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ABDSTRAGT

The non-linear flexural vibrations of thin circular rings are
analyzed by means of the appropriate ''shallow shell' equations.
These partial differential equations are reduced to non-linear
ordinary differential equations by assuming vibration modes and
applying Galerkin's procedure. Vibrations involving primarily a
single bending mode are investigated for three distinct cases, and the
results indicate that the basic {eatures of the prublemn are exhibited by
an inextensional analysis.

This information is then applied to simplify the analysis of
vibrations in which several modes participate. A study of '"self-
coupled' bending modes shows that the single mode solution is valid
only for certain combinations of amplitude and frequency: when the
single mode exceeds a "critical amplitude', its companion mode is
parametrically excited and participates in the motion.

The general inextensional case (involving an infinite number
of modes) is examined for two important sets of forces, and possible
solutions are shown to be the excitation of primarily one or two
bending modes. Stability analyses of these solutions indicate that
when certain restrictions are met, all other bending modes play only
a minor part in the vibration,

An experimental study of the problem was also conducted.
Theory and experiment both indicate a non-linearity of the softening
type, the presence of ultraharmonic responses, and the appearance

of the companion mode. Measurements of the steady-state response
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are in good agreement with the calculated values, and the experimen-
tally determined mode shapes agree with the form of the assumed
ceflection.
The analytical and experimental results exhibit several
ieatures that are common to the non-linear vibration of axisymmetric

systems in general and to circular cylindrical shells in particular.
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NOTATION

u, v, w Displacements of the mid-surface of the ring; Fig. 1
X, ¥y Z Coordinate directions; Fig. 1
t Time

N I

P T: o |

v 2 Derivatives with respect to time

ot* .
2 o* T i o 2 52
VLV Vi=3atia s U= VY
d
n Circumicrential wave number; mode number
E Young's Modulus
v Poisson'!s Ratio
P Density
R Radius of the ring
thickness
b Width of the ring
7
». £X
. /Z (1- %) Bending stiffness

Ny‘ Circumferential force/umt length
qlv, t) Load applied to the ring; see {1.4) - (1. 6)
An(t), Bn(t) Time dependent coefficients; see (2. 1)
T AM a v L] ny

= =9 = b Non-dimensional amplitude of the cos 5 mode

j < . R

:f = 2 - Non-dimensional amplitude of the sin =L mode
s j s, R

e
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7-2F
£ = e } Non=-Linearity parameters
€=9*

Ho = %'. =-nr Non-Dimensional amplitude

T Non-Dimensional time
(>} Frequercy, radians/sec,.
2
w® £ =t L £ »*®
SRY s (- wY)RE PR* 12(1= Y
ot £ (mr o L* £ (1- =) n®
M = '—"""e‘ CY = 7 = —_—, L =
/ / /- 0%) & //6' IR .03)
2 Non-Dimensional frequency
2R
(1) = [ g, cos T dy = Sl
AnF
2, (0 - [ e 4
anrk
5_(t) = [ gtgt) sw BTy
VAR
%‘ _ (/ - ;s.)
/2 (1~ %)
Y- 2%l
Non-Dimensional coefficients; see (2. 32)
S = Bln g

A /o, G.,6 G. Amplitude of the loading; see {3.1) and (3. 3)

A(z), B(z), #(z) “e)Slowly varying amplitudes and phase angles

—

A, B, b, ¥ Average values of A(Z), etc. over one period
4 = 5}3 - 3 Average phase difference
B, ,»3c s B Per cent critical damping in the cos Y mode

R



Bg  Bs, Per cent critical damping in the sin ;—?{- mode
. N ny
3 (o) 3.(%) Perturbation in the cos 58 mode
X(Z), Xy () Perturbation in the sin .’?RZ mode

Other symbols used are defined as they occur in the text.
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I. INTRODUCTION

The flexural vibrations of circular rings were first considered
by Hoppe (Ref. 1) ir 187!, In 1894, Rayleigh's "Theory of Sound!
(Ref. 2) included calculation of the linear vibration modes and frequen-
cies, making use of the approximation that the mid-surface of the ring
was nextensional., Since that time, the effects of mid-plane extension
(Ref. 3}, shear deformation (Ref. 4), and rotary inertia {Ref. 5) have
been investigated.

The first study of the elastic, non-linear flexural vibrations of
rings appears to be the 1959 paper of Federhofer (Ref, 6), who consid-
ered the {ree vibration prablem. The same problem was examined by
Shkenev (Ref. 7), who also investigated parametrically excited vibra-
tions, as did McIvor and Goodier (Ref, 8). Although the linear
vibrations have been studied experimentally {Refs. 9 and 10}, no
experiments on the non-linear vibration of rings have been reported in
the literature,

The present work is concerned with the forced, non-linear
flexural vibrations of thin circular rings. Only vibrations in the plane
of the ring are considered. The material of the ring is assumed to
obey Hooke's Liaw; that is, the relation between stress and strain in
the ring is taken to be linear. The non-linearities examined here are
geometric in nature, arising from the non-linear terms of the general
strain-displacement relations.

The problem was studied in detail theoretically and experimen-

tally, Both aspects of the work were carried out concurrently, and as
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a result they complemented each other considerably. Before proceed-
ing with the discussion, however, it seems appropriate to mention the
events which led up to this particular study.

It began in 1962 with some experiments that were run on the
non-linear vibration of thin cylindrical shells. The experimental
results were at variance with the available analyses (Refs. 11 to 13);
this led to a re-examination of the theoretical work. Apparently, a
boundary condition was neglected in these studies (Ref. 14)., When tae
problem was reformulated to satisfy this constraint, qualitative agree-
ment with the experiments was obtained.

At this point, it was suggested that the non-linear vibration of
a thin ring be investigated, since the ring and the sheil would be
expected to have much in common. A first attempt at the ring analysis
was done, and some preliminary experiments were conducted. It was
found that the shell and ring analyses did indeed possess several
similarities. More promising than that, however, was the agreement
indicated between the ring analysis and experiments. As the work
progressed, the decision wase made to concentrate on the ring problem,
leaving the shell study for another report. Thus, while the primary
goal of this thesis is to analyrze the forced, non-linear flexural vibra-
tions of a thin circular ring, it was hoped that somese light would be

shed on the cylindrical shell problem as well.
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Ii. THE MATHEMATICAL PROBLEM

The non-linear flexural vibrations of a thin circular ring may
be analyzed mathematically, provicing certain assumptions are made,
It is the purpose of this part of the thesis to present these assumptions
ard the analysis which results.

First, the partial differential equations which govern the
motion of a circular ring are presented. By assuming that the vibra-
tion involves only certain vibration modes, the equations of motion can
be reduced to ordinary differential equations. Such equations are
derived for three distinct cases which inveolve the vibration of primari-
ly a single bending mode. Comparison of the solutions to these
equations shows that tte basic non-linear behavior of the ring may be
obtained frorﬁ an inextensional analysis. This facilitates the study of
vibrations which involve several bending modes, and the equations
governing such vibrations are derived. Approximate solutions to
these equations are presented, for the case of some important forcing
functions. With some relatively minor restrictions, it can be shown
that only one or two vibration modes will participate in the motion,
even though the ring is forced to vibrate to large amplitudes. Finally,
the efiects of some additional non-linearities, shear deformation, and
rotary inertia are discussed, and comparisons are made with some

analcgous problems,

Z. 1. The Equations of Motlon

Since this work originated with a study on thin cylindrical

shells, it was only natural to obtain a set of ring equations by
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specializing the well-known shallow shell equations to the case of a
ring, Preliminary analyses using these equations indicated qualitative
agreement with the experiments in several areas.

The shallow shell equations are, of course, subject to the
approximations made in their development. The assumption that
——:-Lz- is negligible in comparison o unity (where n is the circumfer-

n

ential wave number) is inherent in these equations. As a result, when
specialized to a ring, they do not vield the correct expression for the
vibration frequency. This discrepancy is mast noticeahle for low
values of n {e.g. n <€ 6) and has been pointed out for shell vibrations
as well. Yet, because of their relative simplicity, one is reluctant to
abandon the shallow shell equations in favor of another zet.

Faced with a similar problem, Morley (Ref. 15) found that he
could significantly improve the linearized form of these equations
without impairing their simplicity. By modifying the shallow shell
equations as Morley's work suggests, one obtains a set of equations
that yield the correct linear vibration frequencies and that have the
gsame non-linear terms as the original set. This amounts to rejecting
the approximation that —lz- << ] where the linear terms are concerned,

ka
but retaining it for the non-linear terms. While this is inconsistert,
it is extremely useful froem the standpoint of attempting to solve the
equations,

Finally, a somewhat more exact set of equations for a ring

are presented herein. These ecquations retain 21l the linear terms and

do not assume that —-12 << 1. They possess the properties that

n



5

{z2) when linearized, they reduce to the linear, extensional

ring equations, and

(b}  when the approximation ;{.‘.'_ << / is made throughout,

they reduce to the shallow shell equations specialized
to a ring.

The major portion of this work employs the shallow shell
equations and the modified form of them. It is possible to treat both
these cases simultanecusly, since the equations differ only in a linear
term. The more exact set of equations serve primarily for compar-
ison purpoeses and to indicate the effects of additional non-linearities.

An alternative to using the differential eguations of motion is
to employ an energy method, Both approaches can be made to
coincide (Ref. 16), and the reoults prcocnted herein can be obtained

by either technique.

2.1.1 The Shallow Shell Equations and their Specialization

to a Ring
The shallow shkell equations have long been employed in non-
linear analyses of thin cylindrical shells. In terms of stress

resultants, they are (see Ref, 12)

N, N,
—= +
o X 3#




¥m ')zMxy PRy V)
: 2 4
;X‘ Jx c),zf

p dw- J 3 dor
5 (M52 + vi.m‘;f"'a“a(” g

72
3

e

—

+ 4 (%4,%) '='/0‘—/-

where v, v, and w are the mid-plane displacements in the axial,

circumferential, and radial directions respectively (see Fig. ). The

kb

stress-resultapts are defined in the usual way
z % _‘4_4-
N, = U, a2 = = p
x —4 *x A(‘J /4 q‘}dﬁ N} = C’;y dz
Z e L
v v A0
z _/61" &d. %
/P[‘ = Uxx & dz /’7,-‘7 = sy Z l")r = @jédt

—f T i
and q{x,y,t) is the applied load, which acts in the radial direction,

The strain-displacement relations are taken in the form

o

It might be notec at this point that the stresses and stress-
resuitants in (1. 1) are all referred to an undeformed element of the
shell, in its original position., Since shallow shell theory assumes
that all strains and all slopes are small in comparison with unity, the
stresses and forces on the deformed element are, in a first approxi-
mation, equal to their counterparts for the undeformed element. For
a general discussion of this point, the reader is referred to
Novozhilov {(Ref. 33).
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Transverse shear deformation is neglected, and the transverse normal

stress is assumed to be negligible. That is, one asstmes

Ex*= o’ GJ"-—- OJ di!'-“= O

Hooke's I.aw is used to relate the stresses to the strains; with the

preceding assumptions, it yields

£ /‘ 7 £
RNy Sess e e =SS [ S mVEy

a; = __.._é:__. £
id (i) Y

where E is Young's modulus and ¥ is Poisson's ratio. Employing
these stresses and equations (1.2) and (1.1} ard carrying out the

integration through the thickness vyields
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.-)x Iy

Fl
wvoe 2 = E_A
/2 (s - w?2)

Thesc rclations can be inserted in {1, 0) to give the shell equations cf

motion completely in terms of the displacements u, v, and w.
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To specialize the shallow shell equations to the case of a ring,
the following assumptions will be made:
a. The displacements w and v are taken to be functions of
only the circumferential cooxrdinate (y} and the time.

That is, all derivatives of these displacements with

3

respect to x are ascgumed to he zero ,

b. The transverse load, q, is likewise taken to be a function
of only the circumferential coordinate and the time,

c. The thickness of the ring, h, and the ring width, b, arc
both taken to be constant. The ring is assumed to be thin,
such that (—;'_:1—{){3 is negligible in comparison to unity.

A, The stress resultante Nx and NXY arc agssumed to e
zero throughout the ring., The boundary conditions at the
ends of the ring {at x = 0, x = b, Fig. 1) require that
NX and NXY vanieh there; for flexural vibrations, one
does not anticipate rapid variations in the x-direction and

is thus led to assume N_ =0, ny = 0 throughout.

Using these assumptions, equations (1. 3) may be written in the form

2

o¥
P 32 _
My==Ps55, M= —9D55, My=2

Since we intend to discuss the flexural vibrations of rings, one might
legitimately ask if bencing in the circumferential direction would give
rise to a curvature in the x-direction (anticlastic curvature) and there-
by inwvalidatc the assumption above., However, in problems concerning
the large deflection of thin plates with free edges, it has been shown
(see Ref. 34) that a boundary layer phenomenon occurs which inhibits
the anticlastic behavior. DBased upon the results of Ref. 34, one
suspects that for thin rings, assumption (a) will be valic in all but a
very narrow region near the edges.
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Using assumption (a) and inserting the results for NY’ etc. in
equations (1. 0} gives the displacement equations of motion for a thin
ring:

p) 2 2
EAsG LSy 78 72 (E)T =pA7  asm

i  ER /I ,
At R A At

D [ ow 2 (a5
‘E‘xﬂ-['j:; - -#—f—(%;f}zi/f—/lw =3(gﬂf)

The first of these equations is unimportant for the problems dealt with

herein, and henceforth it will be dropped.

2.1.2 Modification of the Shallow Shell and Ring Equations

When in-plane inertia is neglectec, the shallow shell equations
{1. 0} can be written in terms of two variables, w and F. They are
derived by many authors (see Refs. 11 and 12, for example) and will

simply be quoted here:
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+ o 2 B%F 225 P
PV +phd = - g 53 * g 5

e 22 e )2-/.-' )a
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3
D = —EhT is the familiar bending stiffness, and F is a
12(1 - V%) 2 2 2.
: _ o F _ " F a7 F
stress function: Nx = N = - e and N = 5 -
By xy oy 4 9%

Morley (Ref. 15) improved the linearized form of these equa-
tions by replacing Dvéw with D(V2 + —lz)zw. (see Sectior 2. 1.).
The resulting equations compare favorab]]if with the more exact {and
more complicated) equations of Flugge for both static ané dynamic
problems (Ref., 16).

The analogous improvement in the displacement eqnationg of

motion for a ring results in the foilowing equations:

[j;_ g‘ Z ( )] /aj/u" (1. 5a)

2* 2,
2 (9/5; )(9 > f-ej gtr :— /(..‘f“_’)j/
(1. 5b)

2 w £ (e
fé’ {[9/3; - 2—-3——_/9 },e-/o_iw ?Cgt)
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2.1.3 A More Exact Set of Ring Equations

By making approximations similar to these used in deriving
the shallow shell equations but not assuming that —12- << 1, a more
exact set of ring equations can be obtained. The derivation of these
equations is outlined in Appendix A, They are presented here for

comparigson with (1.4) and (1. 5); they are

3.4:' @, o o
Ejg—[g., Z ’Lgﬁ”)z/ sz/,e Qe _ - %)

{1. 62)

N et

and

£
_p‘;_af 232 _ 4 dar EJ[JM e
dy? T BE S 23 oy

S EA G35 535N 5} At

*%f%’ 3’“%’*5"*-’- 350+ [ 3

R~ E> oy oy (1. 6b)
2 dewr d*ur 3 dw 2 I%
+ 2 + 3 2« =2 e o _5_ e
o Oy gy’ R 94 g 2R ’ Sy ?

