assembled within

a solid–liquid interface flow cell containing protonated PBS

and the capability of applying an electric potential between the

Au surface (working electrode) and a Pt mesh (counter elec-

trode) located 1 cm from the interface. High neutron scattering

contrast between the deuterated lipids and the protonated solu-

tion and PEG tethers facilitated the precise localization and

structural characterization of the membrane. Polarized NR

experiments were performed on the POLREF instrument at

ISIS, Oxfordshire, UK, with the sample placed in a fixed mag-

netic field such that the permalloy was saturated and its mag-

netic moment aligned either parallel or antiparallel to the

incident neutron beam. Using up-stream spin flippers to alter-

nate the incoming neutron polarization, the structure of the

tethered membranes as a function of lipid composition and

applied electric potential was monitored against two different

contrasts of the permalloy layer without any disruption to the

chemical or electrochemical state of the PEG or lipid layers.

For membranes composed only of DSPC, a zwitterionic

lipid, a tethered membrane conformation with a highly

hydrated space between the Au support and the bilayer was

observed (data not shown) but no structural changes were

detected as a function of electric potential. Of much greater

interest were the results when anionic lipids (DSPG) were

included in the membrane. In the 8:2 DSPC:DSPG case,

measurements were performed over the following series of

voltages: 0.0, þ0.1, �0.1, 0.0, þ0.5, �0.5, 0.0, þ1.0, �1.0,

þ3.0, and þ5.0 V. This series provided the ability to investi-

gate the impacts of electric field polarity and magnitude on

the charged, tethered membrane as well as the reversibility

of the effects. The use of a magnetic reference layer and

polarized NR allowed the simultaneous collection of two dif-

ferent neutron contrast scenarios without the necessity of

solvent exchanges [Fig. 6(a)]. The collection of two SLD

contrast conditions (only changing the magnetic polarization

of the permalloy layer) allowed them to be simultaneously

fit to minimize the uncertainty of the structural parameters.

Using the RASCAL software package,86 the measurements for

all voltage conditions and the two polarization states were

corefined to yield SLD distributions consistent with a native

silicon oxide, the two metallic films, the hydrated cushion

region, and the tethered membrane [Fig. 6(b)]. The observed

SLD of the two spin states of the permalloy support was

found to be similar to that described in previous polarized

NR studies.87 For simplicity, the tethered membrane SLD

profiles for a subset of the measured voltage conditions are

presented in Fig. 6(c). Due to the extremely high hydration

of the PEG cushion region, the SLD of the cushion region

could be fixed to that of PBS. Parameters corresponding to

the bilayer region indicate a 44.4 6 6.3 Å thickness, consist-

ent with gel phase DSPC and DSPG bilayers, with

89.3% 6 3.8% coverage. For measurements over the series

of applied fields, only the separation between the bilayer and

the underlying support was allowed to vary. Our results

clearly demonstrate that the spacing between the tethered

bilayer and the support decreases with the application of a

positive electric potential. At 0.0 V, the bilayer was sepa-

rated from the Au surface by 43.8 6 3.6 Å. This decreased to

33.7 6 3.5 Å with the application of þ1.0 V and to

20.3 6 3.6 Å at a potential of þ3.0 V. Increasing to þ5.0 V

did not result in any further decrease indicating that the teth-

ering molecules were fully compressed. Further, for interme-

diate measurements at 0.0 V, the bilayer returned to its

original position demonstrating the reversibility of the tether

compression. Interestingly, the application of negative elec-

tric potentials did not increase the separation between the

negatively charged bilayer and support.

This initial study demonstrates the electrochemical com-

pression of surface-grafted polymers using charged lipid

bilayers and the power of polarized NR for investigating soft

matter samples. Understanding the forces acting on macromo-

lecular structures at surfaces is vital to a number of different

branches of science and engineering, ranging from biofouling

to surface lubrication. A variety of experimental techniques

have been developed to study these forces directly, including a

lot of pioneering work using surface force apparatus88 and

AFM.89 Here, we demonstrate a potential next step for the

analysis of surface forces and their structural implications,

using the semipermeable nature of charged lipid membranes to

directly compress surface bound polymer layers as a function

of the applied electrical potential.

