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ABSTRACT

Existing theories for the initiation of electrical breakdown 

are reviewed, together with the experimental observations on which they 

are based. Experiments here described have extended the available data 

on electrical breakdown between broad area electrodes under ultrahigh 

vacuum conditions. The results, together with those of several other 

experimenters, are interpreted on the basis of a single picture which 

explains and relates the phenomena of predischarge currents and the ini­

tiation of breakdown. Based on field emission from sharp submicroscopic 

points, this picture predicts breakdown when the local electric field at 

the cathode reaches a critical value. The local field, which for broad 

area electrodes may be much larger than the average field, is deduced from 

observations of field emission prior to breakdown. When properly analyzed, 

data for tungsten electrodes from this research and several others indi­

cate a value for the electrical field at breakdown which is independent 

of gap spacing or geometrical configuration for voltages up to 250 kV.

The critical breakdown field for tungsten is 6.5 x 10^ V/cm. The above 

picture also gives physical insight into other phenomena associated with

electrical breakdown.
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I. INTRODUCTION

Although vacuum can act as a good insulator between metal 

electrodes at low voltages, it has been found that as the voltage is 

increased, there is a relatively reproducible value at which a transi­

tion to a high current, low voltage arc takes place. At sufficiently 

low pressures it has been found that the initiation of the arc, referred 

to as electrical breakdown, is independent of the residual gas and 

appears to be determined by the properties of the electrode surfaces.

The literature on electrical breakdown contains quantitative

data on electrode-dominated voltage breakdown as early as the turn of 
1 2the century. In 1918, Millikan and Sawyer reported some of the earliest

quantitative measurements on breakdown at low pressures. They summarized

this work (undertaken as early as 1905) as follows: "The potential

difference required to produce these hot sparks, amounting to 150,000

V/mm under certain circumstances, were independent of the residual gas

pressure, provided this was sufficiently low, for example, between 10 
-8and 10 mm of Hg." Millikan went on to describe certain observations

3which later experimenters have called "electrode conditioning,"

• Since the very early work mentioned above, a large number of

researchers have made measurements relating to the dependence of electrical

breakdown on various parameters. A summary of some of the experimental

contributions is indicated in Figure 1, which gives data from a very wide 
4-14number of sources for breakdown voltages as a function of two very 

important parameters, (1) gap spacing, and (2) electrode material. The
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Fig. 1. Breakdown voltage versus gap spacing for various electrode 
materials. The results of various experimenters are here 
indicated on a single plot for comparison.

1. Denholm, steel, see footnote 4.
2. Trump, stainless steel, see footnote 5.
3. Slivkov, steel, see footnote 6.
4. Anderson, stainless steel, see footnote 7.
5. McKibbon, stainless steel, see footnote 8.
6. Heard, inconel, see footnote 13.
7. Rosanova, iron, see footnote 12.
8. Rosanova, molybdenum (5 to 3 x 10"^ cm), see footnote 12, and 

Denholm, aluminum (2 to 8 x 10’ cm), see footnote 4.
9. McKibbon, steel, see footnote 8.

10. McKibbon, aluminum, see footnote 8.
11. Boyle, Kisliuk, Germer, tungsten, see footnote 14,
12. Myers, copper, see footnote 11.
13. Denholm, copper, see footnote 4.
14. Pivovar, copper cathode, lead anode, see footnote 9.
15. Parkins, copper, see footnote 10.
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many subsequent experimenters have added to the overall information avail­

able, notably that the breakdown field appears to depend on gap spacing,
15evidence for which was first provided by Anderson. It will be noted, 

however, that in the 40 years of research since Millikan’s early observa­

tions, there has been virtually no improvement in the value of breakdown 

field strengths available for the range of gap spacings of greatest interest.

Among the problems which have made progress difficult have been 

the experimenters' lack of ability to control or measure such factors as 

the microscopic and atomic nature of the electrode surfaces, the residual 

gas pressure, and the surface contamination during the course of an experi­

ment. Thus, despite the large volume of data made available, there have 

been relatively few definitive experiments which uniquely identify, or 

alternatively, which uniquely exclude a specified a specified physical 

process which may lead to the initiation of breakdown. Even with such an 

obvious parameter as the electrode material, it has not been possible to 

ascribe the differences in the observed breakdown characteristics solely 

to the properties of the electrode material. For example, it can be seen 

from Figure 1 that the measurements taken with the same electrode material 

by different experimenters may have a larger variation than the corresponding 

results of a given experimenter taken for several different electrode mate­

rials. In view of the nature of such results, there was a tendency in the 

early literature to interpret a given experiment in terms of one or another 

phenomenological picture for breakdown, each model requiring a suitable 

choice of adjustable parameters to fit the gross features of the experi­

mental observations. Due to the continued interest of many competent
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workers over the years, there is no shortage of postulated mechanisms for 

the observed phenomena. However, in view of the many unspecified conditions 

noted above, it is not surprising that the literature on electrical break­

down has produced few theoretical explanations supported by convincing 

experimental proof.
16The development of the field emission microscope and the

introduction of ultrahigh vacuum techniques,^  made it possible in the

early fifties to carry out certain experiments in which contamination from

the vacuum system and the effects of residual gases could be eliminated

or controlled, and the nature of the cathode surface specified in detail.

With these techniques at their disposal, Dyke and his co-workers, Barbour,
18 19 20Dolan, Martin, and Troian, 5 5 were able to carry out the first (and

only) set of experiments in which the initiation of breakdown can be unam­

biguously associated with a specified physical process. These experiments 

were carried out with a point-to-plane geometry similar to that in a Muller 

field emission microscope; the electrode material and its structure could 

be accurately defined, the geometry could be specified to the dimensions 

identifiable in an electron microscope, and the cathode surface could be 

atomically cleaned and maintained in this condition throughout the course 

of the experiment.

Dyke and his colleagues obtained values for the electric field 

at breakdown of approximately 7 x 10^ V/cm, a value one or two orders of 

magnitude higher than that found for more typical electrode geometries and 

vacuum conditions. Furthermore, they were able to demonstrate in a con­

clusive way that breakdown in the point-to-plane geometry is initiated by
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the resistive heating of the cathode tip by field emission currents. It

is interesting to note that this is a process which had been postulated
21almost two decades earlier.

The papers of Dyke and his co-workers, written almost a decade 

ago, were immediately recognized for their definitive quality. However, 

the results which they described were so different in a quantitative sense 

from those in the existing literature that the phenomena in the different 

geometries did not seem to be related. In any case, neither Dyke nor other 

workers in the field have hitherto made a serious attempt to relate this 

work to other geometries or to previous work in electrical breakdown.