7‘.223 Qm‘] (Jw 2.} = ?(?Jf)
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The brackels which are underlined indicalie the non-linear terms
which (1. 4) and (1. 5) do not contain; the simplification which results

from the —12~ << 1 approximation is quite evident.
n

2.1.4 Boundary and Initial Conditions

The boundary conditions on w and v are of the "periodic™

type. They are

w(ot) = w-(2nR t); 2 (ot) =

), 3 (zre. t)
s;%fo,f) = 3;“:(/2"2,6)3 gj;;m’t) - j;f(zfr% "J(”)
and
(0, ) = o (2nr,t) | j-;-/-*"(o,t)= %;’(Zﬂ.t) (L. 8)

From a physical standpoint, these poundary conditions insure
that the displacements, slope, bending moment, transverse shear
force, and circumferential strain remain continuous in going around
the ring. The above conditions arise naturally in a derivation of the
equations of motion hy variational methods. (see Appendix A, for
example).

Only "steady-state' vibrations are considered herein; i. e. ,
the motion is assumed to have been going on for such a long time that
the "starting transients' have digappeared. Steady-state vibrations

imply that the motion of the ring is periodic in time. This requires
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WAL, L) = wr(ag, trT) é—“f(y,t)= g—‘;—’(«y,ﬁ-*T)

oy
S o P 3
3;;2{/1,{'-) ‘)'ﬁz (2, ¢ +7) ‘;‘/;:?( JE)= f‘;’(y)ﬁ,»?y (1. 9)

= P
A (g, L) = v (ag, b+ T) iy
where T is the period of the motion.

2.1.5 An Alternative to using the Equations of Motion

After choosing a set of equations to use, one is faced with
finding their solution, subject to the conditions just discussed., Since
we are dealing with non-linear partial differential equations, exact
séalutions are difficult to obtain. Furthermore, the equations them-
selves are already inexact, which suggests attempting approximate
solutions. One approximate approach 18 to first so've the Hinearived
problem and use its results to estimate the non-linear terms in the
non-linear equations. This yields a second set of linear equations;
their solution iz a first improvement on the original, linear one, An
iteration scheme of this type was used by Federhofer (Ref. 6).

An approach that has proved useful for the study of other
structures is to assume the shape of the deflection in space. By then
applying various approximate techniques, one can reduce the problem
to one involving non-linear ordinary (in lieu of partial) differential
equations, with time as the independent variable. This approach hag
been employed in the non-linear vibration of strings {Ref. 18), beams

(Ref. 19}, plates (Ref. 20}, and shells (Refs. 11 - 13),
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An alternative to using the equations of motion directly is to
apply an energy method, Using approximations similar to those made
in deriving the differential equations, one can write expressions for
the kinetic energy of the ring (T), its strain energy (V), and the
potential energy of the external forces (W). If one then assumes the
shape of the deflection in space, it is possible to express T, V, and
W as functions of time only. These expressions are then used in
Lagrange's Equations, and non-linear ordinary differential equations
result.

The present work assumes the shape of the deflection (the
vibration "'mode’), and ordinary differential equations are obtained
either by {a) applying Galerkin's procedure on the equations of motion

or (b} by the energy method just indicated.

2.2, Ordinary Differential Equations which Result from Various

"'Single Bending Mode'' Assumptions

As was just noted, assuming the shape of the deflection makes
it possible to reduce the problem to one involving ordinary differential
equations. The usefulness of this technique depends greatly on how
successiul one Is in estimating the actuzal deflection shape, Perhaps
the most general radial deflection that is compatible with the con-

straints (1.7 ~ 1.9) is

od
= (¢ 2our Ron
w iy t) ﬁo[A“ )eos ST 1 B (&) sim inig]
(2. 1)
ol

= = [A,®cos BF + 8 (o 22]

med
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where An and Bn are periodic functions of time, with period T.
Each An and Bn can in turn be expanded as a Fourier Series in
timne; thus it is possible to represent virtually any radial deflection of
interest here in the form (2. 1).

The functions cos i% and sin PITY correspond to the nth linear
vibration mode of a ring. From the study of linear vibrations, one
knows it is possible to excite a single mode in a structure by proper
arrangement of the forcing function in space and by a proper choice of
the driving frequency. In considering non-linear vibrations of the
structure, one frequently limits himself to the case where primarily
one mode {one deflection function, say) is excited. This is the approach
wkich has been employed in other non-linear vibration studies and
verifiec experimentally in the case of strings and beams (see Refs, 18
and 21),

Applying this to the present problem, one is led to replace the

geries (2.1} by

ur(ag,t).-_-ﬁm(t)co.s’-'.’i# oRr Batt)sm’%‘;& (2.2)

and limit the discussion to vibrations that involve primarily the nth
linear bending mode, However, when {inite amplitude vibrations are
considered, mode shapes of the form (2. 2) involve appreciable
stretching of the mid-surface of the ring. Yet, for the linear case at
least, it has long beenr known that thin rings vibrate in such a manner
that the mid-surface of the ring remains very nearly inextensional!

With this in mind, a2 more realistic deflection form in which the nth
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bending mode vibrates fo finite amplitudes is

A, (L) cos ’—’-"Ié'y‘
cwigg,t) = + A {t) (2. 3)
B, ()sw "’—2—%

In this section, ordinary differential equations Zor the An(t)
are derived by assuming w(y,t) in the form (2. 3). This automatically
limits the discussion to vibrations involving primarily a single bending
mode, Initlally, the effect of tangential inertia is neglected, and the
cases of an inextensional ring and extensional ring are discussed.
Finzlly, the effects of both tangential inertia and extension are
included. The resulting cifferential equations are discussed and
compared, Approximate solutions for them are presented in Section
2. 3.

Comparison of the solutions indicates that the approximation
of an inextensional mid-surface is a good one even for finite amplitude
vibrations of thin rings. This approximation facilitates the study of
vibrations involving multiple bending modes {including the series, (2,1}),

which is discussed ir Section 2. 5.

2.2.1 Egquations in which Tangential Inertia is Neglected

As a first step in obtaining approximate solutions to the equa-
tions of motion, consider the case in which the effect o tangential
inertiz is negligible,

When the frequency of flexural vibration is well below the

irequency of the first extensicnal mode of the ring, the extensional
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modes respond essentially statically. Ir this case, it is a good

£
approximation to neglect the effect of tangential inertia . Thus, when

co? << £
P R%

(2. 4)

(-Ili '\I% is the frequency of the first cxtensional mode of the ring)
holés, the equation for tangential displacements from (1.4) or (1. 5)

reads

N
Q&’ v
N~
i
+
N lg
3
N
L
—
3
[
N
\
X
4]
o

) 7 Jer (2
Or, since NY = Ej [9” * %"'EL(S;) ])
o

one hasg

= O (2. 5)

which can be integrated immediately, giving

N, = 9(2) . 6

That is, the stress resultant NY is a function of time only and does
not vary around the circumference of the ring, This result will be
employed in the two specific cases which follow,

{a) The Inextensional Rirg

To obtain inextensional vibrations, one stipulates that the mid-
plane strain in the circumferential direction shail be zero for all y

and t. As a result, the circumferential length of the ring remains

The reader familiar with the non-linear vibration of strings and
beams will recall that it is common to neglect longitudinal inertia on
similar grounds in those studies,
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constant . For the present treatment, then, inextensional vibrations
means that

S| = 2 rEF(55) =0 @.7)

This condition is applicable for both (1.4) and (1. 5). Solving for % :

one has
b e g2y

Qg y 2 a‘(‘j

Now, if one attemots to use the deflection shape
wrly,t) = An(t) cos 23 (2. 2)

e sees that

dor 4
_— = = O mﬁ___ __L_ __”'-Aﬂ"" Mf. 2
oY 2 R 2{25’”,6)

m2AL

7

+ terms periodic in v,

By direct integration, this is seen to be incompatible with the boundary
conditiorn v(0,t}) = v(2wR,t). For inextensional vibrations, (2. 2)
must e modified such that —g-;: contains no terms that are functions

of time alone. This can be accomplished by taking w in the form

wily, t) = A, (Ecos 252 + A, (E) (2. 3)

A slightly more general problem would be to consider vibratione in
which the length of the ring remained constant but where the mic¢-plane
strain was not identically zero at every point; however, this is
incompatible with neglecting tangential inertia.
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d¢ . ® T TzZe?

and to satisfy the constraint on v, the terms that depend only on time

2 2
_J_gr_ = As ..’...”*_._’.41“. + terms periodic in y

are equated to zero:

2
_ A mRAL g = = A
Z 4z =9 o= A Y-
Thus, (2.3) becomes
R /,n_,‘z/q‘ %) .
w (g, C) = A, (€)cos .E’i - = (2.8)

Having found a deflection shape that allows the ring to vibrate
inextensionally, it is possible to employ it and (2. 7) in the equations
of motion anc apply Galerkin's procedure. Rather than ¢o that, how-
ever, let us use this case to demonstrate the energy method.

With tangential inertia neglected, the kinctic energy is approxi-

mated by

,

2r
re otk [P,

]

For inextensional vibrations, the strain enerpgy expressivn is

<re

_ f_jjz —f e 42 .
V= 2705 A /57‘{?] ‘o @10

wherc the z integration has been carried out. Finally, the potential
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energy of the applied lnoad is

2rke

W = “j/g»(g,f)a/;t (2.11)

By substituting (2. 8) into these expressions, it is possible to express
7, V, and W as functions of An(t). Then one simply writes
T.agrange'ls Fiquations for the motion, conegidering An(t) as the

generalized displacement. That is, cne has

—— r——meaemt

d (LN _ 3 _ ,
dt 9,{”) A (2.12)

where L = T - {(V + W),

Carrying out the various operations, (2.9 - 2. 12) combine to

yield
- ¢+ ve T ]
A, + 2/’:’2‘ Ap (A A + A ) + 02 A,
(2. 13)
+ /?‘\‘-‘z A Qa (t) — QM.« (f-)
2R T TR L n—,e/z
where
a:,z - M"Ja 2rR

~/£2 120wy Ry G (t)=f9(¢;,t)d;(, (2.14)

e 2

A M(f = os M
wvo Q.. (1) [?(g,'&)c Tt dy
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Fquation (2. 13) can be obtained by substituting (2. 8) into (1. 4) and

applying Galerkin's procedure with —g—z as the weighting function,
- 2B 2
n n
. s _ .oy n
Analogous results are obtained by taking w = Bn(t) sin o - .

If {1.5) is used, w§ is replaced by

w? = £ (? - /)’?_,Zz]

M zz /2 (’,_az.)/gz
/o
A”"[f) 4—-—"-'-’:"—-4 T =ct

Now, define ~f..—_- T’ ?1: =

Then (2.13 gives

F 3
R A& P

(2. 15}
A r.@/..,&"c.osz 77’2/»—22"*-’52
and, from (2. 8),
A, = Ao - - ) (2. 16)

A 2
For free vibrations, (2.15) becomes
£ 2
.. +2:r[j'7n+7z] t g = O (2.17)

2

where € =n". This equation can be integrated, and for all € > O

it indicates non-linearity of the ""softening' type. For thin rings, (say
% < 100}, € may be much less than unity, in which case (2. 15) and

(2. 17) demonstrate only slight non-linearity.
Finally, note that (2. 8) predicts the occurrence of a
"contraction' at the zeros of cos -—I%{}-r; if An(t) vibrates with a fre-

quency « , the contraction will take place with frequency 2w A
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slight non-linearity (of the softening type) and the double frequency
contraction were readily detected experimentally.

For the ring that was tested, the assumption of inextensionality
and the neglecting of tangential inertia appeared to be qualitatively
correct. In order to determine when these approximations break
down, however, both effects were investigated theoretically.

(b) The Extensional Ring

Ags before, w is assumed in the form

wiy,t) = A,(t) cos ”_"'253&" + A, (2) (2. 3)

Now An(t) and Ao(t) are separate, distinct variables, since in this
case we cannot use the inextensionality condition to relate them.
Thus, two counled eqnatir_)hs;‘resu].t, hoth involving An(t) and Ao(t).
By fixing Ao(t) = - % in these equations, the results of the

inextensional case can be regained.

From (2. 6), one has
0 2,
N, = gt) = EL LS+ 5+ ()] = £LF)

With wi{y,t) as given by (2. 3},
2 Z
——" _ (f — ..._.- — __/.... - "4,«.- : x :
'g .7( ) =z (W + terms periodic in vy

Since _2,\11'_ can contain no terms that are functions solely of t, f{t)
4 A A%
satisfies £{t) - T(o - —-—_—Z—-f = 0., Thus
4R
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N (8 = £ L fie) = EJ[A 4,2,,._/ (2.18)

Rewriting equation (1., 5b) gives

D(sprda)(isa) - S (M 3T
'gt (2.19)

N - -
2z "/ 7
N
Substituting the expressions for w and NY (and recalling that "z")—yl

was taken to be zero) yields

L 4
E._j 3;_ Z L o M_ﬁ' -—————-—--——-Eﬁx Au
12 (1-v2) R¥ (=) A’“’ °f L i /2 (1-«?‘)/34

4 g/é,__A[A‘_,, ]m- A..cos =2
> Eéf[Ao - /PL- »-u] /_,ZA cos _-’3 (2.20)

w phA = g (4 t)

2
In keeping with the assumption that the ring is thir, b 5 is
12R
neglected in comparison to unity, That is
2
Euﬁﬂo [,71. ;;ljé.z g E____fj"e"f/qg
L
4
ow

Applying Galerkin's Method to (2. 20}, using first A
I

—3—% as weighting functions, one finds
Q

and then
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’” o R //éﬂz“/)z“%z]/]ﬂ

2 ({1- w02 B2
2 4 g Q . (2.21)
A - Rl g
-+ A =
and
.. > (T
A, + """'- /:4 + s M‘ = 77—_6?,8_/57%‘ (2.22)

ark
with Q (t) = fq(y,t) cos g dy, Q_(t) = fq(y,t)dv
[+3 o
as defined previously.
A
Iz

Then {2.21} and (2.22) become

let

. £ z = 2 ' CED
i i s * mrslar 2= 2 ; (2. 232)

:r,e/ZZ’"
and
.- £ re*s _ G () 2.23b
Ao +/Zz[4.+—4_i] TR ( )
where / — (7 — ,,"2'1)

~ /2 (1—~»2)

The same equations resulted from application of the energy
method. If (l.4b) is used instead of (1. 5b), (I - —12)2 is replaced by
pe)

unity in % » Analogous results hold for wiy,t) = Bn(t) si.n%&Y + Ao(t).
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At first glance, (2.23) suggests defining ¢ = % Af % t.
However, a more convenient non-dimensional time is T = wM-t

where

w? = £ [ent-* L2y £ n*
n T elma e = pe A
Ve ) R ~

Simultaneously, let T, = nr, and divide the first of (2,23} by rlz,

the second by 7. Then one has

/ Qm. (f)

’—E-[:fﬂfhy] + ylrr %]z

= E) .2 (2. 24a)
S (7 Rp i) 5
and
2 2 Qo (2
—;-An- + [~ +-1] = e L%) . (2. 24 b
¥ £ (.Z:r.e/odf 'y,
2o
-nZA 2
By manipulating these equations and then setting AO = 4; i.e.,
2

r o= - 7 (2.24) can be combined to give
2* 2
e * 7 +—Z:([J'j"== * 1]

F 2 R(n) _  Qn(x) (2. 15)
< Z"E/oe.{z' ﬂ‘f/q(‘

which is the inextensional result.