C. Off-specular studies on in-plane correlations
in lipid membranes

Another application of neutron surface scattering techni-

ques is to provide information about fluctuations or lateral

structures with length scales on the order of microns along

the surface of the studied system using the off-specular (or

diffuse) scattering signal which, using a position sensitive

detector, can be recorded simultaneously with NR. Distorted

wave born approximation (DWBA) theory states that the in-

tensity distribution of the off-specular scattering (pi� pf 6¼ 0)

directly corresponds to the degree of interfacial fluctua-

tions.90,91 A two-dimensional intensity map as a function of

pi (pi¼ 2p sin ai/k) and pf (pf¼ 2p sin af/k), where ai and af

are the angles of the incoming and outgoing neutrons,

respectively, and k is the wavelength of the neutrons, clearly

highlights the dominating intensity peak at pi� pf¼ 0 corre-

sponding to the specular reflection, but also allows for the

visualization of the off-specular scattering.92 The latter indi-

cates the presence of surface and substrate roughness and

nicely showcases any developments in in-plane fluctuations

due to changing experimental conditions.
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As one example, we studied poly(N-isopropylacrylamide)

(pNIPAAm)-supported single lipid bilayers,90 which can

serve as models of cell membranes. By permitting the struc-

tural freedom of the membrane, they more accurately repro-

duce cellular membrane morphology compared to directly

supported bilayers. Moreover, they also allow for the incor-

poration of membrane-bound proteins while potentially min-

imizing their denaturation.

By modeling the off-specular scattering, we were able to

quantify in-plane height-height correlations of interfacial

fluctuations of a DPPC bilayer supported on pNIPAAm as a

function of temperature. As the temperature decreased from

37 to 25 �C, the polymer swelled and the supported lipid

membrane deviated from its initially nearly planar structure.

Further analysis of the data revealed that correlation lengths

characteristic of capillary waves changed from 30 lm at

37 �C to 11 lm at 25 �C, while the membrane bending rigid-

ity remains roughly constant in this temperature range.

Analysis of the off-specular scattering can provide a

powerful tool for understanding the complex behavior of cel-

lular membranes, protein transport and docking, lipid segre-

gation into ordered domains, and modification of bulk

membrane elastic properties due to membrane constituents

and external stimuli. By successfully mimicking the com-

plexity of cellular membrane morphology, the presented

polymer-membrane system opens the door for numerous

other investigative opportunities in the future, e.g., how bio-

logical agents such as toxins, viruses, and other pathogens

affect in- and out-of-plane membrane structures.

D. Study of adhesion of living cells to the solid
substrate

In a significant advancement toward employing neutron

reflectometry to measure complex biological samples, we

studied live cells adhered to a quartz substrate.47 Neutrons

are the perfect probe for the investigation of living tissue

because they offer unparalleled resolution on the 1–1000 Å

level where even the best microscopy techniques fail.

Moreover, NR provides global information about the cellular

monolayer averaged over the footprint size. Lastly, neutrons

are ideal for working with living systems such as cells

because, unlike x-rays, they have a nonperturbative nature.

In a series of preliminary experiments, we showed that NR is

capable of probing the composition and thickness of the

interfacial area between the lipid plasma membrane and the

rigid substrate.

Measurements were conducted on live cell monolayers

grown on a flat surface of monocrystalline quartz. Cell

monolayers were perfused with culture medium at controlled

conditions to reach a laminar shear stress level of 1.5 Pa or

left static, as previously described.47

In all experimental data presented below, D2O based buf-

fers were used as the subphase. From our experience, we

know that the cells can survive up to 6 h in such conditions

without visible changes in the cells’ viability. Using D2O

based subphases was necessary to obtain sufficient scattering

contrast. The main source of such contrast is due to the neu-

tron scattering differences between the hydrogenated lipid

membrane (low SLD) facing the quartz substrate and the

D2O environment (high SLDs).