The research program to be described in this paper was aimed 

at an understanding of the physical processes which are responsible for 

the initiation of electrical breakdown between broad area electrodes, i.e., 

for electrodes whose dimensions are comparable to the gap spacing between 

them. It was particularly intended to examine experimentally whether 

modern vacuum techniques and recent advances in the study of clean surfaces 

could bring new insight into the problem. With the encouragingly high 

values for breakdown field demonstrated by Dyke and his co-workers, it was 

especially of interest to relate this work involving point-to-plane geo­

metries to that for other geometries. With the above factors in mind, the 

material selected for most detailed investigation was tungsten, and most 

of the results and conclusions were obtained from studies with electrodes 

of this material.

The results of the present investigation are discussed in two main 

parts. Part I, the present paper, is devoted to a description of the role
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of field emission in electrical breakdown, an essential feature of which 

is the existence or formation of multiple points or whiskers on the broad 

area electrodes. It should be quite evident from the introduction above 

that there is no intent here to claim priority for the proposal that such 

projections on metallic electrodes play an important role in electrical 

breakdown, or that they may greatly enhance the field emission. Rather, 

it is herein intended to present a physical picture which quantitatively 

relates predischarge characteristics to the initiation process, together 

with supporting experimental evidence for this interpretation of the 

initiation process. An accompanying paper, hereafter referred to as II, 

will describe a series of studies which were suggested by, and are comple­

mentary to those in I. They involve detailed experimental and analytical 

investigations of the projections on electrodes and their effects on 

electrical breakdown in vacuum.
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II. SOME THEORIES FOR THE INITIATION OF BREAKDOWN

A. Field emission

As indicated in section I, an unambiguous explanation of the

observed predischarge currents and of the breakdown voltage is available

for a point-to-plane geometry under ultrahigh vacuum surface conditions.
18 19 20To explain the predischarge currents, Dyke and his co-workers * *

showed that as the electric field at a clean single-crystal tungsten-point

cathode is varied, the current drawn to the anode accurately follows the
22 23predictions of the Fowler-Nordheim theory * for field emission. This 

theory, which describes the process as a quantum mechanical tunneling of 

conduction electrons through the potential barrier at the surface of the 

metal, gives the following expression for the dependence of current density, 

J, on electric field:^

-6.83 x 107 (p
3/2

3.79 x 10-4 E
1/2

<P

1.54 x 10"6E2
cpt‘ 79 x 10 E

<P

C T T \  exP

(1)
where:

E is the electric field at the cathode surface, 

is the work function of the cathode material, and 

v and t are slowly varying functions which are almost constant

over the useful range of measurements of the current density.
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In Dyke's experiments, the point cathode was carefully prepared

by electrolytically etching the tip of a small tungsten wire to a fine

point. 'This was then heated to a high temperature in ultrahigh vacuum

to anneal out the imperfections, thus producing a single crystal. The
-4shape of the smoothed point, whose radius was typically less than 10 cm,

25was determined with an electron microscope. This information made 

possible an accurate calculation of the electric field at the emitter sur­

face. The shape of the cathode was preserved even at high current densi­

ties by pulsing the voltage at the higher values, thus limiting the heating
i

effects and minimizing surface migration. The anode was located at a

distance of several centimeters from the cathode.

By measuring the current as a function of applied voltage, Dyke

and his colleagues verified the Fowler-Nordheim theory over a range of
2 6 2at least six orders of magnitude in current, from 6 A/cm to 6 x 10 A/cm ,

and showed that the small deviation from the equation for greater values

of current could be explained on the basis of space charge alteration of

the field at the surface. The curve was reproducible and reversible for
8 2current densities up to 10 A/cm . At this critical value of current 

8 2density (10 A/cm ), a sharp discontinuity in current was observed, rising

by at least two orders of magnitude in a time less than 50 nanoseconds.

Thereafter, the emission characteristics of the cathode were greatly altered,

and examination under the electron microscope indicated that the point
20had been violently destroyed, Dolan, Dyke, and Troian explained the 

electrical breakdown in these experiments as due to the resistive heating 

of the cathode to the melting point of the tungsten. They made calculations
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to show that the field currents of this magnitude can indeed heat the tip 

to the melting point in less than the microsecond pulse' duration used in 

these experiments.

On the basis of the chosen values of gap spacing and the observed

rate of current build-up, they were able to demonstrate that the anode

played no role in the initiation of the high current "arc," the gap spacing

being too large to permit the transfer of neutral or of charged particles
-8heavier than hydrogen ions in a time less than 5 x 10 sec. Hence, the 

above results provided incontrovertible evidence that field emission was 

responsible for the initiation of breakdown.

If questions remain as to the interpretation of the Dyke experi­

menta, they lie in the authors' explanation of the formation of the arc, 

i.e., the rapid change in current which accounts for the destruction of 

the point cathode. This rapid current rise is attributed to the sudden 

onset of space charge neutralization provided by ions formed in the metallic 

vapor evaporated at the point cathode. However, Dyke et al, do not explain 

why there should be a discontinuity in the production of ions or in the 

vapor pressure of the tungsten at its melting point. In the first place 

it should be noted that the vapor pressure of a metal does not suffer a 

a discontinuity at the melting point; in the second place, the vapor pres­

sures at the melting point of common electrode materials differ by over 

ten orders of magnitude. Hence, significantly different behavior from that 

for tungsten would be expected for other materials, a result which is not 

typical of breakdown data. Finally, the Dyke group did not describe in 

detail the mechanism by which ions, even if produced in quantity, could
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account for the magnitude of the current rise. It would seem, therefore, 

that an explanation of the detailed processes leading from initiation to 

the final arc (or the destruction of the cathode) may lie in other direc­

tions, for example, the sudden change in the mechanical properties of the 

cathode at the melting point of the cathode tip. Alternative explanations 

are considered in II.

Before introducing a picture for the initiation process for broad 

area electrodes based on field emission, it is instructive to review briefly 

certain other theories which have continued to receive serious attention.

The reasons for considering other mechanisms is based on certain observa­

tions which on first glance the field emission hypothesis did not seem to 

explain. Among such observations are the following:

1. Dependence of breakdown voltage on gap spacing. As shown 

in Figure 1, the observed values of breakdown voltage does 

not vary linearly with gap spacing. Thus the average value 

of the electric field at breakdown does not appear to be 

constant, but to vary with the position of the anode.

2. Anode material. In addition to the dependence on the posi­

tion of the anode, the breakdown voltage between broad area 

electrodes seems to be affected by the nature and condition 

of the anode surface.
263. Material transfer between electrodes. Many researchers 

have observed that material may be transferred from anode to 

cathode or vice versa upon the application of high voltage, 

even at values below that at which breakdown occurs.
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4. The magnitude and nature of predischarge currents. In 

general, the currents drawn between electrodes are many 

orders of magnitude higher than those expected from a simple 

application of the Fowler-Nordheim theory. Although the 

current is typically carried by particles of negative charge, 

there are some experiments which have indicated charge 

carriers of both signs.

In view of such observations, three other hypotheses for the initiation 

process have received wide-spread attention, one based on regenerative 

processes at the electrode surfaces, the second based on the transfer of 

massive particles between electrodes, and the third based on localized 

heating of the anode.