It is not immediately apparent that (2. 24) and (2.15) possess
nearly identical solutions., Various approximate techniques can be
used to demonstrate this similarity; however, il is conveniemnt to post-
pone such a discussion untll the effects of tangential inertia are also

included.
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Z.2.2 Equations in which Tangential Inertia is Included

For reasons of simplicity, the effect of tangential inertia was

assumed negligible in the previous calculations. In so doing, a linear

term in the equations has been neglected; including the tangential

inertia corrects this discrepany, More significant, however, are the

conditions under which tangential inertia effects are small and their

effect (if any) on the non-linear terms. Treating the more complete

problem yields this information.

Thus, one is led to consider the first of (1. 4) or (1. 5):
PYPRY- o
[97 ,e z 5,?)] = /0"%’”

One can rewrite this as

L o - ‘)2” = L J——‘Z’ -+ —-d)w J——-—-—-z‘w-‘
c* dg*t R Iy 2y oy*
where c* = —é—— -

Using wly,t) = A (L) cos % ~ A, (Z)

one has

L ya 4
v %:;_:- - = 5’”’“1(“"’2‘2{# sw 2

E

which has the solution

(2.25)

(2. 3)

(2.26)

Only the particular solution is of interest here.
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v (4,8) = C (¢) ST + B () sin 2»;3: (2.27)

where Cn(t) and Dn(t} satisfy

U S S

¢ R = (2.28)
7y 2 32 42

Dee o 2), A

co* F3 z 23

Until some additional information concerning An(t) is given,

one cannot proceed beyond {2,28). Accordingly, thc sccond of

equations {1.4} or (l.5) must be examined, Substituting (2. 3) and
{2.27) into (L. 5b) yields

3(& a T4
E"{’”’)Acasmé’ £ K A

/2 (1-v2)R* 2 ” 12 (r-22)R%
2.,4'”
EX (= {(M * A )z (1+ cos '2—-15‘”" )

+~ 2 ”~ 3. 2nD 2
2(::05_73% + cos _24)( £M_ 444‘.)

Aq 2 AL ~ < (2.29)
+(-E+—4_£;b CDS.?—‘- ..-%('-"’E.”_" +l4,.¢)(}-a(‘as ‘Z_Eg)
— [’ D Mz"’nf— 32

(2220 - 228 ) o 2t — s 22)]

£4 2 nt Al
2 /”:a“vw)mw r (%22

A nd w2 AL
f"(’e"“_ )CoSLi.,;/.,Z(AMCoJf}'é’z

~A) — 7%@ = o
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Equation (2.29) will be satisfied approximately, by the application of
Galerkin' s Method, Using a weighting function B_W = cos =X
2y R 5 dAn R
and setting f (2.29) ar'J? = O gives

Ej ( 2'014
/2 (1-2%) 2* v

2
‘f.e’fi (M“A...){ ’jz" + nt Ao

Py

(+,~a* B 2Z}M)12 * %[ﬂé@’° An]

.. {2.30)
T
2re
Slrnllarly, setting f (2. Zf)““" 47 = gives
£—4{ ' _.;"{_‘?— El MZ‘AMR‘
g e Qa8
7> /ﬂj Z 7 R
Acs before, let
- A'“- /4.. sz
\f - £ J) s, = 1—" , R = Zz 2. 32)
Also, define v 1 Can _ e D

A ’ ° _A
Emploving these dimensionless variables in {2.28}, (2. 30), and (2. 31),

one has £ 2

Jo "";‘i'z (M)zJ, -.—_-/_Z:__Z_z(ml) 2#2' (2.33)
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o £ (/- 7:'1)1 2 oy
i) +;£‘ /21’/--v')"Z b +//el- [r+ :f]
£ y : Cm (Z)
+ 7 [(aav ZE) = (L - 22Y)] - S
4 7 2} 8 .] —7ﬂ_£/ 2 {2.34)
- £/ A Q. (&)
o _— /%‘D + = -
& +//e2' Z 4 ] 2?:'2/._/22' (2.353)
2
where — is neglected in comparison to unity, in keeping with the
1Z2R

assumption of a thin ring.

As in the previous cases, identical results are obtained with
t‘he energy method. By appropriate manipulations, (2.33 - 2.35) can
be specizlized to the extensional and inextensional equations. To
estimate the effect of including the tangential inertia, suppose for the

rnoment that \:f was of the form j’ = AO cosedt . Putting

¥ = JY,coswt into (2.33) gives

[— w* +/—;‘%‘,‘ (m*)_]é’, cos wt = "/;'%1 As cos wit {2.36)

-

Neglecting tangential inertia means to disregard Y  and J. in

comparison with Y#EZ (112') and -%J-‘{Zn)2 in (2. 33). From (2. 34)
R

pR
it is evident that such an approximation appears valid when
w?* << £ 5 (m*)
PR

which was assumed in the previous cases,
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Now that the ordinary differential equations corresponding to
various "single bending mode'" assumptions have been obtained, one is
in a posltion to evaluate the usefulness of each. In the next sectlon, a
comparison of the approximate solutions shows that the inextensional
case gives results that (for thin rings) agree favorably with the more
refined analyses. Armed with this information, one feels that reason-
ably good results might be obtained by using inextensionality in the

"multiple bending mode'" cases.

2. 3. Approximate Solutions to the Equations Resulting from the

"Single Bending Mode" Approaches

The previous section indicated the manner in which the equa-

tions of motion are reducec from non-linear partial te ordinary

cifferential equations. The present section deals with the approximate
solutions of these equations,

Two approaches are used: the perturbation method, and the
methkod of averaging. The discussion is centered on the forced vibra-
tion problem, with the forcing function taken to be harmonic in time.
Solutions inclucding the effect of damping are presented, as well as
discussions of the stability of the vibrations.

The results of the three cases {inextensional, extensional,
tangential inertia) are compared and found to be identical in form up to
first order in the parameter v. This indicates that even for large
amplitude flexural vibrations, (involving primarily a single bending

mode) thin circular rings vibrate very nearly inextensionally,
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The non-linearity exhibited by the solutions is of the "softering"
type, with its degree dependenton n = _r}% . One must bear in mind
thai these solutions all assume that the vibration involves primarily
one bending mode. It can be shown that when the ring vibrates to
sufficiently large amplitudes, more than one bending mode participates
in the motion.

Thus, the resuitfs presented in this section are valid only when
the amplitude of vibration is less than some 'critical amplitude'. A
discussion of the vibrations with several modes participating and
determination of the critical amplitude for the single mode solution
are given in Sections 2.4 and 2, 5.

In order to discuss forced vibrations, the applied loading must
be specified. . The loadings which will be considered herein are

restricted to the form q{y, t) = Y(y) cosewrt. That is, the loading is

fixed in space and harmonic in time. With this form of qf{y,t), (2. 14)

gives
Ark
Qnl(l) = coswt [Y(fg)cos “‘%ﬁdﬁ = £, cosewtl (3.1)
and

Rk

Q)= coset | Fy) dy = £ coswtt 6.2)

where

Arg 252
Fon = /Y('af)cos'%‘@; %= [y
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Finally, define

> = “o (3. 3)

-Q = % GM = "';‘ 2 3 G -_—
= TR L o I ¥,

2.3.1 Perturbation Solutions

Perturbation methods provide a convenient technique Zor

obtaining approximate solutions in two of the cases at hand., DBoth

nah

{2,15) anc (2. 24) contain the parameter - gl For thin rings
and for sufficiently small n values, 1 can be made much less than

unity, and it becomes the logical candidate for the perturbation

parameter.

When (3.1) - {3. 3) are substituted in (2. 15), the latter becomes

2
oo # st $2] 4 + Yoicornma Gueosnr 4

for the ilnextensional ring, Similarly, multiplying {2.24) through by

F, using (3.1) - (3. 3), and recalling wﬁ: _%E 1}- , one has

S, T T * F’j’[/t'f'-;‘az]a’ B, cos 2T (3. 5a)

2

for the extensianal case.

&
If (1.4) is used, w,, 1is replaced by wy in (3. 3),
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Notice that (3. 4) and (3. 5) can give rise to three types of non-
linear vibrations:
{1) GO = 0, Gn £ O forced non-linear vibrations
(2) G, 0, G =0 parametrically excited vibrations

(3) Go £20, G_ £ 0 a combination of the above

A particular example of the first case is when qlvy, t) is such to excite
a single mode in linear vibrations: gq(y,t} = q, cos %Z coswt. The
second occurs when ¢{y,t) is a uniform pressure, oscillating in time:
gly,t} = 4, cos ¢wt, This is the case of parametric excitation, and it
will not be examined here. The third combination is the general case;
a specific example will be used to illustrate it, namely Go = G,.
To obtain perturbation solutions to (3. 4) or (3. §), define

=27 (3. €)

and expand tf and r in powers of =
3
e A A AR A AR 6.7
S R VR I Rt (3. 8)

() Vibrations near Resonance

For perturbation selutions near L)Y = 1, the frequency is also

expanded in terms of n:
3
2 = [+ +RR2w, + 7wy w0 (3. 9)

Similarly, the forcing function must be redefined:

G = R*F wwew G, =0, o»
(3. 10}
Gy = 4 4 WHEN G, = &

" -,
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Finally, the solutions are required to satisfy

(@) f(F+27) = ¢ (9)

by (2) = 4 (3.11)

() fplo) = 0
since steady-state solutions are being sought. The first of these
conditions is juset = statement that j’ be periodic, as required by
(1. 9). Conditions (b) and (c) fix the origin of the time scale; they are
specified as above for convenience,

To proceed with the solution, onc substitutes the expansions
(3.7} - (3. 9) into equations (3. 4) or (3. 5) together with the definitions
(3. 6) and (3.10). In keeping with the perturbation method, the result-
ing c¢quation is then satisfied for terms having like powers of 7. This
results in a series of linear equations, which can be solved in
succession. The integration constants which appear in these equations
are determined by the subsidiary conditions (3, 11}, expanded in terms

of m:
f. (8+27) = ., (8) ~Fo& ace ¢

.
d

\.ft' (0) = o, —i?;—‘-(OJ = O rFoR ¢ >0

\fo(") = A, (0 = o

(3.12)

The details of the calculations are presented in Appendix B; only the

results will be given here.
2

Case L; GO = 0; put € = n

In this case,
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e A’
g2

r O () (3. 13)

\:f(?:) = Acos 2z + (Co.sﬂ?: - cos32%)

and

P
ALT) = — —g— (/ #cosaaz)

4*
- £EZ2 (1 - cos 4272)
e (3.14)

2
_ %CQSZ,QZ' + O(&*)

e ——

where the underlined term is contained in the solution to (3. 5) but not
(3.4). The remaining terms are common to both. Similarly, the

frequency is given by

P A* s
=/ (g,q 5 )+ e*w, v O(¢7) (3.15)
where .
z
I, satisfies [w,?-.,-,zwz],q -1—7%-4&,/4 -r"-f;—- = O
"
-
. o A
and &, = (Z:';; + __é—)

Case II: G =G
—— n o

The solutions are
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F(Z) 2 Acos 2z + )22[323 (cos Oz — cos3nz)

+ A’fn (cag . Casézﬂc _ ','ZL)_]
3 [ Py A* P (3.16)
> ? 2;6 (Cos_ar - COS\B-Q?:) - _/;4_‘_ (COS-QZ:

~ cos .2..{).?:)] + O(H*)
4£(T) = -—-g—f'(/f-casznrj - p* -gf[%‘,»

[ﬂzf- ——/cas_r).z + -’f-z[& ]cosz.a.z

F ) 2 -7z 1)
A‘& cos20Z A 3
- <o ~ A ces t2zf + O(%%)
and ,42 .
I A S ) =< Lo
_ 5-7 A4 . P (3.18)
+ 17 ;24 3/43 ] O

Again, the underlined terms result from (3. 5), and the other terms
are common to both solutions.
For free vibrations, both Case I and Case Il yield

cAr 7247

R = =G+ gee o v O (3.19)
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by putting Gn = 0., Equation (3.19) is the so-called "backbone curve"

for the non-linear vibrations, It is plotted in Fig, 2 for various

values of € - T]Z.

(b) Vibrations away from Resonance

When the frequency of the forcing function is not in the
vicluity of the resonanl frequency of the syslem, a somewhat simpler
perturbation analysis is used. The details of the calculations are out-
lines in Appendix B; the results are given here,
Case I: GO = 0; put € = nz

Both (3, 4) and (3. 5) give

¥(7) = G""'COS'QZ'_,.. €6l n* [cos.ﬂ.%‘
/- £ (7-02)°

(3.20)
cos 37
e s + e?
/- 9.0* ] o€l
but differ in the expressions for r (&)
2 ¥
G €22 ¢ /
AL = - =D (I+cosR2T) — EX2TEw {___,_.
) &(1-2%) /6 (1-022Y ( /-n*
/ - cCos £L2.T
cos 20T +
. f—-S2* /--9.{2-] / — 9n* (3.21)
2
_ €6n R%cosRnZ . O(e*)
F —
where the underlined term results when (3. 5) is used.
GCase ll: G = G
S o n
For f(z’) , (3.4) and (3. 5) both give
z
‘j'(z) - G, cosL2 [/ cos z_af
/- N2 " (, _{2’-) ) — 442 (3.22)

+ ©(4?)
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but again differ in the expression for r(T):

— GM.:L ém cosf2?
Alr) = mz [(1" cos 2 2Z7) + ? —=
A ———at
- {
" G . [co.s.a_z-.— - (cos2z 1"6:53-{23’{7 (3.23)
8(/-0%) /- A2

+~ O (7%

Since the above solutions were developed for £2 away from 1

it is not surprising that they break down at 42 = 1. It will also be
noted that they break down at other discrete values of J2 (L2 = % . }?)

which is a familiar occurrence in non-linear vibrations. In order to
obtain sclutions that are valid in these regions, additional analyses
are required. Such a solution (valid near 2 = % ) is presented in
Section 2. 3. 5.

The results for vibrations both near and away from resonance
clearly demonstrate the close agreement of the inextensional and
extensional analyses. Non-linearity of the "'softening'! type is
indicated, depending on n (or € ) as a2 parameter. The solutions

2
converge most rapidly when ER—h << 1; this confines the analysis to

"thin" rings and/or low mode numbers. Ultraharmanic resonances
are predicted near {2 = % , % , etc., by poth sets of equations, At

worst, the solutions differ in the O0(n) term of the expression for r.