In a series of experiments, we observed a clear signal at-

tributable to live HK-03 mouse fibroblast cells, as confirmed

by comparison with samples of pure medium. We believe

these experiments represent the first successful visualization

and quantization of the interface between live cells and a

substrate using NR. Due to the pronounced neutron scatter-

ing from the hydrogenated alkyl tails of the phospholipid

bilayers (which are not capable of an isotopic exchange), we

were able to clearly distinguish the lipid membrane of the

FIG. 6. Polarized NR measurements of the structure of a tethered bilayer composed of 8:2 DSPC:DSPG exposed to applied electric fields. Panel (a) displays

representative NR data and fits for the 0.0 V (top) and þ5.0 V (bottom) cases. Spin up data (þ) are shown in blue and spin down (–) in red. Data are shifted

vertically for clarity. The full SLD profiles of the 0.0 V case in panel (b) show the different magnetic scattering lengths of the two spin states in the permalloy

magnetic contrast layer. Zooming in on the tethered bilayer region [panel (c)] demonstrates that the application of positive electric potentials compresses the

tethering polymer and decreases the spacing between the substrate and bilayer.
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live cells from the deuterated environment. With an approx.

80 Å thickness (Fig. 7), the membrane region was measured

to be twice as thick as the length of two hydrophobic tails,

indicating that the adhering cells were not organized as a ho-

mogeneous plane uniformly spaced on the quartz substrate.

This suggests that the membrane is either undulating, nonho-

mogeneously distributed due to the surface topography of

the underlying media and adherence proteins, or that the

scattered neutron, averaged over several neighboring cells,

varied in their distance from the solid substrate.

Those very simplistic experiments visualizing the adher-

ence layer of mouse fibroblasts to a quartz substrate show

how powerful NR is, compared to other surface techniques

such as AFM and various microscopies, for unraveling the

information about buried subphases. In the last paragraph,

we would like to go one step further and present in detail a

much more complex and medically relevant system.

E. Investigation of off-specular scattering
of endothelial adhesion at varying temperatures
and fluid shear stress

As mentioned above, mechanical forces play an intricate

role in biological systems from the tissue and organ level

down to individual cells and proteins.93–95 Certain tissues

are inherently reliant on solid mechanical and fluid mechani-

cal stresses for normal healthy function. The foremost

among these is the vascular system encompassing all blood

vessels.95 The innermost layer of blood vessels, which

makes contact with blood, is composed of a single mono-

layer of endothelial cells. Endothelial cells are the main gate-

keepers of a key function of blood vessels known as vascular

permeability. Blood vessels must strike a delicate balance in

allowing fluid and cellular flux across their wall. In healthy

people, vascular permeability (degree of transblood vessel

flux) is tightly controlled, however in certain diseases it

becomes deranged with devastating consequences. Among

these diseases is acute respiratory distress syndrome

(ARDS). In ARDS, the blood vessels located in our lungs

become extremely leaky leading to pulmonary edema, i.e.,

accumulation of fluid in the lungs that severely curtails the

lung’s oxygen diffusion capacity. It is believed that mechani-

cal stress in the form of both cyclic elastic stress and fluid

shear stress from blood flow are key components in regulat-

ing endothelial permeability and play roles in diseases such

as ARDS.96,97

Adhesion to the underlying extracellular matrix (ECM) is

a crucial component of how endothelial cells sense and

transmit mechanical signals. NR was used for the first time

to measure the nanoscopic structure of the adhesion layer of

confluent endothelial cells.46 As in the case discussed above,

neutron scattering is probing only the interfacial space

between the lipid plasma membrane and the rigid substrate.