B. Surface regeneration processes 
27Van Atta and Van de Graaff have proposed as an initiating 

event for breakdown the interchange of charged atomic particles between 

cathode and anode, that is, a chain reaction in which particles ejected 

from one electrode produce particles of the opposite sign upon impact at 

the other electrode surface. Breakdown occurs when the regeneration 

coefficient, i.e., the product of the cross-sections for the generation 

of particles at the respective surfaces, exceeds unity.

Although this process has been under serious investigation for

several decades, positive evidence for a surface regeneration effect has
28been provided only in a limited number of investigations. Arnal and

29Mansfield and Fortescue have shown that under certain conditions,
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particularly under poor vacuum conditions, current may flow between the 

electrodes at voltages well below the threshold for breakdown. Since the 

current flows as self-extinguishing pulses (of millisecond duration), 

some authors have used Arnal's term "microdischarges" to describe the 

effect. Both Arnal and Mansfield and Fortescue found evidence for an ex­

change process involving the production of positive ions at the anode

and negative ions at the cathode.
30Recent observations (incident to the development of high 

energy particle separators) also seem to indicate a particle interchange 

process which produces a quasi-stable glow discharge taking the form of 

a diffuse column extending from one electrode to the other, or of a some­

what mobile luminous patch close to the surface of the electrodes.

Rohrback and Germain noted that the columns, about 1 to 2 cm in diameter, 

move about over the surface during the early stages of vacuum conditioning, 

and eventually disappear. If unusually persistent, the effect could be 

removed by carefully cleaning the electrodes. Murray found that the lumi­

nous patches were unaffected by the imposition of a weak magnetic field 

transverse to the electric field, thus providing evidence in support of 

ion exchange between the plates. Similar observations have been made by 

one of us (EM.) on the ZGS particle separators at the Argonne National 

Laboratory. In addition, it was found upon removing them, that pairs of 

"conditioned” plates, i.e., electrodes which no longer sustain such a 

localized glow, have complementary discoloration patterns; a discoloration 

region on one electrode is qlways faced by a completely clean region of the 

same size and shape on the opposite plate. This suggests that ion exchange
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can occur only if both plates have contaminated surfaces, and ceases as 

soon as either electrode is cleaned by the action of bombarding particles.

In general, such conduction does not lead to a destructive dis­

charge, but to a drain on the power supply at voltages well below "break-
32 33 34 35down." A number of experimenters * ’ ’ have demonstrated that for

conditioned surfaces, the measured cross-sections are far too small to
, 31support a regenerative mechanism. Pivovar and Gordienko showed rather 

conclusively that conduction of this type is absent when surface contamina­

tion is minimized through the use of modern ultrahigh vacuum techniques.
36At relatively low voltages (up to 12 kV) Raether, of our laboratory, 

has shown that under ultrahigh vacuum and clean surface conditions, the 

ratio of positive to negative current does not exceed a value of 10~ up 

to the point of breakdown. From the above discussion, it will be noted 

that, although considerable evidence exists that a regenerative process 

may cause a large predischarge current between highly contaminated sur­

faces, experimental observations seem to exclude surface regeneration as 

a cause of electrical breakdown. Not only are the measured values of 

the appropriate cross-sections too small to account for breakdown, but the 

measured dependence of cross-sections on particle energy fails to explain 

the observed variation of breakdown voltage as a function of gap spacing.

C. The Clump Hypothesis

Upon plotting the results of a large number of experimenters
37in a manner such as is shown in Fig. 1, Cranberg noted that the data

seemed to follow a square root law variation of breakdown voltage (V, )b
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with gap spacing (d) , i.e.,

1/2Vb = Cdi/Z , (2)

where C is a constant of proportionality. This is, of course, a major

departure from the linear dependence of V, on d which would be character-b
istic of a mechanism solely associated with the electric field.

To explain this dependence, Cranberg postulated the so-called 

"clump hypothesis," attributing the initiation of breakdown to the transfer 

of charged clumps of material ripped from one of the electride surfaces 

and accelerated to the opposite electrode. If the particle is given 

sufficient energy, he concluded that it may produce upon impace localized 

"temperatures in excess of any known boiling points." Cranberg then showed 

that the energy transferred by a clump of material is proportional to the 

produce of the voltage through which the particle falls and the electric 

field at the surface from which it originated. The criterion for breakdown 

then becomes

v E >  c2 (3)

which is equivalent to (2) above, if one assumes E = V/d. Since

Cranberg's presentation, other investigators have derived alternate

expressions for the dependence of on gap spacing, developing a somewhat

different criteria for the required clump energy based on other assumptions
38as to the details of the initiating process. Slivkov arrives at a some-

5/8what different formulation for the breakdown criterion: = C a ,
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where C is derived in terms of other physical constants. His derivation

is based on the premise that if breakdown is to occur, it must take place

in the vapor of the metallic particle and hence must meet the Townsend

criterion for minimum sparking potential.
39Alpert and Lee calculate the constant of proportionality for 

Cranberg's criterion by assuming that breakdown will occur when the kinetic 

energy of the particle is sufficient to vaporize the particle through the 

work of compression. They give a formulation for the constant C in terms 

of physical parameters such as the modulus of compressibility, the density 

and the heat of sublimation.

There is every reason to believe that if the voltage applied

between the electrodes is raised to a sufficiently high value, the forces

exerted at the surface will eventually exceed the tensile strength of the

electrode material itself, thus destroying the electrode in a single cata<-
24strophic event. Müller has, in fact, shown that such a failure may 

take place even for a single crystal tungsten anode, at a field of about 

5 x 10^ V/cm.

However, in the range of voltages and gap spacing of typical 

interest, there is little direct evidence for the Cranberg mechanism.
26The most convincing indirect evidence is, as has been previously noted,

the observed transfer of metal from one electrode to the other. On the

other hand, in attempts to verify the clump hypothesis by measuring the
36transit times for such macroscopic particles, Raether obtained a totally 

negative result. Out of several thousand breakdowns induced by pulsed 

overvoltages, he found no correlation which could ascribe the initiation
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to the transit of such a particle across the gap. This experiment was

carried out with clean tungsten electrodes with total voltages up to 60 kV.

Perhaps the only direct evidence for clump transfer as an initiator of
40discharges was provided by Heard and Lauer, who were able to induce break­

down by injecting free particles into the electrode region with the high 

voltage on. In other words, the transfer of a charged particle between 

electrodes may be a sufficient condition, but not a typical or necessary 

precursor of breakdown.

One of the questionable conclusions from the Cr^nberg presenta­

tion is the predicted dependence of breakdown voltage on gap spacing. This 

arises from the assumption that the electric field at the surface of a 

loosely bound projection is the average field given by V/d. As will be 

seen from the discussion in the following sections, it is much more likely 

that the field at such a loosely bound particle will be strongly enhanced, 

and that the enhancement factor will itself depend on the gap spacing.

Thus a more valid analysis of the process would lead to a quite different 

prediction for the dependence of breakdown voltage on the gap spacing d.