Since the physical variable of interest is

A -

T = s a ‘e

S = ¢ A = 7 (/0., 2/ )

one is not too concerned about variations in the p, term. Further-

more, it appears that the variations which do sccur in p, =are af

little significance.
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4.3.2 Solutions by the Method of Averaging

The equations which include tangential inertia effects (2. 33) -
(2. 35) can also be solved by a perturbation scheme. In lieu of
perturbing four equations simultaneously, however, it is much
simpler to employ the method of averaging., This technique has been
successfully applied to many non-linear problems since its introduc-
tion by Krylov and Bogoliubov in the 1930's. A detailed explanation of
the method itself is given in several texts; see reference 23, for
example.

When (2. 33} - (2. 35) are analyzed in this faghion, the results
are found to agree in form with the perturbation solutions. This
agreement is further demonstrated by a comparison of approximate
solutions to (3.4), (3.5), and (3.25) - {3.27), all obtained by the
method of averaging. The details of the calculations are outlined in
Apperdix B.

Vibration of the Ring with Tangential Inertia Incluced

The Zorcing function is taken to be the same as that used

previously; {see (3.1) and (3.2)). To be consistent with the other

analyses, define

7 = & = = - -
wM F £ wMJ /ta ?—»‘t, é,—-?J

wie £ _ £ (1-za),.
PR F /016"“ IR (1= 2%) 7

S A

G, = G =
™ me/_ﬂ"w; T R Al
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Then (2.33) - (2. 35) become

4

,l:' Yo o EY = ity (3. 25a)
-%_— S.n, + )t = m (jg—') (3.250)

2 Go
'?zf"/tz'z‘ + [/z, + —;—j = Z:é-— cos 2.82T (3.26)
LS r gl + rep vy e+ F
ES
~(§-F)] = £ Gucossaz -

To obtain an approximate solution to these equations by the

method of averaging, let

S(r) = A(Z)ces 2w (3. 28)
as & first approximation for T . Equations (3. 25) then suggest the
form of ¥ and 5 :

Y (7) = C(z‘) cos S2Z

$(z) = d (=) + afz(z') cos 2527 (3.29)

The choice of the functicnal form of r is not as obvious. It
is apparent that one should include po{‘z,’) and pz(z’) cos 282%,
but the forcing function in (3,26} suggests including p,(7) cos 2%

as well, To a first approximation, nowever, it is gufficient to use

A () =/0.; (z) 4—/3,_ () cos -2z (3.30)

which can be seen from the perturbation solutions.
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Substituting for ¥ and < in (3. 25a), multiplying by cos{l¥

and averaging over one pericd gives

- - = _ 7 220* 2'n* 7 6o
c PPy A[/f‘sz-f-M*F‘.-ﬁ ]
m2F

where A and € are average values of the functions A(Y ) and &(7}.
2

N’
The product 2= is found to be

nZF

2~
f—.ﬁ-’ = —(wm,)

/’f‘

where @, = 1, which is the natural frequency of the nth

extensional mode of the ring. The theory again points out that the

extensional modes respond essentially statically {(i.e.,C = - &) when
2

wiec< nEZ
pR

Similarly, substituting for 5 and \J‘ in (3.25b) and averaging
directly gives

- (3. 32)
whereas averaging with cos 2£7 as a weighting function gives

-t Y 2 A :
a A n*n (3. 33)
- = [ B

m“/" mEF
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When the approximations for r and o are substituted into

{3.26) and appropriate averages taken, one finds

-
P == g-— (3. 34)

and
2 P
.__:g_[/.— i—%f’z/

__E[/-;- i@i*z’“,,_..] (3. 35)
3 F

>
i

IR

where 4"02 L 2w _._“..fi._.
e ZE = (222) - z £

Thus, when eo «% -—-—E2 , the bending vibrations are basically
pR. K-Z
inextensional; i, e. , ‘5‘2 = — :'8“_

Finally, one must substitute the approximations for \j s Ty S s

and ¥ into (3.27) and average with cosJ27. This leads to
-0 4 Z+A A A
F[ﬂ]A+(+A)+7A[/,+5—
2

s _
(/&f—sﬁ)——(aﬁ—-—’g—)]=%fg% (3. 36)

The results (3. 32) - (3. 35) can now be used in (3. 36); for
purposes of the present analysis, it is sufficient to employ the expanded

versions, Thus, {3.36) becomes



~ N2 2 n2
['_nZJA '—A'——z[/f"lz,:-i- ]+;22‘A {_A_a?-/
22 1 2
+~ 920 __A_rz[/ '32""2+_,7=G
~ 32 mn® F e
Using 112 = € , this may be regrouned to give
a ) )
” ot
ik {3.37)
€2% A [ f 2
_ - v ] r O6er) = 6
where only terms up to 0(€) have been retained.
By comparison, applying the averaging method to the
inextensional (3. 4) or extensional (3, 5) equations gives
27 ¥ E.JZZ'/‘TB
[1-n*]A - + O(e*) = G, (3. 38)

P

where the latter two cases differ in the 0(62) terms. The coefficient
of A vanishes at X = 1, which corresponds to resonance for linear
vibrations. However, (3. 38) indicates a resonant frequency oi

/ £ én"‘-—/)zjz]}z
“ = L = PRY y2 (1-9%) g*

which does not agree with the classical result:
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w, = E ~? (m*— ,)2. _/‘z ..2'5-‘ (3. 39)
PRY (M=) 12.(1-v*) R*

Thus, it is of interest to see under what conditions the coefficient of

A in (3. 37) vanishes. Setting it equal to zero, and neglecting

-5
*
—~§£4-— as small, ore has
Fn
, N2 (m*+y)
”~ &
whence
' 2 2
w = T 2 £ RN LW L ¢

(n2+7) M= PR futas) 12 (108 £

in agreement with (3. 39). With this information, (3. 37) may be

re-written as

[r-tepir - s (S) pe
(@S JA - =l Py ot 6 b

Identical results are obtained {within O(ez)) by putting

) - RE(nEr1) | en?*
~® o

= O
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where
& = [ [+ —-’—,]e (3. 41)
M"’:"I Em
< 2
€S €
and -F-'; ot ~

T2 R* has been neglected as small
Comparing (3. 38) and (3. 40}, onc sccs that they arc identical

in form. That is, (3.40) can be obtained from (3. 38} by replacing f2

by -:g; and &€ Dby & Furthermore, as n becomes large, @y

— e, and & » e;, causing (3. 38) and {3, 40} to become equal within

0(&%).

For free vibrations, G

= 0, In this case, {3.38) gives
c eA? (3. 42)
= 2 = |- 2L (e % ’
n=2-/- 4+ 006y
and (3. 40) vields
-2
@ _ & A 2
2 = 7 s 7 o(e?) (3.43)

Again Lhe resulls are identical in form and approach each other for
large n. The perturbation calculations agree with (3. 42); see (3.19)

Concerning the expressions for \f s T, Y , and S , one has

S(T) = Acos2z
-1
£l = pa(D) = — LA

&7
yx)= - A1+ ’“’zr-'-

- zA* =
Solz) = n 8(2) = L /1 +(
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up to 0{€ ). These results include the effect of tangential inertia;
2

they can be specialized to the extensional case by deleting the =

wl. —ﬁ;
terms. DBy also removing the _5'7746"' term, the inextensional results
can be obtained. Thus, it is evident that all three cases are in agree-
ment up to O0(N) when analyzed by the method of averaging. It will be
noted that equations (3. 44) also agree with the perturbation results to
first order in .

The preceding calculations demonstrate the similarity of the
"inextensional'', “extensional'', and "tangential inertia' approxima-
tions. The regults far \:f » T ¥ , and J, are identical to 0(n). The
relations between amplitude, frequency, and the forcing function vary
slightly, but they are identical in form. By replacing {2 with -3':_
anc € with €;, the inextensional results can be modified to account
for extension and tangential inertia effects,

Comparing the results for the three cases, one sees that the
basic non-linear behavior of the ring ¢an be obtained by making the
"inextensional' approximation. Including the effects of mid-plane
extension and tangential inertia increase the complexity of the
analysis without significantly modifying the outcome. In keeping with
this fact, the remainder of this study will be restricted to inextensional

vibrations,

2.3.3 The Effect of Damping on the Vibrations

Up to this point, the discussion has becn restricted to

undamped vibrations. Yet, in any experimental attempt to confirm the

calculations, one must contend with damping. Thus it becomes
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appropriate to consider how damping will affect the soluticns. For
purposes of simplicity, only damping of the linear, viscous type will
be analyzed.
With linear damping included, the incxtensional ring cquation

(3. 4) becomes
T # 2t # 9 + F XL * S ]

(3. 45}
# :f—zi G, cos LY = G, o527

where 3 is the familiar ''per cent critical damping'.
A perturbation sclution to (3. 45) cutlined in Appendix B; when

G = G , the regults are
O n

A Ok A AR A Ay

= Cmcos(RZT+4) Lo eosy,
[Z(2)f 4/?3(—'2)/ (3. 46)
+~ Cos (.Z.Qr""iﬁ 9‘)’2 + 0( 2
2%)
[Z (202)] ]
ancd
/t=*-'i = fe -f*'Z/”x""Z/z
G /
- - ' [+ cos 2 ({2 + o} (3.47)
8 /zr)* J

+ O(q)

where /Z(-Q_)/z [(/-—_Qz)z.f- (Z/@.Q)z]/‘}z
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ANP

ﬁ(_{l) = rA”"[J,LJ_Z__

/- 2%

One is now in a position to compare the phase changes
predicted by this anlysis with those found experimentally. The -f,
and Py resulis compare favorably with the tests, but it was
impossible to cetect £ and p, .

Although the abave results are useful for comparison purposes,
they do not indicate the effect which damping has on the non-linear
response curves., The main effect is to "'rounc off" the response peak,
as one might suspect. This result is conveniently demonstrated by
applying the method of averaging to (3. 45).

To do this, let

$(T) = A(D) cos [727 + ¢z)] (3. 48)

where A(T ) and ¢(¥) are taken to be slowly varying. When (3. 48)

is used in (3. 45} and the appropriate averages are carriec out, one

finds*
— 2 2 57 _
[1-122]A4 — -’z—-'—rzz—i = (G, cos ¢ (3.49a)

and

-,2/3_(2_4?" = G, Siv g (3. 49b)

o o P,

See Appendix 3,



50

for steady-state vibrations. Here A and $ are average values

(over one period) of A{(r ) and ¢(v ). Squaring and adding, (3.49)

gives

{[f-n"JA—ﬂ‘ﬁ—A—} + 4)3212’~A"m G (3. 50)

For given values of Gn, B and +, A can be computed from (3. 50},
Then & may be determinec from (3.49), and the approximate solution

for \j becomes
\J’(Z’) = Icos [JZZ' -!-C;J (3. 51)

A typical response curve is shown in Fig. 3. As mentioned previously,

the effect of the damping is to '""round off" the peak response.

2.3.4 Stability of the Inextensional Solution

To consider the stability of the approximate solution

9 = Acos [0z + ¢], L&r

J(r)= Acos [z +&] + 3(r) (3. 52)

where -~ is a small perturbation or disturbance. Substituting (3. 52)

into (3. 45) and retaining only the first order terms in ¥ gives
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3
. [+ %—’f cos® (R +¢)]

+'§ [2/3 'ZLSIN.?(_QZ‘-#J)]

(3. 53)
5l + L Cos. Nz ,-'-’21

{sw (v +g)
~Reostlar+§)pf =

where the fact that (3, 51) is an approximate solution of (3. 45) has

been used.

For simplicity, consider the case where § = 0 and GO = 0.
Then define 7
‘—nz —
- 2 _
}\=_'€_?c__ z , Z = (r+d), » €

2 dswizde_

andlet  F(2) = u(2) e £ 2L+ Aeast2]

With these new variables, (3. 53) becomes

AZ

dz2 {-—-—— + Aisw?z - 2cos?*2)

- 3. 54
(/ :):‘_C:ps 2:3) [/ + A cos? fj ! “H = <& ( )
[4-X

Expanding this in powers of } and letting

a = -_—

L (_QJ- + /
_1’2 2 (3. 55)

Il

/é? .-_‘3_-(_"_0‘.:1_]_)

=2 S22
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gives a Mathieu equation

d*u
E" + {a + leq cos28)u = ©

(3. 56}
wnere only terms of O(A) have been retained. The boundaries of the
first unstable region of the Mathieu equation are well approximated by
a = /- 8q
AND & = |+ 8%
as long as q =< .15 (see Ref. 23).
When a < 1, stability requres a < 1 + 8g {(since q «0). In

terms of K,.ﬂ., and € , this becornes

-2 2 i ol
_ €A €4 o < (3. 57)
/ = * Y + L2

This is very nearly the expression obtained previously for the

backbone curve', namely

_ €A 7et A
L2 = / = 7= = + (3.19)

The differences between {3. 57) and {3. 19) occur because terms of
0()\2} were dropped in deriving (3. 56).
Similarly, when a » 1, stability requires that a > 1 + 8q,

which becomes

/ - 36/4—2+ 962/5-4

- = > a2 (3. 58)
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When (3. 57) and (3. 58) are superimposed upon the single mode

response curve, they delineate a region in which the solution
-‘f = A cos (ST + :L) is unstakle {in the absence of damping). When

damping is included in the stability analysis, the unstable region is
modified as shown in Fig. 4.

The second, third, and higher unstable regions of (3. 56} can
be a2nalyzed in a similar manner. This indicates that the salution

(3. 51) becomes unstable in narrow regions centered about the lines

-2
0 = _i.(,_isd+...)

3z
nN=F%(1- """—,7.'62—"4""')

_{2-.—.-.%(/4-0(0 |

a.;ul so un., Note that these instabilities occur at the same values of
Jd2 where the perturbation solutions {Section 2, 3. 1b) break down.
This is not 2 coincidence; both analyses point out that in the vicinity of
1 1

{2 = AR etc, the higher harmonic terms are no longer small
with respect to cos £2 2 . To provide adequate solutions in these
regions, additional studies are required; such a result is discussed
under the title of "Ultraharmonic Response', Section 2, 3, 5,

As regards the area bounded by

6;2 2 Fed .
/ — ~ OCe <2< /- T€4 Lo = 3. 59
(e*) = O(e*) (3.59)

it does represent a region in which the response is truly unstable.
That is, if one were to try to experimentally determine a response
curve of the type shown in Fig. 4, he would finc it impossible to

obtain steady-state vibrations within the shaded region. The
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boundaries of the unstable region (3. 59) can be shown to coincide with
the locus of vertical tangents to the response curves, where the
well-known "jump phenomena'' of forced non-linear vibrations occurs.
For a detailed discussion of results of this type, the reader is
referred to Stoker {Ref. 22).

Finally, it wiil be noted that when GO 7 0, (3.53) yields an
additional instability, centered at 42 = 2, which indicates the

presence of a subharmonic.