Endothelial cells generate their own extracellular matrix (ba-

sal lamina) making it possible to grow monolayers on inert

surfaces like quartz without prior exogenous deposition of

protein layers.98,99 We grew confluent monolayers of human

pulmonary arterial endothelial cells on single quartz blocks.

They were then subjected to NR under shear stress of

s¼ 1.5 Pa (equivalent to arterial conditions).

We observed that the basal lamina thickness l is highly

sensitive to changes in temperature or shear stress.

Under static conditions [Figs. 8(b) and 8(c)], we observed

a near tripling of l as the temperature was raised from 25 to

37 �C (lst
25 �C� 200 Å, lst

37 �C� 600 Å). Interestingly, shear

stress has the opposite effect at the two temperatures [Figs.

8(d) and 8(e)], causing cell separation at 25 �C while induc-

ing movement closer to the substrate at physiologic tempera-

ture (lss
25 �C� 700 Å, lss

37 �C� 200 Å).

We also analyzed the off-specular scattering since the

scattered neutron intensity as a function of the in-plane com-

ponents of the momentum transfer vector provides valuable

information about fluctuations along the surface of the cell

monolayer. Figure 9 shows the off-specular neutron reflec-

tivity data at 25 �C. The high intensity peak at pi� pf¼ 0

corresponds to the specular reflection. DWBA states that the

intensity distribution of the off-specular scattering

(pi� pf 6¼ 0) directly corresponds to the degree of interfacial

FIG. 7. Schematic of solid–liquid interface flow cell used for all live cell experiments þ NR profiles and corresponding SLD distributions of mouse fibroblasts

(a). Schematic representation of the neutron measurement cell used. Confluent layer of cells is grown on the quartz substrate that is inverted into the measure-

ment cell. A neutron beam enters through the quartz at a glancing angle and scatters from the adhesion layer and cell membrane interfaces. Fresnel divided

NR profiles (b) and corresponding SLD profiles (c) for high (black) and low (gray) cell surface densities. NR data are shown by closed squares, and error bars

indicate 1 SD. The lower surface cell density is evident from the decreased scattering intensity (b) and the increased SLD in the membrane region

(360–440 Å) and interior of the cell (440–600 Å) (b).
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FIG. 8. Differences in response to shear flow of healthy endothelial cells at ambient and physiological temperatures. Left (a) Fresnel-divided NR measurements

(circles/squares with error bars) and corresponding best-fit models (solid lines) at the conditions studied. Black (open circles): 25� (static), black (closed

circles): 25� (shear), gray (open squares): 37� (static), gray (closed squares): 37� (shear). The NR spectra are offset along y-axis for clarity. Right [(b)–(e)]:

SLD profiles obtained by fitting the data sets using a 3-box model (extracellular matrix—cell membrane—partial cell interior).

FIG. 9. Off-specular data depicts changes in surface roughness at 25 �C: Data is shown as two-dimensional intensity maps as a function of pi and pf. (a)

pi¼ 2p sin ai/k and pf¼ 2p sin af/k are the components perpendicular to the sample surface of the incoming and outgoing neutron wave vectors, respectively

(Ref. 92). The dominating intensity peak at pi� pf¼ 0 corresponds to the specular reflection. The off-specular is visible to the right from the specular line

along picture’s diagonal indicating the presence of surface and substrate roughness. (b) Comparison of the intensity distribution along the peaks vs pi � pf of

endothelial cells under static (black) and shear (red) conditions show decrease in scattering under shear stress. (c) and (d) show experimental two-

dimensional intensity maps of endothelial cells at 37 �C at static and shear conditions, respectively. The extension of the off-specular signal (right top corner)

in (c) compared to (d) indicates more in-plane fluctuations at static conditions.
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fluctuations.90 Our data show that the off-specular peak

enlarges with increasing temperature under static conditions

(data for 37 �C not shown) while it substantially decreases

with shear flow for both temperatures. Temperature, as

expected, increases interfacial thermal fluctuations. Shear

stress acts in a reverse manner by placing the cells (and

therefore their lipid membranes) under tension, thereby sup-

pressing fluctuations and decreasing the off-specular

intensity.