D. Electron beam effects

A fourth approach to the explanation of electrical breakdown has

involved the interaction at the anode of a beam of electrons originating

at the cathode. The original paper describing the pinch effect in plasmas
41was written by Bennett to explain electrical breakdown. In this paper, 

Bennett described the process of breakdown as due to a beam of electrons 

originating from field emission from point projections on the cathode.
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The electron beam is then said to be confined to a very narrow column as

a consequence of magnetic self-focusing which also confines the returning

ions to a localized region. The impinging ions are then responsible for

the initiation of the arc. It is not to detract from the importance of

this paper in other implications to indicate that it is highly doubtful ^

that a pinch can take place in an electron beam emitted from a point

projection in view of the relatively high transverse velocities.
42Boyie, Kisliuk and Germer, in a paper which gives important 

insight into the nature of field emission from broad area electrodes, 

ascribe breakdown to the localized heating of the anode by impinging elec­

trons. Their experiments involve very small gap spacings, for which beam 

spreading due to space charge is not large. Maitland4  ̂gives a similar 

explanation. However, this interpretation seems subject to serious ques­

tion in view of calculations of Vibrans,44 who has made an analysis of the 

spreading of an electron beam due to space charge. His analysis leads to 

the conclusion that for a specified gap spacing the maximum possible power

density at the anode occurs when the cathode current density is about 
4 210 A/cm . Since the results of Boyle, Kisliuk, and Germer as well as

our own indicate that the cathode current density at breakdown is of the 
7 2order of 10 A/cm , considerable doubt exists as to the possibility that 

localized anode heating plays a major role in initiating high voltage break­
down, particularly at large gap spacings.

In summary, although each of the alternative explanations of break­

down for broad area electrodes seems to have attractive features, we have 

adduced evidence, either experimental or theoretical, which subjects them
to serious question.
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III. A FIELD EMISSION PICTURE FOR BROAD AREA ELECTRODES

The work of Dyke and his collaborators showed that for point-to- 

plane geometry in clean systems, the measured values of predischarge cur­

rents and of breakdown voltage could be quantitatively explained by a 

straightforward picture based on field emission. As can be seen from the 

data for broad area electrodes in Figure 1, two significant departures from 

Dyke's results seem immediately evident. First, the electric field at 

breakdown (as defined by the expression E, = V, /d) is at least an order of
D D

magnitude lower than that of Dyke et al., and second, the breakdown field,

Eb , varies with d, the breakdown field decreasing with increasing gap 

spacing. As to the predischarge currents, it has been typically observed 

that for broad area electrodes, the measured current exceeds that predicted 

by the Fowler-Nordheim theory by many orders of magnitude.

Since marny of the researches in this field were carried out under 

conditions which differed markedly from those of Dyke et al., both as to the

electrode material and the vacuum conditions, we singled out for special
A 5 4-2study the investigation described by Boyle, Kisliuk and Germer, in the

paper hereafter referred to as BKG. The experiments of BKG were uniquely 

suitable for a comparison with those of Dyke et al., since they also utilized 

tungsten electrodes which could be maintained atomically clean through the 

use of ultrahigh vacuum techniques. They also used pulsed techniques to 

prevent undue heating of their electrodes, which were in the shape of crossed 

tungsten wires of small diameter (0.75 mm). Nevertheless, these are consi­

dered "broad area" in the sense that the gap spacings used were smaller than 

or comparable to the dimensions of the electrodes.
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Let us first consider the BKG data on predischarge current.

Figure 2 shows their results for current as a function of voltage for a
-4gap spacing of 2 x 10 cm, plotted in a manner suggested by the field

emission equation. It is seen, first of all, that the data follows a

dependence rather closely analogous to that predicted by the Fowler-

Nordheim expression. As was the case for Dyke's results, there is some

departure, attributed to space charge saturation, from a straight line at

higher values of current. However, the absolute values of the current

are more than 15 orders of magnitude higher than would be expected from

electrodes of these dimensions at an average field given by the voltage

divided by the gap spacing. Furthermore, BKG demonstrated that the currents

varied in an anomalous way as a function of gap spacing; i.e., the average

field (V/d) required to draw a given current varied strongly with the gap

spacing, d. BKG explained these anomalous effects, and brought their

results into agreement with the Fowler-Nordheim theory by postulating that

the current was drawn from an emission site which was very minute in area, 
-11 2 ^(3 x 10 cm for the data shown in Fig. 2) and that the electric field 

at the emission site exceeded the average electric field by an enhancement 

factor, 6, which ranged from unity at gap spacings of a few angstroms up 

to values as high as 30, as shown in Fig. 3. They explained the observed 

variation of field enhancement with gap spacing as due to enhancement of 

the electric field at small projections on the surface of the cathode.

The alternate possibility of small areas of extremely low work function 

was rejected, since this would not be expected to be gap dependent.

Although this elegant analysis of the predischarge currents 

clearly associated conduction with field emission from sharp projections,
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Fig. 2. Field emission current plotted as a function of reciprocal voltage
14as given by BKG. Note that this is not a true F-N plot since the 

coordinate values are values of current rather than current divided 
by the square of either the voltage or the field. However, departure 
from F-N equation is not significant.



18b

Fig. 3. Field enhancement factor, B, as a function of gap spacing for
14extremely small spacing as given by BKG. Zero gap spacing 

is given by the point of electrical contact.
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BKG did not ascribe breakdown to the same mechanism as that proposed by 

Dyke. Their reasons for this were based on certain of their observations 

of current variation near breakdown, the interpretation of which may be 

open to question. Since we found the evidence for the process proposed 

by BKG, namely, localized heating of the anode, rather inconclusive, 

we were motivated to further comparisons of the BKG data with those of Dyke.

Such a comparison is shown in Figure 4 (curve A), in which the 

measured average breakdown field, V^/d, is plotted as a function of gap 

spacing, d. As might be expected, the average field at breakdown varies 

strongly with gap spacing. However, if one multiplies the values of field 

by the corresponding value of the enhancement factor as taken from BKG's 

data in Figure 3, one obtains a measure of the true local field at break­

down. This has been done for each of the points on the curve 4A, as is 

shown in the upper curve, 4B. One obtains the interesting result that the 

"true” local breakdown field as derived from the observations of BKG has 

a constant value independent of gap spacing, and is equal to the value 

measured by Dyke within the experimental error.