2.3.5 Ultraharmonic Response

As noted previously, the approximation

$(T) = Aces [RTz+F]

is inadequate in the vicinity of 42 = %, —;— s 211— , etc. Near these

discrete values of .{2 , an improved approximation for ~f (v) must

be mace. For example, to apply the method of averaging, one might

try

Sfl(t)= A (T)cosoz * A, (TF)cos 2.2 (3. 60)

as an approximate solution to

Sor + LSLIL F 12T + 5

{3.4)
+ .22_1 Ga cos 2 = Gm cos 27
near Jf2 = % For simplicity, consider the case when GO = 0,
and put 'qz = & . Then, substituting (3. 60) into (3. 4) and taking the

appropriate averages gives
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- 25 ~_ _
[y__ﬂz]/" _ 6'{3!’4’[/4,‘1‘-6‘,4&3] = G (3. 61a)

and
- 24 — -

When Kzile 0, (3.61b) yields

j-z:;_[/— 4-(22']_. 5,4—:2‘

{3. 62)
2 2
€ £ £
For real, non-zero Ka, (3. 62) requires tnat {2 satisfy
e Se A7 7 (3. 63)
IZ < —— / - I +- LR ‘
z 32
If the above irequality is satisfied, (3. 62) can be used in (3. 6la),
which becomes
=_ Lt77 2 /e n*
[4‘0' 4-]'4: + A, G, (3. 64)
/6
Recall that for o = A{Z) cosf2v, the previous results gave
—3
- e 0> 4
[7-522]J4 - =2 - g (3. 38)

P’ o~
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For comparison purposes, suppose JZ2 = 0.45, Gn = 1,
€ = -lné—o . Inserting these values in the above equations gives
A = 1.25 (from 3. 38)
and
Al = 1.79
KZ = 9. 54 (from 3. 62 and 3. 64)
A
Thus, A—Z =5, 3 f 1, and the importance of the cos 2l term in
1

the vicinity of 42 = % is evident.
Similar analyses can be done to obtain the response near
L2 = % s % cte, The effcct of damping i 8 to round coff the response
peaks and in some cases to eliminate them althogether, Several ultra-
harmonic responses were detected experimentally for the ring, as

were some subharmonics,

2.4. Ordinary Differential Equations which Result from "Mulitiple

Bending Mode" Assumptions (Inextensional Casc)

The preceding section demonstrat ed that when the vibration
involves primarily a single bending mode, the basic non-linear
behavior can be obtained from an inextensional analysis, providing

w? ‘4/.,0%-& . Accordingly, in treating flexural vibrations involving
more than one bending mode, it will be assumed that the ring vibrates
lnextensionally, OCne suspects that such solutions will again exhibit

the main non-linear features of the problem; this is apparently correct.
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The simplest case to analyze is that of two coupled bending
modes. Both the theory and experiments suggest a deflection of the

form

¢) = £ - 2
W t) = Amlt) cos _g + Bult) S g + AulE) (4.1)

where AO(t} is related to An and. Bn by the inextensionality
condition,

In a similar fashion, the more general deflection

o
wiy, t) = fz[A,,‘ Coa’ff_éﬂf-%smﬁg].;-/}‘ (2. 1)

can algo be investigated. Equations for these two cases are presented
in this section; some approximate solutions and a discussion of them

are presented in Section 2. 5.

Z.4.1 The Case of "Seli-Coupled' Bending Modes

In analyzing two coupled bending modes, one might try
w'(fg,t) = An () cos "’% + A (€) cos "f‘g + Al (€)

or

wiyt) = /4,,‘(5‘):05’.'_.‘8;2 + B, (&) S/N"—’%ﬁ + As (t)

However, a more realistic case is that of "seli-coupled" bending

ny . sl . . !
modes, where cos _RY is coupled with its '"companion mode", sm-I%r.

Thus, one is led to consider deflections of the form (4. 1).
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Restricting the discuseion to inextensional vibrations rcquircs

that

2
E - A__.” + Kot + _-L(_ég) - O (2. 7}
o 4 P 2 Z 37
Eaet ’%

ov av AO
Solving for 3y and substituting (4. 1) into (2. 7), one finds 3y = -7

nZ 2 2 ov
- {A + B_7} + terms periodic in y. Since —— can contain no

4R n el oy

terms which are functions of time alane, Ao(t) is required to satisfy

A:'e{f) ~ ;’_"/;‘ AL hg;j) = o (4.2)

whence (4. 1) becomes

wing,t) = A, (z‘) cos __’zé + B (&) s 2 (4. 3)
2 (hot 1 £2)
As in the prevmus 1nextensmna1 analysis, tangential inertia is

neglected. Thus, the displacement equations of motion (1. 5) read

N
—d =
and ng o
2 )( _21 - 2 [Nj‘l‘i‘:

4. 4)

N, o =
2k /""“" WA

where N = Eh [d_v Y4 —1— Bu.r 2'_] has been used. The first of
y oy R 2
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(4.4) gives N_ = Eh {t) = Eh [9X W _1_(_01)3] . but since
’ v oy R 2 oy
inextensional vibrations are being considered, (2.7} gives Eh f(t) = 0
= Ny. Substituting NY = 0 and expression (4. 3) into the second of
equations (4. 4) results in

3 2_ 4,2
£L (m=-1) [AM cos ”-% ~ BMS/N’%]

2 (r-or) RT

,;./j[/;f;,cos’i"—ﬁfsg sow T

p A
. (4. 5)
e 't --

Applying Galerkin's method to this equation, using successively

3 e N .  en s
5A and 5B as weighting functions, one obtains

Ej-s(m -—/) A -/-/a..»é [AM

/2 (1-~%) 4

ZZ" A (Ap Ay + /4 + B, B, +3:)] (4. 6)

Cmff')_ M2 Am G (t)
T e 2 R R

and fv“’(m—’“-’)* A8, %f— &.(8.5.
/2 (1-vo%) R* B # / e* ~
-/-5: + Ap A 1"»4:.)/ = _f’.'l-__(ﬂ
e (4. 7)

/ﬂ-z-gm Ko (L"J
ZE 7R




60

where

Cn(t) = fz,{»g ¢)cos -g d/-jJ Golt) = f;’?;)f)clﬁj

.-z.me (4. 8)
w () = J FC9.0) 5w -—Z-‘%/d’g
Defining A B, 2
g, = 2 7 - 5 y = mz.l
w? = E‘. (n* BPLI 4
/f /2 (1-2%) 2*
and letting ¢ = U:JH.L’ (4. 6) and (4. T) become
(\!c)rz: * ——i'[\j’ (j"‘ + 6’) * 7'5(3 )-rr
2 & (%) .
: 7"('3'.:).,] e * Z w_z/xzwﬁ 9
— Che (22
Z"E/UL" cad
and
24
(\fsjzz + ‘zﬁf [j’s Cig)rg * (j:).: + .D’c. (705.)3—;;
"'(‘f.—.):_] A 29 Qo (T) (4. 10)

Z rE/jz W

S ()

me/a,xé‘wi
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These equations are symmetric in S and \f: , as they
must be. As in the previous cases, application of the energy method

vields identical results. Had (l. 4) been used in lieu of (1. 5), w_bf

would have been replaced by wsz. Putting *-fs = 0 reduces {4, 9)

to the single bending mode equation, {2.15).
Defiring ro= =2 = nr

and using the above dimensionless variables in (4, 2) gives

A== 5 (35+ %) 1)

Approximate solutions to {4. 9) and (4. 10) are presented in
Section 2. 5, for the case Sn = Q, Cn ,'/ 0, and Q0 }/ 0. A

possible sclution (for this set of forces) is

A = A ces 27+ F )

TJ=O

i.e., just a single bending mode is excited, By doing a stability

analysis on this solution, one can show it to be unstable for A > Arp:

In other words, the vibration will involve primarily a single bending

mode as long as its amplitude is less than AC ; above A R twWo

R C

bending modes participate in the motion. Experimentally, this is
fournd to be the case.
Before discussing the solutions, however, it is of interest to

consider the '"general' inextensional case'l,
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2.4,2 The General Inextensional Case

In this case, the deflection is taken in the form

L
i) = = [A.cos 2y B BE ] - A, 2.1)

o= F

For inextensional vibrations,

— O our g (w2
‘5n| = a,y,"",e *z(a,?:) = O 2.7

EZ=o

Substituting (2. 1) into (2. 7) and solving for v gives

oy
p A -
')”3{ 2 422/"___2 [m- m-] + terms periodic
in vy,
whence Ao(t) is determined:
/ o8
2 2
A)=——— = =*[42+82] w2
4"6 = 2

In this case, (2.1) then becomes

— ~ ALl 182
w (g, £) —”{z[lmcos sz-f-é’,,sm’i"éff_m‘-(ﬂ%’gﬁ)] (4. 13)

Substituting {4. 13) inta the second of equations (4. 4) and

recalling that Ny = 0 for inextensional vibrations, one obtains



€3

E_L (m*=1)* e
= LG Geor g o 37,

- M 5 MYy A
/9_,4[/4 cos 1“3/»&-5//‘-‘-2—/1 22 (4,,,1
> /f; + B B -7/2 jz(,% £ ) (4. 14)

(Thc summation index has been changed, for convenience,)

Galerkin's method will be applied to {4. 14)

, with
KL s MY A
S Am 2 Z e (4. 15)
and
Qe sin L _ 5 Bn
25, V3 Z2 (4. 16)

as weighting functions. Multiplying (4. 14) by (4. 15) ard integrating

from 0 o 2R oun y gives

£v4’ (2 % —*/) _’44
+
/2 (1—2%) RT At/
2o A MR A s Mz[/f ) 4_/4,1
Y w2 o (4.17)
+ B 5,-»\. + 5”1/ = G (%) o PA. Q. ()

a4 2 7 E

~ = 2,3, 4,



64
2R

where Cn(t) = f aly,t} c:os%LX dy, etc. as defined in (4. 8), and
-]
the orthogonality of the trigonometric functions has been employed.
In a similar manner, taking (4, 16) through (4. 14) gives

/2 (1—~22) R* ’"'

b
z i = -
yp R T = [ A B + A + B, B

Zf‘?‘ e 2

) (4. 18)
~ 5;] — S (&) . 2T B G, ()
VW 2L 7 e
M =R, 3,0,
2mre
where S _(¢) = f?c.‘% &) _S/N”%C{{‘;[J AND
ATR
Q(t) = [ Tgey t)dy
Define e
5 = Ae %, 7 = {_’_‘_’_':_.‘4

wi == (2 -/ K"

Al e /,eg /2 //~ J‘g) ZZ.
Then (4. 17) and (4. 18) can be re-written as

=

? a
T * L L. -l-—)zzi"-‘j:

k—3

- ‘:f.z . » 4 .2 IZM S Q. (%) {4.19)
A \j‘;“g j"s“é' j.:...&] * = ”_‘e/%&

= GCn ()
ﬂ‘/@/bféz
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-

‘:f oo 2 7‘4‘_ \j,m- - o -t
Se M 7.5-"- . ——__;2_1_ 2 )?_k [:fc,h j’cufb * j’cué.

T &Aj::u.é. - :_L] 7+ _.___fz o (f) (4.20)
rz@/%z )
3. (t)
77'2/0%"
where n = 2, 3, 4, ...

In the same notation, the expression for ro(t) becomes

-
/40 /

_ — 2 2
Ao (€) = 7 - -;uéﬂza[fu_ + Bg ] (4.21)

Equations (4, 19) and (4. 20) could alsc have been derivec
directly 5y energy methods. They form a doubly infinite set of non-
linear diiferential equations; the general solution is not presented in
Appendix B! It is possible to obtain solutions to (4. 19) and {4. 20) for
particular forcing functions; a discussion of the equations and their

solutions for two special cases is presented in the next section.

2.5. Discussion and Approximate Solutions of the "Multiple

Bending Mode'' Approaches

Having found the differential equations which govern the
{inextensioral) vibrations of more than one bending mode, one is now
in a position to answer several inferesting gquestions.

For example, when does the '"single bending mode" assumption

cease to be valid? Ar answer to this question for some important
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forcing functions is given in this section. When Cn(t) = Fn coseot

and Sn(t) = 0, it is shown that for

/\fc /MAx =< Acﬁtr/r:dz.

the "self -coupied" bending mode problem reduces to the single mode
case discussed previously. Conversely, when /j’c /MA& > Acr
the '"companion mode' becomes unstable and the vibration thereafter
involves two bending modes, Approximate solutions for the case of
"self -coupled" bending modes are given in this section, and the
stability of the solutions is discusscd.

The "general inextensional case' is considered for two

important sets of forces. One is

S,.(t) = O ForR ALt mm, ot =2, 3.4 -

Ca(t)=4

Fp cOs 20 € FOR ONE s VALCE

</ =082 ALL OTHEL VALES

which corresponds to the forcing function q(y,t}) = wRFn cosew t
cos %’r The other is
Sn(t) = © SoL ALL Pt
Cu(t) = F cosel FoL ALL At
(Io (t) = Fcoset
corresponding to gqfly,t) = ¢S {v) F coseo t.