From individual cells and proteins up to complete tissue

and organs, mechanical forces play an intricate role in bio-

logical systems.93–95 Due to the limitation of most techni-

ques, the existing work in mechanobiology has focused on

cells, single molecules, and protein complexes, leaving the

collective behavior of cell monolayers less well explored.

The strength of neutron reflectometry is its nonperturba-

tive nature, the ability to probe large surface areas of buried

interfaces with nanometer resolution, and the possibility of

scattering contrast manipulation via the isotopic substitu-

tions. That allows us to probe details of the cell–substrate

interface that are not accessible with any other standard tech-

niques. Such capabilities can also be employed to obtain bet-

ter insight into the mechanisms of cell adhesion and

cell–surface properties of clinically relevant systems. For

example, the above results demonstrate that neutron reflec-

tometry experiments can provide valuable insight into com-

plex biomedical systems, such as living human cells under

fluid mechanical shear stress. Specifically, the above studies

could show the major redistribution of proteins involved in

cell–cell and cell–substrate adhesion shear stress is causing,

even on relatively short biological time scales (4 h) relevant

to the time scale of our neutron experiments. The localiza-

tion of adhesion proteins is postulated to promote linkage

between the actin skeleton and extracellular matrix, forming

enhanced adhesion zones.96 Shear stress at 37 �C caused

localization of specific proteins, which may alter the adhe-

sion potential in favor of overall increased adhesion as meas-

ured with neutrons. This biological response competes

against the purely physical effects of shear flow observed at

25 �C and the increased repulsive potential of the basal lam-

ina at higher temperatures. Those findings may lead to

advances in the treatment of atherosclerosis and other disor-

ders associated with the cardiovascular system, but also

open the door to a complete new way of investigating and

understanding living tissue in-situ.
In this spirit, we have started to expand those studies to

glioblastoma (GBM),45 one of the most common and aggres-

sive type of brain tumors.100 Under static conditions, we

have observed profound differences in noninvasive U251

cells, compared to the invasive CNS1 and GL261 cells.

Namely, the human U251 cells showed a much thicker gly-

cocalyx or “adhesion” layer than the cells derived from rat

and mouse. We hypothesized that U251 cells may have a

higher production of hyaluronic acid (HA) and associated

proteoglycans101 than the rodent GBM cells. This could con-

tribute both to the nonfibroblastic morphology and limited

invasive ability since a thick HA coating can promote cell

adhesion, but limit GBM invasion in vivo if not degraded by

tumor-produced hyaluronidases.102 In summary, the pre-

sented results reveal differences in the thickness and compo-

sition of adhesion layers of different GBM cells in the static

conditions as well as changes to this layer when the cells

were subjected to shear stress. These differences may be spe-

cifically associated with mechanisms of brain tumor inva-

sion. Further studies of these cells by neutron reflectometry

under a variety of conditions (surface coatings, flow, and

drug treatments) will allow to determine conditions trigger-

ing changes in the composition, density, and thickness of the

biomaterial at the cell surface (in our case, the ECM layer).

This, in turn, can help to identify changes that correlate with

increased or decreased tumor invasiveness. Pursuit of those

studies can have significant medical impact for the develop-

ment of targeted anti-invasive therapies for GBM. Also, by

revealing differences that may be specifically associated

with mechanisms of brain tumor invasion, NR shows the

power it holds for understanding biomedical questions.

IV. CONCLUSION AND OUTLOOK

The discussed experiments illustrate the potential of NR

in addressing the structural properties of soft materials from

simple supported lipid membranes in static and dynamic

conditions to the adherence of complex endothelial cells

under liquid shear stress.

We hope that an inclined reader will utilize some of these

concepts and experimental approaches to conduct new stud-

ies that will provide better understanding of biomedical

questions, suggest innovative treatment, or advance the de-

velopment of novel biomimetic materials.
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