This agreement in the value and gap invariance of breakdown field 

as obtained from the data of BKG and of Dyke et al,, which had heretofore 

not been noted, suggested the picture for breakdown on which the present 

program was based. This picture follows BKG in the description of predis­

charge currents as due to field emission from projections on the cathode 

surface, although a significant departure from the simplified BKG picture 

of a single whisker was called for. (In the course of the research, it 

became evident that for broad area cathodes, the total emission arises from



Fig. 4. Electric field at breakdown versus gap spacing from BKG data. The 
points on the lower curve indicate the average field at breakdown 
obtained by dividing the breakdown voltage, , by the gap spacing, 
d. The upper points indicate the enhanced electric field at break­
down, obtained by multiplying the values for V^/d from the lower 
curve by the corresponding measured value for 6 as taken from Fig.
3. The dotted line shows the electric field at breakdown as measured 
by Dyke et al.
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arises from a number of such points or whiskers.) In this picture, break­

down occurs when the local field at a given point is raised to a critical 

value, the resulting current causing thermal heating and the explosion of 

this projection. The local field at the sharpest emitter point is deter­

mined (see section VI) from the predischarge current characteristics; hence, 

this picture directly relates the phenomena of initiation process to the 

predischarge field emission.

The success of the above picture in equating the results of Dyke 

and his co-workers with those of BKG seemed to us to suggest that the mech­

anisms for arc initiation were the same for broad area electrodes as for the 

point-to-plane geometry. However, the data of BKG was taken only for very 

small gap spacings, the maximum being about 0.001 cm. Since the region 

of more typical interest in electrical breakdown extends to very much

larger spacings, for which a non-linear dependence of V, on d has beenb
observed, it was of particular interest to extend the range of observation 

and comparison to much larger values of d. The following experiments were 

undertaken to test the applicability of the above picture to larger gap 

spacings or to uncover evidence for the onset of a different mechanism.
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IV. EXPERIMENTAL APPARATUS

The experiment was set up to study predischarge current and 

breakdown voltage for tungsten electrodes at gap spacings ranging from a 

few thousandths of a centimeter to approximately 0.5 cm and for breakdown 

voltages up to 250 kV. As in the BKG experiment, the gap spacings were 

less than the diameter of the electrodes over the entire range of values. 

Modern ultrahigh vacuum techniques were also used, to avoid the effects of 

contamination originating in the vacuum system. The electrodes could be 

baked to the typical bakeout temperatures (420° C) of the entire system. 

However, since they were held in place by stainless steel supports, it was 

not possible to raise the electrodes to very high temperatures to achieve 

atomically clean conditions at the outset of the experiment. In this 

important detail the experiment differed from that of BKG or of Dyke; 

nevertheless, it was possible to obtain reproducible results which agree 

very favorably with those of the above workers.

The arrangement of the electrodes and the vacuum chamber are 

shown in Figures 5 and 6. The evacuation was carried out in two stages.

In the first stage, the vacuum chamber, with a 15 liter/sec Vacion pump 

and a Bayard-Alpert gauge attached, was connected to a glass oil diffusion 

pump. Backstreaming was limited by the use of zeolite and liquid nitrogen 

traps. After careful evacuation on this system (which included bakeout 

for 12 hours at 420°) the diffusion pump was valved off. Then the electrode 

vacuum chamber was baked again at this temperature while being pumped by 

the Vacion pump. An ultimate pressure of about 10 ^  torr could be achieved.
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Eig. 5. Photograph of the 3.5 cm diameter tungsten electrodes in the glass 
vacuum chamber. High voltage is applied to the upper electrode. 
Field emission current is read by an electrometer attached to the 
bottom flange.
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The electrodes, cut from a tungsten "single crystal" boule, were 

machined into discs 3.5 cm in diameter and 0.7 cm thick, the edges slightly 

rounded to a radius of approximately 0.1 cm. The discs were vacuum-brazed 

to threaded molybdenum collars for attachment to the long stainless steel 

supports. They were then ground flat, and polished by standard mechanical 

techniques. Following this they were electro-polished in a solution con­

taining 1.5% NaOH by weight in distilled water, and finally, etched in 

this solution to the first appearance of crystal grain boundaries. Several 

experiments showed that the surface treatment subsequent to the initial 

grinding was not critical, provided that the surfaces were clean and free 

of abrasive upon assembly into the vacuum system. Prior to assembling, 

the electrodes and vacuum chamber were scrubbed with Alconox detergent in 

distilled water, then repeatedly rinsed in distilled water.

Adjustment of the electrode gap spacing was made possible by 

attaching the upper (movable) electrode support through a flexible stain­

less steel bellows. The gap spacing was measured by means of a micrometer 

dial indicator, which indicated the displacement from a zero position denoted 

by the point of electrical contact. The hollow supporting stems permit 

circulation of fluids, allowing thermal stabilization of the electrode sur­

faces and the supporting structure.

To see whether the proximity of the glass chamber walls to the 

electrodes affects the interelectrode current of the breakdown voltage, 

an 8 cm diameter chamber was substituted for the 22 cm diameter chamber in 

a number of runs. Since no significant differences were found, it seems 

reasonable to conclude that the glass walls did not affect the results.
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The high voltage, adjustable between 0 and 250 kV, was applied 

to the cathode through a 1 megohm protective resistor from an unregulated 

voltage doubler connected to a line voltage regulator. See Fig. 7. For 

values below 40 kV, both the voltage and field emission current ripple were 

reduced below detectability by adding a 7.5 microfarad capacitor in parallel 

with the power supply. For voltages above 40 kV (a range for which no 

smoothing capacitor was available) the meter readings, which represent 

the average values, must be corrected because of the nonlinear relationship 

between field emission current and the voltage. Capacity effects were 

nulled using an ac bridge, and the remaining ac components of the current 

and the voltage were recorded using a scope camera. These values were 

subsequently correlated using graphical methods to provide corrections 

to these average values. At peak emission currents these corrections were 

as much as 1.5 times the indicated dc meter values. This correction 

process was applied to every experimental point to obtain the true field 

emission current for the voltage range above 40 kV.
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Fig. 7. Schematic circuit diagram.
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V. RESULTS

A. Field emission currents

When a pair of freshly baked-out electrodes is initially exposed

to high voltage, the prebreakdown current is found to fluctuate sharply.

For the first few seconds, sharp spikes appear on the current wave-form,

corresponding to virtual shorting of the electrodes; these are typically

accompanied by gas bursts. The current pulses rapidly diminish, in amplitude

and increase in frequency, becoming indetectably small within 30 seconds

after application of the voltage. Thereafter a continuous current is

observed which is clearly attributable to field emission, as determined

from its voltage dependence. The vacuum condition during most of the runs
-9was maintained at or below 2 x 10 torr.

Numerous runs were taken, with different pairs of electrodes and 

at varying gap spacings. One of the considerations which had to be taken 

into account was that with continuously applied voltage, the power delivered 

to the anode becomes very appreciable, particularly at higher voltages.

In early runs, the resulting heating of the supporting stems would cause 

an uncontrolled change in the gap spacing. For this reason, the electrodes 

and their supports were cooled with water or with liquid nitrogen during 

succeeding experiments; no significant changes in overall characteristics 

have been attributed to this cooling.

A typical run consisted of taking current readings as a function 

of applied voltage over a current range of several orders of magnitude.