In both cases, it can be shown that under relatively minor

restrictions the solutions to the general case reduce very nearly to
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those for the self-coupled bending modes. By examining the stability
of these solutions, one can show that normally cos % will couple
with sin ER.Z before it couples with any other mode (cos EnR_Y‘ sin -«nﬁ—y,
m # n). As a further consequence of the stability analyses, it
appears that {for most cases) modes other than cos ERX and sin El%

will remain virtually quiescent until the vibration amplitudes become

very large,

2.5.1 Self-Coupled Bending Modes: Approximate Solutions

and their Stability

As in the vne mode analyses, the discussion will be restricted
to loadings of the form qly,t) = Y(y) cos wt. Thus, the forcing

functions become (see 4. 8)

-3 ¥ 4

C.(t) = Caswt/ypg) cas%—‘:{dﬁ “/f,;coswﬁ
-3 ¢ 4

Qo (t) = caswi f}f(fg)dg' = A coswt {5.1)

Rw
Sm_(ﬂ‘) = cosewt fy'c,y) Sin /’T"ejdy = £, caswt

2r e
where ’:-m = /Y(.y) Ccos "’fejz d,y , Erc.
o

As a further restriction, only symmetric loadings will be considered;
2L
that is, loadings for which En = f Y (y) sin%—i‘\E dy = 0. Then,

>

let f2 = = and define
O,
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Gm — f/;L y > & - A~
7B p At £ o Kk (5.2)

as in (3. 3),

Then, with the ac¢dition of damping, (4. 9) and (4. 10) give

(\‘fC)fz * Zﬁc (yC)e 7 'fc. 7 .—Z.Z“z-\f‘: [v‘; (j"-)l‘f

(‘J’c)i + (‘:f’,)” + (j;):] (5. 3a)

2 =
- =z Y. G, cosuzT G,, cos-$27

and

M), FRAEL), tY r (9.0,
* Gyt A (L), )T

(5. 3b)
2 2
# 5 fs Ge cos zr = Q
where {3, and fg are the ''per cenl critical damping' In the cos ERK
i Y 1
and sin 5~ modes, respectively,

(2) Stability of the Solution where only One Mode is Excited

A possible solution to (5. 3) is hjs = 0, and - satislying
<

(\f")z’r - 2_/5*‘ ('ch-z P+ _%_" vy [‘j’c(\fc)z-;

"‘(\Dac.l:] - -E e G, cos 27 = G, Cos R (3.45)
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i. ¢., only onc bending mode (cos %Y) is excited, Recall that an

approximate solution to (3. 45) was given previously; it is (see Section

2.3.3)

~j’c () = A cos [.{Zz‘f-q?_] (3. 51)

To analyze the stability of the solution

SA(T) = Acos [T + @]
o

5.4
‘j’s(z’) = (5-4)
both f. and :-f‘s are perturbec:
\:fc(?;‘) = Acos [_Q_E"n"&;] + 5()
(5. 5)

J () = © + x(z)

Substituting (5. 5} into {5. 3) and retaining only first order terms in the

perturbations gives

2R
S [0+ Bleostitar )] + 3, [ 24

. ;Zl-g‘t_a - Co
S——sw2(r+¢)] + 5[+ L caar (5. ba)
nr 4222 ,
+ o= {sm* v+ d) - Reos?(ez+ @)} = ©
and

a —— -—
Xeg + Zfis Xy + X # Zai‘[—_rzz'ﬂzcasz(_rzr+¢)]

‘f'%'séo Cos 27 = O (5. &b}
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Equation (5. 6a) is identical with (3. 53), which was discussed
previously (Section 3.4} in connection with the stability of the single
mode solution. In studying (5. 6b), first consider the case in which
G, = 0 and 3¢ = 0. Then (5. 6b} may be transformed to the familiar

Mathieu equation

d3x t{(a+leg cosaz)x =0

2% (5. 7)

where 2 = (._(22'-}-'*!?;) a = ..-I/—?_"- ?2 = €

=2
€A
and /g = T Tz
Near the first unstable region of (5. 7), when a £ 1 (i.e, ,f2>= 1)

stability requires

a < /+8j-

which means that A must be such that

— S+ (2 —y
/1Z < ( ) (5. 8b)
(2%

Similar analyses can be done for the other unstable regions as well;

it is of interest to note that these instabilities are located at

o . L 1

1
E,g;z, 84 oa 0w

which are the very areas that {3. 53 and 5. 6a) exhibit instabilities.

When Go and 3g are non-zero, let

ST
3 T =

N

z

X(T) = u(z) e 2z
L2
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S = —f" (/_/551)
28, =_‘§"3.76° € =o (5. 9)
28 = — 242 A" €= ¢

Then (5. 6b) reduces to the standard form of Hill's equation:

A.Z.
A+ [s, + ZMZ,S cos (22 v+ € m}u— © (510

The stability boundaries of (5. 10) may be approximated by employing

Whittaker's methoéd, When this is done, one obtains

2

C Hn28, + 8,2 < [(,9,,.;-/»"')4- fvﬁf—]z (5.11)

X

o
as the condition Jor stability near the nth unstable region .
Substituting from (5. 9), stability near the first unstable region

requires

026t < [4-2r]* 4 /G—Qzﬁsz (5.12)
which reduces to 1 G_< 8pg at £2 = 2,
Similarly, near the second unstable region, (5.11) yields
,&4_(2_4,4‘4-
/6

< 4/5;'_02 + (22 - 17%

(5.13)}

See Appendix C.
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For 3¢ = 0, {5.13) yields (5. 8), in agreement with the preceding

Mathieu analysis. At L2 = 1, (5.13) gives

7 - 45
7

as the requirement for stability.
. s _Z2 1 2 2
The higher unstable regions are located at 2 = T35 n
but for 3¢ > 0, (5.11) is always satisfied in these cases.

For 35 7> 0, then, the solution

. = Acos[2z+¢]

s = O (5. 4)

is stable with respect to perturbations of \js as long as the
inequalities (5. 12} and (5. 13) are satisfied. Similarly, from the
results of Section 2, 3. 4, one knows that (5. 4) is stable with respect to

perturbations of \jc as long as the inequality

2 -2
/___fé_? F O(er) < 0 < /——32’4 + O (3. 59

is satisfied and J2 is not in the vicinity of -é— , % , ... etc.

When (5.12) is not satisfied, a subharmonic response is
indicated. However, (5. 6a) itself indicates an instability in the same
area, which makes the solution f = Acosfrz + ;] questionable
there,

A more interesting result occurs when the inequality (5. 13} is

2
not met. In that case, f  goes unstable as e’“ sw (127 — 6")
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and one must consider vibrations in which both <4 and f are
L) <
non-zero;j this led directly to the topic of the next section.

(b) Steady State Vibration with Both "'Self-Coupled! Bending

Modes Excited
The method of averaging will be used to obtain approximate

solutions to (5. 3) as follows. Let

g, )

e (2) = B() s [2w + $UD] = Brw)sing,

I

AlT) cos [ 2z + Ple)] = A) cos X,
(5. 14)

whereX,:[—fl‘b‘+¢] etc., and A, B, ¢, ané ¥ are slowly varying.
Using (5. 14) in (5. 3) and averaging over one period, one obtains

[1-n2]A - 2024 ¢, -~ 'a"'A‘[_Qg;,*.z L 3R A
‘ -t 2

- a2 coszA _%ﬂgx B =sn2A
{(5.15a)
=2 7 cos2d _ =
FAZEL () — T)] = G, cos

7 T _RRA A A
224, -2.08 A, - 24 [ﬂ;’ + 228 sy 2]

4’-
- - —a =
— :a.é_gcos,zz  a —..'_Q_g__% 5//\/-25
2 {5.15b)

——

= G, SN ¢

" The choice of . = Acoslnrted), ;= B cos (2z+d) gives
similar results; however, for the undamped case the "in-phase!
solution f. ~ c08 ST, fs~eos¥ will not satisfy (5. 3) whereas
e ~ cos 27, f; ~asn 222 Will; hence the choice (5. 14) above.



T4

. Z 5 2 28 — -
[1-n%]8 -2028¢ - ’14_ [~ 0253 a5 23

_',_Jz,&'z.i (/__ cos2 A + _(ZAIA S N23

< _ z (5. 15¢)
_ F2pB*
s gr B . 2RE ST o,
2
— _ F -3 -

RS2 8y, + RfS28 — '245 (22 A'sp2 &

- 4 T _ T2 7 -_— e -

e P A — -t L /A ‘Flr - — -*‘-001 (5.15(1)
-+ cos 24 A+ ——2 Ssa L4 Z _/

= <

where A(T), etc. has been replaced by its average value over one

cycle, denoted by A, etc. The symbol A is an average phase

difference

A = ¥ — ¢ (5.16)

a——

For steady~-state vibrations, TA?‘, » By 'q-‘>z,, and ﬁ__ are all

zero, In this case, (5.15) reduces to

[1-022]JA ~ e_o:.Z [A*— B*cos2d] = G,cos & (5. 17a)
— 27 _ —
-.2/¢_cz A — 6'3 A Bismd = G SN P (5. 17b)
— 2@ - _ - -
[r-22]8 - FZE/ 54— Aicos2d]= 0 (5170
=3 €.S238% 7 -
'2/5:—{23 - = 8/428/,\/24 = O (5. 17d)
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When A #Z 0 and B # 0, the latter two eguations give

2 __ o 2
4+ (<2 ] 8

cos 24 = c o A T 7 (5. 18a)
and
SIN2A = éﬁ’ﬁ&

622 4 (5. 18Db)
respectively, Since [cos 22} % 1 and |sin2EX| = 1, these
equations require

— {22 - 52 5 2 4 2%~/ —2
4[/12-7_4_,42+5 Gry FL22/T g

é-_:zl & 22

85, < }4—.2 (5.19)
L2 €

In the limit as B=-e 0, (5. 19) can be shown to be equivalent to (5. 13)
of the stability aralysis.

Using sin® 2% + cos® 23 = 1, (5.18) yields a quadratic
equation for EZ, which may be solved to obtain*

/,
= 4 /7522 / _ 72
5* = TELBY |, L fteariyr- (a0t © .20

Substituting this resulf in (5. 18a) yields

- 4
cos 25 = LE2AY — (8. 2)* 77
€ (2% 4™

(5.21)

; |43 )
The solution B, ~.7-( 772 corresponds to the "in-phase"
solution for the undamped case. In the absence of damping, such a

solution will not satisfy (5, 3), and 5_3': is thus discarded as an
extraneous root,
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When (5.17a), (5.20) and (5,21) are solved simultaneously, the

solution

$.(7) = Acos [QT+ ]

¥, (@) = B simw [T + ¥ ] (5. 22a)

results. For example, (5.18b), (5.20), and (5.21) can be inserted in

(5.17a) and (5.17V), which then combine to give

Gl (sim*@ +ecos*d) = g% = J[(/-T,—Q.. €, A<, As)  (5.22p)

Because ol Lthe complexity of (5.22b), it is desirable to examine some
special cases of (5.17) in the case of "light damping'’ - i.e., Bg,
B < 1.

Then, when A # 0, B # 0, and L2 #1, (5.17b) and (5. 17d)

are well approximated by

2 =2 _ -
- Eﬁ-%ﬁ sw2d = G SinG (5.23a)
and
eN*B -2 -
- P ATSwid = <O (5. 23b)

Combining these yields the results @ = 0,27, 24 = 0,z W, = 27.

Making use of {5.23b), (5.17a) may be combined with (5.17¢} to give

- G,, C°‘5$
[7-022]1+cos 247
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Notice that if 28 = +om, A becomes unbounded, which is unlikely for
all £2 = 1; hence the possibility 24 = + 7 is excluded.

For {2 =« 1, the above resulis become

95-:0, ..&-ma):ﬁf_, L,Z:z.o.,_-:ﬁ-rr'

PG Frgro 2L (52
2 L[r-<1*7] & S2%

and for 42 % 1, they are

46:“#)5’:0)1”’, l//'-"_"O)—"T)"Z?r

- - = 2 .- .24
I -__ 6, jr_ g2 #L2*-1] (524D
2 [r+s2%] 0 g .2
Finally, suppose ¢ = - lZT- . Then (5. 17) can be manipulated
to give
, _ G- _ _
A = = , B? = 7%
R2n[ps+ ]
(5.25)
and - -27! = ¢ <o
or _:’_’."_: - 5;7 -

z =

Although the preceding special cases give some insight in the
problem, a complete analysis must include a discussion of (5, 22b),
For this purpose, a small computer program was set up to caiculate
G_, 9, B, and :P for given values of A,42, € , Be » and B. . By
cross-plotting the results, it was possible to obtain curves of A vs.
£2, B vsJS2 , etc, for constant values of Gn, €, Bg ., and PB¢ .
These curves are shown in Fig. 5.

Omne of the surprising features of the two mode response was

the appearance of a "gap' or discontinuity in the solution. Slightly to

the left of the resonance peak, the computer results indicated that
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solutions of the form (5.22b) did not exist for G_ = 0.1. (Note that
the curves of Figs. 3, 5, and 6 are all drawn for constant values of the
forcing Zunction, etc.). Subsequent results of the stability analysis
{Section 2. 5. 1c) showed that the gap in the response coincides with a
narrow region in which both the one mode solution (5. 4) anc the two
mode solution are unstable. The experiments suggest that a ''beating”
response exists in this area, with the ring vibrating first in one mode,
then two, then back to one, etc.

‘I'he computer program was used to obtain the response curves
for the single bending mode case by simply putting By >> 1, {i.e.,
damping the sin ERY— mode heavily) which makes B = 0 and causes
(5.17) to revert to (3.49). A comparison of the one and two mode
respanses is given in Fig. 6.

Finally, it will be noted from Fig. 5 and from (5. 24a) that for

{2 < 1, it is possible to have the companion mode (sin PRY-) vibrate

to larger amplitudes than the mode which is being directly driven
{cos %). Responses of this type were detected experimentally,

Having found the steady-state response when both self-coupled
modes are excited, one is then concerned with the stability of the

solution, which is discussed below.

(c) Stability of the Solutions when both Self-Coupled Bending

Modes are Excited

One way to investigate the stability of (5.22a) is to perturb the

solution by putting

oS (7)) = Acos [—Q?-""‘;] + ¥(7)
I (7)

il

Bsw[zet+ ¥]+ x(2)
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into (5. 3) and then examine the resulting variational equations for §
and x. The equations governing these perturbations are given and
discusscd in Section 2, 5.2 (a).
A less general but much simpler means of stability analysis

can be done via the method of averaging, To apply this technique, let

A=A +az) P = & + P

— — — —_ (5.256)
B = B + A4T) Y o= g Ny
where the steady-state solution has been redesignated by
(D) = Aucos [z + ¢ ]
(5.27)

S (x)= & sw(2z + £]

a, b,g, and v are perturpations in the amplitudes and phases of the

steady-state solution.

Recall that (5, 15) governs the non-steady behavior of (5. 3)
when the latter are analyzed by the averaging method with {5. 14) as
possible solutions. By substituting (5.26) into (5.15) and retaining
only first order terms in the perturbations, the equations governing

*
a, b, 50 , and W can be obtained. They are of the form

dz d
& (5.28)
. . de ] d ¥
TSy $r Cey g2 * 677? * Cay T = C
where the cij depend on AO, Bo’ ¢0, (,UO, Bs » Be '._(2, € , and Gn

but not on? ., Thus, for any steady-state values of Ko, -]50, E-;o’ ete. ,

%

For details, see Appendix C.
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the Cij are constant, and (5. 28) is just a system of linear equations

with constant coefficients. This is ir direct contrast with the more

general approach (Section 2. 5.2 (a)), where every coefficient is a
periodic function of time,
To solve {5.28), one inserts
az) = a, e’ | L o 4 7

gor) = 2 %, oo 2?29

and requires a non-trivial solution. This results in an eigenvalue

problem
|p-3%E| = 0 (5. 30)

f_or the A. D and E are real, non-symmetric matrices, and
complex values of A result.

If Re{A) > 0 for any A , then the perturbations increase
with time, and the original steady-state solution at that point
(Ro, Eo,ﬂ , etc. ) is unstable. Conversely, if all Re(A )< 0 for a
particular combination of Ko’ ﬁo, etc., the solution (5.27) is stable

there,

For example, consider the following (special) case:
P = Oy fe = O {undamped)

Then (5. 30) becaomes
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(p*- 242) g Az + “‘ﬂ_) 5&5\_

4 4t % 1(z.rz+%)

o= | _ < YL 2z (5.31)
Mrargs) =55 - « oy
4 J ﬁf _
Tﬂ% -A(rargp) =S =
2z* 25
where o= é.rsz. ; /52’-: ‘ﬂ & -4/4 6.(22- g and (3. 17a},

(5. 17c) have been used. Expandlng (5.31) and putting Z= 2022 gives

2t 2ut(atep) 2t v RApR (Ao p) = 0 (5.32)

For the roots of (5. 32) to have negative real parts, the discriminant

must be non-negative;:

4= (24 g2)% — 4-.41/51(.4‘-—/44)‘ >0

404’[/.,@)‘+3(é)4_6§)4] 5o (5. 33}

2

Solving (E} -3E)" - €)% -1 = 0, one finds that (5. 33) will be

,c)

satisfied if

z — —
(L) =238, e, £* <3384
ol (5. 34}

Using (5. 34) with (5. 17c), it can be shown that (5, 33) requires

/ 2. 328 e;’?