After careful measurement of the current-voltage characteristics, which 

were usually reproducible and reversible up to the maximum value, the voltage
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was raised to the point of actual breakdown (observed as a visual flash), 

and its value recorded. For a given gap and voltage, the current was repro­

ducible to about + 107o. Data for current, I, versus applied voltage, V, 

were plotted in a so-called Fowler-Nordheim (F-N) plot, log I/V versus 1/V. 

For a better comparison of data for different gap spacings, d, the current- 

voltage data were sometimes presented by substituting the average field,

V/d, for the potential difference, V, in the F-N plot.

Figure 8 shows the data plotted in this fashion for a typical 

set of runs between clean tungsten electrodes at several values of gap 

spacing. For a given gap, the points were taken at random for a period of 

several hours over the entire range of voltages below breakdown, the small 

spread in the data demonstrating the reproducibility with time and voltage.

It will be noted that the F-N plots often (perhaps in 50% of the curves 

taken) exhibit a small but definite departure from a straight line at the 

uppermost portion of the curve in a direction of steeper slope, as is shown 

in the curve for d = 0.0254 cm (Curve B). This is reproducible and is 

believed to be a real effect, an explanation of which is given in the next 

section and in II.

Figure 9 shows data for a series of runs at a specified gap spacing. 

The difference in slope between curve A and those in the group at B, is 

attributed to the change in the emitting surface due to a few breakdowns 

which took place between runs A and B. However, it will be noted that the 

F-N curve is a straight line after the breakdown event as well as before.

Such changes were often observed, particularly at the outset of a group of 

runs. However, it was also usually observed that the slope of the F-N
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d/V xio -6

Fig. 8. Typical Fowler-Nordheim plots of the field emission current between 
clean parallel tungsten electrodes for various designated gap 
spaclngs (In cm).
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Fig. 9. Typical Fowler-Nordheim plots between successive breakdowns at 
a single gap spacing.
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curve as well as the breakdown voltage reached a more or less stationary 

value after a number of successive breakdowns, as demonstrated by the runs 

in group B, each of which culminated in a breakdown. If the electrodes 

were subjected to a long period of violent sparking, a further change in 

slope and breakdown voltage often occurred, as shown in curve C. In 

addition to the above, it was observed on certain occasions that a transi­

tion from one curve to another might take place at an intermediate value 

of voltage and without an accompanying visible flash.
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VI. DISCUSSION OF RESULTS

A. Predischarge current and critical electric field

The fact that the current-voltage data, when presented in the 

form of a Fowler-Nordheim plot, lie on a straight line over several orders 

of magnitude of the measured variables is strong evidence for attributing 

the conduction to field emission from the cathode. In order to interpret 

the data further, it is of interest to discuss the F-N curves in some 

detail.

The F-N equation (1) gives a relationship between the current 

density due to field emission from a cathode and the local electric field 

at its surface. The measured experimental parameters in these experiments 

are: total current, I ; applied voltage, V ; and the gap spacing, d.

In terms of the total current, it is convenient to rewrite (1) as follows:

c2  93/2
v (y)

= A C
1 t2(y)

exp (4)

where A is the emitting area

C^ and C2 are fundamental constants

v and t are slowly varying functions of E (approximately equal to unity) 

9 is the work function of the cathode material 

E is the local electric field at the cathode surfaceS

If the electrodes were perfectly smooth parallel infinite slabs, the electric

field at the surface would be precisely given by E = V/d. However, it iss
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an essential assumption of this treatment that the electrodes are not ideal, 

i.e., that the local field at certain unspecified irregularities may be 

quite different from V/d. It is therefore only possible to assert that 

quite independent of the geometry, the electric field is proportional to 

the voltage, i.e.,

Eg = K V , (5)

where K is a proportionality constant.

If this expression is substituted in (4), it is seen that plotting
2log I/V versus 1/V should give a straight line of

c2  <p3 / 2
slope -------- ^---- s (y) (6)

where s is also a slowly varying function of field (approximately unity).

Thus the measured value of the slope, as taken from the experimental observa­

tions, gives directly a value of the proportionality constant if the work 

function of the cathode surface is known. Knowing the proportionality 

constant between the local electric field and the applied voltage, it is 

possible to determine the electric field at breakdown, E^, from the observed 

value of the voltage, V^,: at which breakdown occurs.

The value of has thus been determined for each of the curves 

of Fig. 8, using the accepted value of 4.5 eV for the average value of the

work function for clean tungsten. Values of the breakdown field, E, , forb
each gap spacing are listed in Table 1. Also listed are the corresponding 

values of the breakdown voltage, and the average field, V/d. It is seen 

that for these gap spacings, which range in value by two orders of
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Table 1. Calculations from the curves of Fig. 8

d Vb Eb vb/d IB Area

cm kV MV/cm MV/cm 2cm

0.0051 5.5 64.1 1.08 59 2.8 in"11 x 10

0.0254 20.8 57.5 0.816 70 3.0 in"10 x 10

0.102 46.4 53.8 0.457 118 2.2 in’10 x 10

0.406 135.6 70.4 0.334 211 2.8

r—1 r—1 1or-HX

The values of breakdown voltage and breakdown field are given

for four different electrode spacings. The enhancement factor,

6, is the ratio of the local field at breakdown, E, , to the
Vb b

average field at breakdown, — . The emitting area is not 

directly measured but is computed as the ratio of the total 

current to the Fowler-Nordheim current density for a selected 

point on the F-N plot.
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magnitude, the breakdown field is approximately 6 x 10^ V/cm, and equal

to the values obtained from the results of both BKG and of Dyke. The above

values for breakdown field are plotted as a function of breakdown in Fig.

10, together with similarly obtained values from a large number of additional

runs taken for gap spacings ranging from 0.005 cm to 0.635 cm. In each

run, sufficient data were obtained to permit a measurement of the F-N

slope (and hence, the proportionality constant) and then the voltage raised

until visual breakdown occurred. For comparison, we also plot similar
47values of as derived from the data of BKG, Gofinan, and Dyke et al.

It is seen that for over five order's of magnitude in gap spacing, the 

electric field at breakdown is a constant within the experimental error 

of measurement at a given gap spacing, and quite independent of the geometry. 

The value of is thus seen to be a characteristic property of the elec­

trode material; for tungsten this value, the "critical" electric field, is 

equal to 6.5 + 1 x 10^ V/cm.

A very important consequence of these results is that the value 

of the breakdown voltage is thus directly related to, and predictable from, 

the observed characteristics of the predischarge field emission currents. 