+ O(é"") 5-_(2 (5. 35)
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On the other hand, in the absence of damping (5. 17¢) shows

that real values of B will exist only if

-2
2= /# ;’4 F O(e*) (5. 36)

Combining the above results, one sees that the solution (5.27) is real-

valued and stable {in the absence of damping) within the region

-3 -2
/- 2.3;614 # OCe*) £ 2 =< /+_5_.§’.4._ + O(€%) {5.37)

The results of the stability analyses are summarized in Fig. 7. In

connection with (5. 35), it was noted that the results ot the computer

2.38&.15._2

8

solution to (5.17) became discontinuous near the curve 1 -

=M2 . (See Fig. 6).

2.5.2 The General Inextensional Case: Approximate

Solutions and their Stability

As noted previously, this case will be considered for two sets
of forces: qly,t) = % cos %V coset and qly,t) = &S{y) F cosewt.
The first of these drives only ore mode (cos rTn{—Y) directly, and for
linear vibrations would excite only that mode. The other case is one
which is approximated by the experiments. Under the restrictions
that

(a) e is in the vicinity of the natural frequency of the

mth bending mode,
{b} & is not in the vicinity of a sub-multiple or

multiple of the natural frequency of the nth

bending mode, and
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(c) the damping is very small and is the same order of
magnitude for all the modes,
it can be shown that the solutions of the general case approach those
obtained previcusly for the self-coupled bending modes.

(a) The General Inextensional Case, with q{y,t) =

2o B
R coOSs 3 coswt

With qly,t) as specified and with the addition of viscous
damping, equations (4.19) and (4. 20) become
Jo + 2fem Qi S + Al p,, L :fMZ"M (45

O Fogk n ﬁM (5. 38a)
TYeh fon*t Tentiartin] = {

Aok ~t = ML
and

\‘f‘s"’" v 2/85’”‘ w‘“’"“' j’ + w‘m :f&n %@ﬁﬂi‘ aiﬁé [ﬂ:'

-f— L . .
et Sew * Foaba v 42 ]= o (5. 38D)

oL ALL 2T

where

> F

w” G =—-—‘P—Z,andﬁ,

are the '"per cent
M R ph

[ "

critical damping' in the modes sin %Y— , COS —RX respectively.

Excitation of a Single Bending Mode; Stability of the Solution

Inspection of (5. 38) reveals that a possible solution is

Sy = O Fo® A2 M, S = O For M ¥
(5. 39)

and ‘j’am«. ?“ =F

where 'f::mu satisfies
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\ﬁ:rm- b zﬁm e VIS :f:.‘.-m- -+ WMT.,.,'_ “f
(5. 40)

2
Y2 e .2 2

7 2 %M [7’6,”1- ﬁm L ‘ﬁm = O m Gy COS 0T

That is, for afy.,t) as specified, a possible solution is that

only a single bending mode becomes excited! From the single mode

analysis, Section 2.3, 3, an approximate solution to (5. 40) is

Seon (8) = A cos [t + ¢ ] (5. 41)
where A and ¢ satisfy (3.49) with 42 =

a'nd !3 = @ﬂm .
Sl

With (5. 39) and (5. 41) as a possible solution to the system, one
then asks if it is a stable solution. To do this, the entire system
must be perturbed. Let
Fem = O + 3, (¢) FOR . Hf T
Term = Acos [0t +57 + T (L) (5. 42)
s = O + Xa ()

and substitute these into (5. 38). Retaining only the linear terms in

the perturbations, one has
Zn 2 fom “m j':::m. - [ 25 M
» 2 . - {5, 43a
- I lm ;w/‘f‘cosszfﬂ"‘ﬁ)]gﬁ = O, 7 F.m )
3 Lm g2 ;
Fom [1# L2 Ficact (@t + 8] + 3, [2 e

_ lme A L, (wt + )] + 2
Z Zom {wM,,,._ (5. 43b)

2z, —2
+ L»:—Zﬁfﬁ [Sw? (et + &) — 2 cos? (wf-.«-—;l')]j - o

and

3(.,,.‘, + Z/‘am o -E..«.. + [“);m (5. 43¢)
— Znlom w2 A% cos ,2(::01"-#5)] X = O
2 M =2 3,4, -

/s



85
Putting {2 = £~ and 3 = » (5.43b) becomes identical
g me : BCM
with (3. 53), which was discussed in Section 2, 3,4, Equations (5. 43a)

and (5. 43c) can be studied simultaneously, since they are identical in

form.
Letting /ym. = g’n o X, s zZ = (“)'é + g)
. -2
Cwt 2 Rm A

and considering the undamped case first, equations (5.43a) or (5. 43c)
take on the standard form of Mathieu's equation:
cll
= 4 (@, # leg,coszz]ay =0 (544
dz* -~ &~ E2 '
m = 2,3, 4,

Near the first unstable region, (5.44) indicates that 'ym. hecomes

unstable when

O
IZ - 4[, - Y
Y e R

(5.453)

FOR Oy . £ w2

‘Aiz 1¢‘Zré:§%£§1- - (}7

and when

~

(5. 451b)
#PPL ’ZM
~or, w = wM./n.

Now imagine that the cos.r—E—.’r mode {i. e., the mode which is

being forced by qg(y,t} is excited in the vicinlty of its resonant

frequency. In other words, consider what happens when &« = a3, .

In that case, (5.45) gives



86

2
o
g+ - ¥ /”' Tr{,; (5. 46a)
FOR  of e
?M Qm«.
and
72

A > O ForR Al =4 (5.46b)

where (5,46b) occurs only for one mode, namely sin r_nﬁy . Thus, for
the undamped case, the theory indicates that when e« = ¢, . ,
any positive value of A will cause sin %—Y to become unstable., Note

that for all other modes (i.e., n # m), a greater value of A is

required for instability. In other words, at e = &2y e
RZ A% m
critical for moden -~ critical for mode sin —Ry

If one allows m to become very large, both <J, (. ., and

&0

M (e 1) approach

)y . » Which causes the critical amplitudes of
the (m + 1) modes to become very small. Recall, however, that
the present analysis neglects shear deformation and rotary inertia,
which restricts the range of m; see Section 2, 6. 2.

With the addition of damping, an analysis similar to that out-
lined in Section 2.5.1 {a) shows that at e =, , , (5.45) is

replaced by

/21—+ ctg,, pt + L? - 1 7%

>
7. L

M-r.:?‘.sJ‘f:...

and ]3n = ﬁs or Bcn' For n =m, this reduces
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FJ

=2 & .
to A" > —.?%':4“ Assuming for the moment that /6“,., ;/6,,,.._‘2,5“,‘1:/8,‘_

{(i. e., equal damping in all the modes), it is apparent that

-2 -2
_ &
AC& AOR MODES > ’4"-'12 For .suv”"‘-zﬂ = Zfisom

L
WITAe A gt ?,m
i . Iy . . . .
as in the undamped case, and sin = will participate in the motion

prior to the advent of any other bending meode,

Or. the other hand, if /&M > f%(mc-z) and if <« is near enough

to «2 then it is possible that sin (_rn_ﬁ-_m or cos _z(m;{l)

A (o =1)°
might begin to vibratce before sin %y. Such a situation scems highly
unlikely, however.

Finally, it will be noted that if cos Elﬁy is driven at the
resonant frequency of some other mode (i.e., if < =5 ) that mode
can be parametrically unstable and may participate in the motion,
Similarly, the higher unstable regions of (5. 44) point out that the nth
mode can be excited by driving at sub-multiples of its natural
Dt @pn m,

Z , ete. ). In the event that ¢d, ., is near a

sub-multiple of

frequency (

0, .+ there exists the possibility of exciting co s—ﬁy

{directly) and cos % (ultiraharmonic response} simultancously. The

presence of dampinglessens the probability of this occurring; however,
such responses were detected experimentally.

Coupled bending moude vibratlous of ithe type jusl mentioned can
be analyzed, but they are of less interest than the ""self-coupled' case
and will not be discussed further,

With the restrictions that
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() e s in the vicinity of €O,
(b} co is not in the vicinity of “..iz.:—r ‘-"%;-l,‘etc. and (5. 47)
{c) the damping in the various modes ig of the

ping

same order of mapgnitude,
one concludes that the solution

S = A cas [wt+£]J S = O

{5.39)
‘:fcm = O, Lo = O rFor ALl . oM
is stable for A < ACR’ where ACR is approximated by
< &« ¥ co iy 2
Ace = {5.48)

4
?ML

For A >ACR, this golution ceases to be valid, and one must

consider vibrations in which cos 5! and sin ERy both participate.

R
Excitation of the "Seli-Coupled'' Bending Modesg; Stability of the

Solution

For A » ACR’ a possible solution to (5. 38} is

L = O, ‘fmr-o Lok 2t w

(5. 49)
Tc.,-m.. + 0’ j’JM # o
h d i
where 'j;man 'j"smsatlsfy
v - 2 ) ] 2
& AL eve. -+
o Term o Lo (5. 50a)

Lo .
Tt L F e gt F S G 4T

and E-S ey G,,,,_ccswt
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M 2
\fsm 4 2}5’"" M :fs.a-t- 7 MJ:M fs.nm +%YSM[D{—L

L el

(5. 50b)

s

+ » .2
Feor Sy * Lo f +j:’_~] = O

which are the equations for '"self-coupled'’ bending modes. This case

was analyzed previously; approximate solutions to these equations are

j‘;_”,,_(t) = /j-rcos [wlf + 5]

—_ _ {5.51})
:fsm‘(é) = O s/ [ewt # SV_]
where A, B, etc. satisfy equations (5. 17) with
o — - =
'Q:h“_am ,/8°=/gaM) /Jﬁjgf’"‘) ANJA:W ¢'

Having (5. 49) and (5. 51) as a possible solution for the system,

one must determine its stability. Perturbirg the entire system, one

putis _ _
‘j;m = A cos [&af 1!-('6] + 3:,“,
Ao = Bsm[wt +F] + kp (5. 52)
d - _
= Jo = C+Z,., o, = OFk, FoE m Fom

Substituting {5. 52) into (5. 38) anc retaining first order terms in the

perturbations gives

. - kN
,ym + 2/9 me 1‘»\; -+ {wMzM — Z_’_’h__‘i&-i /joGSZ(Nt+$)

— 32¢osz(wt+c;)]},z‘= o

~oR mr = 2_,5)-}-’ .-

(5. 53)
AL A Pt

where M, =3, o Xu, AND A = B, ok SBem
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and
2

- e

TM'\- [/ + ?/’"2‘- A coszx‘] -+ 3:-’"‘ [z/g‘m wMM

_MS/NZX] -+ 2 wz?z —2
3 2. Fwr __2_4:-/:4 (

.s.m/"‘_)( — 2C052X) -+~ Ezco.sz (X +Z)]}

(5. 54a)
2 _—
# —Z—”%ﬁfcos_)f[,%;t siv (X +4)

w2 o Ky COS (XK +4) — ot X e, SIN (X +21—)] = O

- 2 =z
X [/f- -{Z—"g’--f.sx/vz()r:'f-—&‘)] o+ X [2/4,,,,.‘_, s

2o &7 _
+ m:é w.swv,a (_7(-;-41_)] + K {“’me

F 4
‘-/-?M‘Uz

Z [gzc.osz (X fu?f) - 23-25/#""()5-#5) (5. 54b)

—

- AZC.C:SZJC‘]/ 7 j%_‘z_‘g::/ﬁ (X +4) [:;V cor X

"'»ijm.sfwx - a:"jM c‘,o:?(] = O

for the perturbations S and X, , where X = cwC +gand 4= §- @.
Eiquation (5. 53) may be analyzed in the same manner as (5. 43a)

and (5.43c). Such a study yields the result that cos ERY- and sin E}%

do not participate in the motion as long as the conditions (5. 47) are met.
The equations for ¥ and X, , (5. 50), form a system of
i ™
coupled equations with each coefficient a periodic function of time.

[
- -l

Because of the manner in which -? s Z 1 Ky and X appear in
e Pl

these equations, it is unlikely that they can be reduced to coupled

Hill's equations or some other recognizable equations whose stability
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is known. Approximate solutions to (5. 50} can be obtained by the
method of averaging; when this is done, one obtains a stability deter-
minant which ig equivalent to (5. 30). Since the stability of the two
mode steady-state solution was discussed previously (Section 2. 5. 1¢),
the results of that analysis can be applied here.
Thus, one has that the solution (5. 49) and (5. 51} is stable and

real-valued as long as e« lies in the region

2.38 € A o €A%
/- = —— = /# (5. 55)
= wMM

and the conditions (5. 47) are met.
¥

m
TR

restrictions on ew and on the damping, one sees that the solutions to

For the loading gly,t)

cos %E cosco t, and with the

the general inextensional case are identical to the one and two mode
solutions presented previously, This ie only approximately true for
the loading gq(y,t) = s(y) F cosewot.

(b} The General Inextensional Case with q(y,t) = S{y)F coscat

With the addition of viscous damping, and with ¢{y,t) as

specified, equations (4.19) and (4. 20) become

\f;:n‘v * Z/M M j’aﬂ # >, P

o
L S Z CaSn Fu 4 (5. 56)
..-2 <

7 %—_.A; j_’;_&, + b;;]'/“ z’-’."_'z_j.pf_“..‘ G cos wll = Geoscol
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and -
G o b by e Tt Sy
S it S Z i’a[ﬁ
* \:fc./g, \-fc.»&- * :ﬁ'.Jz kj;.r-k * \*f;';.] (5. 56b) -

- M:"_’_"‘ Gcaswt = O
where Gr—' F A . 2 A = 2;3_)4.1.'-
Fﬁ/

a3 & .
For e« near e not near —Ltev Dyt ete., and with
Moy ? 2 4 3 : *

"light damping", an approximate solution to (5. 56) is

‘j = O FOR Atce T

S

G cosew £
i,,,_= P = s ~orR o T (5.57)
WM”‘- — a7

‘j’cm = ;-4—605 (wf *~ 5)

where im satisfies (5. 55a) with n = m,.

In general, one can show that

—LJ:C—A:/-a::/ AND /j;m./_"o AS A —> oo

Tem

- 2 -2 A B .
Thus, the sum fﬁ[‘:ﬂ.&. o :fs_h] is dominated by
the k = m term. In this case, (5.56) is very nearly equal to (3. 45),
which governs the vibration of a single bending mode! Similarly, the

deflection

D Sy et
A =2

. L nd P z 2
is dominated by :fcm, and :z = j’cm cos ,eﬂcf - ;n.'fgm,

which demonstrates that an approximate solution to (5. 56) is the

excitation of primarily a single bending mode.
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If the stability of (5.57) is examined, the analysis closely
parailels that of the preceding case, Section 2.5.2a. For {5.57) to be

astable, the conditions (5. 47) must he met and in addition {a) c must

not be near Zme.’ and (b} A must be less than ACR’ where the
latter is given by {5.48).