Knowing the critical 'electric field at which breakdown will occur, one can 

arrive in a non-destructive way at the value of voltage at which breakdown 

will next occur. Another important result is that under clean conditions, 

the breakdown characteristics for electrodes of a given material are quite 

independent of the geometry, and, indeed, independent of whether the elec­

trodes are single crystal or polycrystalline in structure.
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Fig. 10. Breakdown fields vs gap spacing. For each point, the breakdown 
field is the product of the enhancement factor IB obtained from 
the Fowler-Nordheim plot of prebreakdown current and the average 
field, V^/d.
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B. Field enhancement and the variation of 

breakdown voltage with gap spacing 

It will be noted from Table I that the local electrical field at 

breakdown, E^, varies markedly from the value of the average field as 

computed by dividing by d. In fact, the local field at breakdown exceeds 

the average field in this case of parallel electrodes by a factor which BKG 

call the enhancement factor, 8, and which varies from values of about 50 

for the smallest gap in Table I to about 200. It should be observed that 

8 can be directly measured from an F-N plot, since equation (5) may be 

rewritten

Eg = B V/d . (7)

That is, the proportionality constant K has here been replaced by the

quantity B/d. For parallel plate geometry in which the gap spacing is small

compared to the electrode dimensions, the average field is given by V/d,

and 8 thus represents the factor by which the average field is enhanced

at the cathode surface. Thus it can be seen that when the F-N curve is

plotted as in Figure 8, the slope of the curves gives 8 directly.

The proportionality constant K = 8/d will be seen to have the

dimensions of inverse distance. It has under some circumstances been useful

to define a quantity d ^ ^  = 1/K = d/8, which must still be considered to

be a constant of proportionality which relates the local electric field at

a selected point on the cathode to the applied voltage V. From the

discussion above, it can be seen that d __ could be defined as the distanceef f
between a pair of perfectly smooth parallel electrodes across which the 

applied voltage, , would give the breakdown field. In actual situations
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for plane parallel geometry, the d ^ ^  may differ from d by over two orders 

of magnitude. It is obviously possible to obtain a d ^  even for a point- 

to-plane geometry, in which case it may be less than the measured gap spacing 

by over five orders of magnitude.

To compare the results of this investigation with that of other 

investigators, it is of interest to show the variation of breakdown voltage 

with gap spacing. This is done in Figure 11. It is seen that the measured 

points lie on a rather smooth curve which departs considerably from a 

constant field line. For comparison with our data, we include the data 

of BKG, which joins very well with ours. The combined data lie on a curve 

which can be approximated by a straight line of slope 0.7; at higher values 

of d, the data approaches rather closely the results of other workers shown 

in Figure 1.

The data for can be shown to fall on a straight line corre­

sponding to the constant critical field if instead of plotting versus d,

we plot V, versus d __ (d/B). This is shown in the curve on the left in b eff
Figure 11 in which the abscissa for each measured point has been divided 

by the enhancement factor, B, as measured from the corresponding F-N curve.

It is thus seen that the variation of breakdown voltage with gap spacing 

can be explained on the basis of the variation of the enhancement factor 

with the gap spacing.

The measured values of B vs. d used in the previous analysis 

are shown in Fig. 12. As noted in the caption, most of the measured values 

of B were taken from runs resulting in breakdown, but there is no significant 

difference from the solid curve, taken at varying electrode spacings with
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Fig. 11. Measured breakdown voltage is plotted against actual gap spacing 
d for parallel tungsten electrodes. The points cluster about a 
line whose slope is 0.7. When is plotted against an effective 
gap spacing, d^^, they lie on a straight line of slope 1.0.
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Fig. 12. Enhancement factor versus gap spacing. Values of the enhancement 
factor ß correspond to each breakdown point plotted in Fig. 11.
The solid curves show the variation of ß with gap spacing for
two sets of consecutive measurements in which no breakdown occurred.
(Curve at left from BKG data).
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a given electrode configuration without breakdown between measurements

of B. Although the measurement of the gap spacing introduces questions
48and inaccuracies at very small gaps, one can describe the qualitative 

dependence as follows. For very small gap spacings the B increases 

very rapidly with increasing gap spacing from unity to perhaps 40 or 50.

For larger gaps, there is a rather slow variation with gap spacing, in 

which B rises to values of 100 or higher.

The variation of 6 with d can be interpreted in terms of the 

combined effect of an enhancement, B^, due to microscopic projections on 

the cathode and a local enhancement, > associated with macroscopic changes 

in the electric field distribution at larger gap spacings, the overall 

enhancement being equal to the product of these factors. For gap spacings 

of the order of magnitude of the height of the projections, it is reason­

able to attribute the large variation in enhancement to 6^, i.e., to the 

variation of the microscopic fields, as proposed by BKG. It has, of course, 

been recognized for some time that projections on the surface of an electrode 

can cause the enhancement of the electric field at that point.

Smythe“̂  has derived an expression for the potential surrounding a projec­

tion in the shape of a prolate hemispheroid on an otherwise smooth conducting 

plane. Using this derivation, we can calculate electric field at the tip

of the boss and the following expression for the enhancement factor, i.e.,
52the ratio of the maximum field to the average field is obtained.

B 1 (8)1
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where n is a geometrical factor relating to the height, c, and the base 

radius, b, of the projection.

n = (c2 -cby /2 '

Figure 13 shows a graph of the numerically calculated 6^ factor as a function 

of the ratio of the height c to the base radius b. It is seen that the 

microscopic enhancement factor, 8^, would be expected to have values in 

range of those experimentally observed for ratios of height to radius between 

10 and 20 for the shape here assumed as a model.

In the above derivation, the field enhancement is determined solely 

by the dimensions of the projection above an infinite plane, assuming that 

the opposite electrode is at such a large distance as to have no effect on 

the field at the projection and hence on 8. At very small gap distances, 

this is clearly not the case; one can calculate the field in the vicinity 

of the projection to determine a critical distance at which the electric 

field is no longer perturbed by the opposing electrode. Within this distance, 

one would, in fact, expect a very rapid change on 8^ as was observed by BKG.

A calculation for the hemispheroidal model indicates that the critical dis­

tance is approximately twice the height of the projection. We can thus get 

an indication of the size of the whiskers in the BKG experiment; since the 

major change in 6^ took place over a distance of about 5 x 10~^ cm, one 

concludes that the largest projections were of the order of half that in 

height, i.e., a few wave-lengths of visible light. If one makes the reason­

able assumption that the point emits electrons from a small area at the very
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Ratio of the major to minor axes of an 
ellipsoidal projection, c/b

Fig. 13. Microscopic field enhancement factor as a function of the
geometry for an ellipsoidal boss on an otherwise flat infinite 
plane.
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tip (a few percent of the base area), the values for the emitting area as

derived from the Fowler-Nordheim curves give a self-consistent picture of
53the approximate shape for the points.

For large values of gap spacing, the B^ reaches an asymptotic value.

Since the data of Figure 12 clearly demonstrate a variation of B with d which

must be associated with macroscopic enhancement at large gap spacings and

not to a change in the microstructure at the cathode, it seems reasonable

to attribute this effect to field enhancement at the edges of the electrodes. 
54Calculations using as a model a pair of semi-infinite slab electrodes with 

rounded corners, indicate that when the gap spacing becomes large compared 

to the radius of curvature at the edges of the electrodes, the enhancement 

factor, B£> may be appreciable. The results of these calculations are shown 

in Figure 14.

Although this calculation is at best an approximation to the actual 

configuration, the observed variation of B at large gap spacings is consistent 

with this analysis. Though questions inevitably remain with respect to the 

details of the physical nature of the projections, especially insofar as 

their configuration and surface condition may vary, it seems reasonable to 

attribute the principal features of the variation of breakdown voltage with 

gap spacing to the dependence of field enhancement on the gap spacing over 

the range of voltages covered in these experiments.

C. Multiple points on broad electrodes 

As previously noted, BKG came to the conclusion that the emission 

must arise predominantly from a single point projection since their data
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Fig. 14. Enhancement factor vs <*/*• The curve presents the ratio of 
the maximum value of the electric field in the region of the 
rounded portion of the slab electrode to the electric field 
inside the gap. The solution was obtained by Schwarz- 
Christoffel transform methods.
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appeared as single straight line on an F-N plot. Their argument, of course, 

is based on the premise that if two (or more) projections with different 

6 ‘s were involved, one would expect a non-linear curve to result. However, 

although the F-N plots for our data for many runs are also straight lines 

(as shown in Figs. 8 and 9) there was strong experimental evidence that the 

emission arises from multiple points. One piece of evidence is inherent 

in the nature of successive curves in Figure 9; after a few initial runs, 

it was typical to find that several succeeding runs would be virtually indis­

tinguishable. While this is readily explained on the basis of many more or 

less similar projections, only one of which is destroyed in the breakdown 

process, it is quite difficult to visualize a situation in which a single 

point dominates the entire emission, then is destroyed and somehow replaced 

by an identical point at another location.

A second form of experimental evidence for multiple points arose

from visual observations of the electrodes during the course of a given run.

When the predischarge electrode current reaches a value of the order of a

microampere, there begin to appear sharply defined blue-green pin-points of

light at the surface of the anode. The light is quite faint and requires

dark adaptation to be observed. The brightness of the spots increases with
2increasing current, and they number from about 1 to 10 per cm . For an 

electrode spacing of about 0.4 cm (V = 160 kV, I - 150 flA), their diameter 

is approximately 0.01 cm. Although the spot pattern is relatively unvarying 

over a period of time (at constant voltage and current), certain spots may 

disappear and new spots appear elsewhere from time to time either with or 

without visible breakdown, the total number remaining roughly constant.
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However, one or more spots are always seen to disappear in conjunction with 

a visible breakdown.

The variation of light intensity with current clearly associates 

the many spots of light with electrons impinging on the anode, while their 

even distribution over the entire anode seems to rule out the possibility 

that they are caused by electrons from a single point. As a matter of fact, 

a straightforward application of calculations on the spreading of an elec­

tron beam from a whisker of the dimensions postulated in section VI B indi­

cates that one would expect the electron beam from a single whisker to have 

a diameter of about 0.01 cm by the time it strikes the anode at the above 

spacing. Thus, it seems plausible to attribute each individual spot to the 

beam from an individual whisker or protrusion at the cathode. This inter­

pretation is supported by the observation that a lateral movement of the 

cathode with respect to the anode (maintaining a constant gap spacing) caused 

the entire pattern of spots to move across the anode in conjunction with 

the cathode motion.

The association of the field emission from extended electrodes
55with multiple emission sites has also been demonstrated by Little and Whitney

56 57and by Brodie and Weissman. Singer and Doolittle observed point sources

of x-rays arising from extended electrodes. A suggestion as to the possible
58origin of the visible light spots comes from a study by E. Silverman, 

who attributes a blue-green spot on a copper target bombarded by a 25 kV 

electron beam to bremsstrahlung. Preliminary calculations appear to support 

the plausibility of this explanation.

Although questions may remain with respect to the detailed mecha­

nisms responsible for the visible spots of light, the above observations
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leave little doubt as to the multiple source origin of the predischarge 

field emission current, and hence reopen the question of the BKG inter­

pretation of the Fowler-Nordheim plots. These considerations motivated 

a very extensive study of the formation and role of whiskers in the predis­

charge and initiation processes, the results of which are presented in II. 

For the present, it should suffice to report that additional direct evi­

dence has been adduced for the existence of multiple whiskers or points 

as sources of field emission at the cathode. Furthermore, a numerical 

analysis of the shape of the curve to be expected from a reasonable distri­

bution of points of different B ’s shows that a straight line may indeed 

be expected from such an array. Under some circumstances, a wider distri­

bution of point shapes may result in departures from linearity, and the 

departures at high currents (such as that in curve B of figure 8 in the 

direction of a steeper slope (smaller 6 ‘s) are attributed to such an effect. 

It is important to note that the values listed in Table I were calculated 

from the straight portion of the curve, attributable to the sharper points.

As was typical in such cases, this portion of the curve resulted in a value 

of in agreement with data from curves which did not depart from linearity.

The spontaneous change in the distribution of spots referred to 

above suggests an explanation of other experimental observations. In some 

cases, such a change has been associated with the transition from one F-N 

curve to another described in section V. This transition then represents 

a change in the structure of the cathode or possibly of the anode in which 

material may be transferred between the electrodes at voltages below the 

range of electrical breakdown. The disappearance of a spot on the cathode
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may be due to the explosion of one of the whiskers, the resulting discharge 

being quenched before a visible flash is formed. Thus the description of 

the initiation process in terms of enhanced field emission from multiple 

whiskers provides in addition an explanation of a number of observations 

of predischarge phenomena. A more detailed discussion is contained in II.
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A review of a large number of experimental measurements on the 

initiation of electrical breakdown has been carried out, and several theories 

for this process have been subjected to critical study. Experiments have 

been carried out which have extended the available data on electrical break­

down between refractory metal electrodes under ultrahigh vacuum conditions. 

These have been interpreted on the basis of a single picture which explains 

and relates the phenomena of predischarge currents and the initiation of 

breakdown. It is shown that both predischarge conduction and breakdown can 

be attributed to the existence of fine microscopic points or whiskers; 

furthermore, the field emission from the points can be used as a tool to 

ascertain the approximate geometry of and field enhancement due to such 

whiskers in a non-destructive manner and thus to predict the voltage at 

which the breakdown will next occur. The picture also explains the anom­

alous dependence of predischarge currents and breakdown voltage on gap 

spacing. When analysed on this basis, the observations of at least four 

major experiments utilizing clean tungsten electrodes in a wide variety 

of electrode geometries, have been shown to give completely consistent 

agreement, within the experimental error. Their results give strong support 

to a principal conclusion of this study: that breakdown occurs when the

local electric field at microscopic projections on the cathode reaches a 

critical value, independent of the geometry or gap spacing.

Preliminary measurements of predischarge currents and electrical
59breakdown for electrodes of other materials have been made, giving rather 

similar though less reproducible results; such studies are part of a

continuing program.
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The results herein described formed the motivation and starting 

point for a detailed study of the projections on electrodes and their effect 

on electrical breakdown in vacuum. These studies, which included the develop 

ment and use of techniques for the direct observation of the whiskers are

described in II.
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