- } . om
When A > ACR' {5.87) is no longer atahle, and sin —-R-.—Y

participates in the motion. In this case, an approximate solution to

(5. 56) is

f =o, o = Geosewt Mk

Sre Crre %’ - wa'
P

Docm = A cos (wt -,«-55")
(5. 58)

where ‘jsmand o,  satisfy (5.56) with n = m,.

With only slight modifications, the stability analysis of this
"primarily two mode' solution parallels that of the previous case.
When <3 is not in the vicinity of 2eo,, .  and the conditions {5.47)

and (5. 55) are met, the solution {5. 58) is stable.

2.6 Additional Non-Linearities and Other Efiects

The preceding analyses have several features in common, one
of thern being the omission of some minor non-linear terms and of
shear deformation and rotary inertia. The conditions under which
these effects are negligible are pointed out in this section.

By examining the non-linear strain-displacement relations, one

can improve the analysis. Shear and rotary inertia effects have been
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investigated previously (Ref. 4), and the results of that study will be

outlined.

2.6,1 The Inclusion of some Additional Non-Linearities

For vibrations involving primarily one berding mode, the

theory indicates

ur('y;f)"—"s ACaswt Co;m__/tﬁ e A. (f—) (23)

where

2 42
At) = — ’;; (/+ cos 2wt) (Cf. 3.44)

Experimentally, it was possible to independently measure the
maximum amplitude {A} of cos ER-Y- and the amplitude of the second
harmonic terrn* in Ao(t). When the experimental values of (A)2
were plotted against (AO)Za , & linear relationship was indicazted.
According to the theory, such a line should have a slope of Iﬁlﬁ;
preliminary experiments indicated a lesser slope, suggesting that the
coefficient %ﬁ might De in error.

Since the theoretical results (3. 44) for the deflections are
basically unchanged by including the effects of extension or tangential
inertia, one suspects a discrepancy in the inextensionality condition

itgelf. This leads to an examination of the strain-displacement

relation. For thin rings, the general form is (See reference 24)

¥y L-o dey R z[(;,g )e) )j (6. 1)

sk
Designated by (Ao)zw
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Up to this point, only a first approximation ta (6. 1) has been used,

narely

d-
& = = = 174 2 12
Z=0
Taking wi(y,t) ic the form
Wiy, t) = AL) casﬁg R (6. 2)
1

and using it together with (1. 2) in the inextensionality condition gives

L-o 3’% + = +-£ cos —fe +2 Y S/N JE )
whence
(A.) = - M;Az (6. 3a)
1 4

and

’.’_ M A% (6. 3b)
2~ ( ,t)’="" s,mr__’%_f_m SN.?/;L:&_{ .

To improve these results, (6.1) will be employed, with v
and Wy used to compute the non-linear terms, Let the second

approximation be

ey, ) = 4(¢) cw% - [ (t)'Zz (6. 4)

From (6. 2) anc (6. 3), one has

6w_/y—- 2 _ . ]2
) /”" dgiez”‘-) A(/"" Ces 2’”‘"&‘)_7 (6. 5a)

+ O(%)a
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(% +%)2 = O(%ft (6. 5b)

Using (6. 4) and (6, 5) in (6.1}, the inextensionality condition

and

is again applied:

Eyyl = A/DE -+ A‘COGM - .@f_).z

e «-3? E E ,e
A R’ (/-— Mn.) A% 2.3
""x[ 7% (7 - cos __J)]_,-o(.__)
This results in
/ &
[ = — 220/ %) A* (6. 6a)
- +R
and
25 (4, t) = —;L-— J,W?’?f iRl ({ - z)zsm .Z.jég (6. éb)
Repeating this process with W, anc Vs yields the third
approximallon,
G(g,6) = Alt)cos 2 — /- Za)2AT

4-2

A R | AR )
Ay t) = —~ Lo sew e 2,
3 o R FR ‘5”‘“"‘"“' (6. 7b)

+O(-g—)3
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which differs from the second only in the higher order terms.
Subsequent iterations will likewise differ in the 0(%)3

present purposes, it is sufficient to stop at this point.

terms; for

Note that (6. 72) is in the same form as (2. 3). Thus, the
results of all the previous analyses can be easily modified to better
approximate the full strain-displacement relation, {6.1). For

example, {2.3) becomes

W(/,’f,f') = Acosew t COJ”% o+ /4’([-) (6. 8a)

where

2

/)’Lz'(/ - ;,'4_{'9.
)1’42'(/1"‘6032@&',‘ (6. 8b)

Aa(f)c'—{“ Py

from (3. 44) and {6. 7a). Equation (6. 8b) indicates a linear variation of
Mz(l - ﬁn)&
er

ment with the preliminary experiments on (Ao)aw , but such was not

{A ) Vs, Az, with slope This improved the agree-
0’2 P P g

the case in later tests. (See Fig. 17f and the related discussion in
Section 3. 2. ).

Recall that the inextensional analyses can be corrected for the

effect of tangential inertia by replacing % by g—- and € by &; .
M L

(See Section 2. 3, 2). Similarly, the results of the present section can

be employed by substituting €, for €; where

]
N R N [ L
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These combined corrections lead to a significant improvement
in the theory; the calculated curves shown in Figs. 17a-e all employ
€. in place of € . Similar corrections apply to the multiple bending

mode analyses,

2,6.2 Shear Deformation and Rotary Inertia

An extensive analysis of shear and rotary inertia eifects was

done by Buckens, reference 4. His results can be put in the form

A2 Ay
w = w, [/ "‘C("g“)*O(%)]

where ¢, ie the clasgical cxpression for the natural
frequency of a ring (3. 39),
¢v  is the natural frequency where shear anc
rotary inertia are included, and
C is a correction factor,
The largest term in ¢ arises from shear deformation, For
rectangular cross-sections, Loth shear and rotary inertia effects can

be neglected if

M‘?‘jz
-l

it < / {6.10)
FR2
Cr, with ). = 1:—{ = the half-wave length of cos EP.:X ., (6.10) becomes

7 K
T << A

This is agreement with the analogous result for beams, namely that

shear effects can be neglected if the ratio —ld;};_;lh_ is much less than

{6.11)

unily. GConsidering a section of the ring as a curved beam with length

A and depth h, one sees the similarity of the two statements. For
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complete details, the reader is referred to Buckens' original work,
(Ref. 4).

Conditions such as the above (6.11) are derived from linear
analyses. When (6.11) is met, the effect of shear deformation and
rotary inertia on the linear vibrations of a ring are negligible. It is
assumed that these effects remain negligible for the non-linear
vibrations, as long as (6.10) holds. Examination of this assumption

is left to another report.

2.7 Comparison with Other Results

In order to better understand the present work, it will be
compared with some similar results., A few studies on the non-linear
vibrations of rings have been done; they are not concerned with the
forced vibration problem. (See Refs. 6 - 8). Some of these contain
certain inconsistencies, and none discuss the phenomenon of self-
coupled bending modes.

The forced non-linear vibrations of a ring have several
features in common with the analogous problems for a thin circular
cylindrical shell and a thin cylindrical membrane. Many other
systems which possess axial symmetry behave in a qualitatively
similar fashion. A few systems such as these and the results of

previous investigators are discussed in this section,

2,7.1 The Free Non-Linear Vibrations of a Ring

Federhofer (Ref. 6) examined this problem by an iteration

scheme, First, equations are derived which include tangential inertia,
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mid-plane extension, and the major quadratic terms in the strain-

2
displacement relations, The ''thin ring assumption" (i <« 1) is not

RZ
made. After several manipulations, the problem is reduced to a
single non-~linear partial differential equation
L{w) = S{w) (7. 1)

where I. is a linear aperator and S is a non-linear relation that

depends on w. To obtain an approximate solution, Federhofer solves

L(wo) = 0
which gives w_ = A coswilcos =%
o R
Then he putg w = w_ + W, into {7. 1) and has
L(wo + Wl) = S(wo + Wl) {7.2)

Since L is a linear operator, and since W, ig a correction that is

assumed to be small, {7, 2) is replaced by

L{ws) + L) & S(w3) (7.3)
But L(wo) = 0; thus one can sclve
Liw;) = S(ws) (7. 4)

to obtain the correction term, Wy

In the notation of the present work, reference 6 gives

()t) A wt cos ™ /f‘a ) cos 2eo
%—gjcQs t S__’éﬁ-f—(]/%[;%(m,) s el

(7. 5)
%-_/é (n, =) cos 2%# +fé(”‘a")‘°52“-‘t‘°" %‘gj
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where j (»,«<)depend on the mode number, n, and the ring parameter,
')

o { o = —-—?) It the limit as ¢ — 0, {7.5) reduces to
12R

—{(—;%E)— = Cosew t cos d"_ﬁ

N

where b3(n, 0) 20 and bz"- 0(10_3).

corrected for the additional non-linearities) gives

w- (4, T) = _‘—% coswt cos ’%

The present solution {when

{6. 8)

Cﬂ.j m‘tj(/—- ;)2(/1’— cosZwt)

which is identical with (7. 6} except for Lthe term which is constanl in

time. Reference 6 tabulates bi {n,el) for n = 2, 3, 4 and

okl = 0, 7)%6’ and T(}TG_ . When oL = TTJ%M’ the bz correction

becomes relatively large. In fact, fur

ot = oc = (P2H1)(ctg n* ) _ (2 +1) (7. 7)
I (m2 - f)? 2 (Aot~ Gan®+ 3)

the correction term becomes infinite, and the solution breaks down.
At the value of ol given by (7. 7), S(wo} cauges a resonance in

equation (7. 4) anc the corresponding w, becomes unbounded.

1

Clearly, the approximation made in going from (7.2) to (7. 3), namely
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Slwyrews) 22 5(«;) (7. 8)

is not valid when the magnitude of W, exceeds that of w,. Even
when the maximum amplitude of w; is less than thatof w_, (7.8)
may be questionable. For example, when o4 » &£, , (7. 5) indicates

that the ring expands (instead of contracting) as it vibrates. On

physical grounds, this would seem to be incorrect.

A2 n’h 1.2
As regards the constant term, () 1 - }~, one might
g S g

note that it is impossible to satisfy (6.1) up to O(ﬁ—;) without including
it. This suggests that Federhofer has neglected a quadratic term in
his analysis. Comparing the results for v(y,t) confirms this. Finally,
the method of solution used in reference 6 does not provide any
information about changes in frequency as the ring vibrates to large
amplitudes - i, e., one cannot plot A vs, e . Nevertheless, the
solution does exhibit the cos 2¢0t contraction at the nodes of cos E—RY- .

Shkenev, {Ref, 7), studied both free vibrations and parametric
excitation of a ring. He apparently neglects tangential inertia, and
the ring is assumed to vibrate inextensionally:

. onr w de 12
E”l - Oy e *Z (Z;',;"{) =0 (.7

Eeo

Both w and v are assumed; in the notation of the present work, thev

are

w (g, T) = Ay (€) co.s'j"g;’ (7.9)
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M(ﬁ)f):——@S/MﬂngS/ﬂM (7.10)
N EL 2

Note, however that (7. 9) and (7. 10} are incompatible with (2. 7); (see

Section 2. 2. la). For free vibrations, reference 7 gives

which is similar to
) s 4 A (A At
. T Wy m +2 o /441/4.4, */4,“.) = (7.12)
of the present work (inextensional, one bending mode), where

2
w(‘j) i—)= /4,“({’) Co;f_’_.z; . v ‘:;ﬂ- (2. 8)

Since (7. 9) does not allow the ring to contract as it vibrates,

(7.11) is in error. Consequently, one finds

a_
- = ___ << [

/2 /6 (nErr)

Meclvor and Goodier (Ref. 8) study the response of a ring that is

subjected to a uniform radial impulse. The "thin ring'" assumption

h2.

(——2 << 1) is made, and tangential inertia is included. By comparing
R
some inextensional and extensional lirear vibration problems, they
observe the results to be nearly equal when the inequality

2
2K
—— .

’z R

« /
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is met. This leads them to consider the non-linear response problem
in which the flexural modes vibrate inextensionally. However, these

modes are required to satisfy a linear inextensionality condition

anr w
) £
rather than the ron-linear one;

|

L g F(Sg) =0

j,; 2 2 (2. 7)

This discrepancy does not invalidate the dynamic stability
analysis of reference 7 (since it is done for small amplitudes}, but the

"long term equations' are in error.

2.7.2 Some Comments on the Non-Linear Vibration of

Axisymmetiric Systems

The non-linear vibrations of many axisymmetric systems
{such as a ring) possess several features in common. With the
assumption that the motion involves primarily one or two vibration
modes, it is possible to reduce the problem to one involving non-linear
ordinary differential equations. In the event that only one mode is
vibrating {near its linear resonant frequency), one can show that above
a certain critical amplitude the companion mode begins to participate
in the motion, The companion mode is excited parametrically, via the
non-linear coupling terms. This phenomenon is not restricted to
axisymmetric systems, but it occurs in such cases since the natural
frequencies of the driven mode and its companion are identical. In the

following paragraphs, a few such examples are discussed.
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One of the simplest systems to exhibit this behavior is a string.

I.et the vertical deflection be given by

(X, €) = A(£) .5‘//-//"-—-:,:—”-"—‘

and the horizontal by hix,t) = B(t) sin r_nETr_x . After various approxima-

tions and non-dimensionalizing, the string equations become

and
G+ B +eB(A*+rBY = O (7.13b)

where € is the non-linearity parameter, and the vertical motion is

being foreced harmonically, A pogsible solution to {7.13) is

Alz) = Aﬁco‘s_fZ z

(7.14)
() = ©

When the stability of this solution is analyzed, one finds it to

se unstable if A > ACR(_Q, € ), where the critical amplitude depends

on L2 and € . TFor A > 'ACR’ a solution of the form

/’1(’3') = /Erc.‘os_ﬂ'z’

(7. 15)
B(z)

I
%
N
d
0
)
———_

is suggested. As in the case of the ring, the ""in-phase" solution
A(T) = Acosszz
B(T) = & cos.2z
will not satisfy the differential equations of the problem: (7.13). Thus,

one has
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A(r) = AcosldT
— (7.16)
B(r) = B sivnv
as the solution, and the string ''whirls'. This is analogous to the
appearance of travelling waves for the ring.
Equations similar to (7. 13) result for the non-linear vibration
oI circular rode that are constraincd longitudinally. The problem of

a string (or a circular rod) with a concentrated mass on the end and

having constant applied tensior gives

A+A+teAlAL +A* + 88 +8%) = Feosz 7. 173)

B+rB r+reB(88 +8°+ A4+ Ai°) =0 (7. 17b)

which are identical in form to the equations for a ring! The non-linear
vibration of a long, pressurized cylindrical membrane {no axlal

variation) also results in (7.17), where the deflection of the membrane

is

m* a 2
w8, t) = A, (Ecosm S + Bult)sinmnb - o (An +E85)
For thin cylindrical shells, a deflection of the form
” iR
W(x;q,f) = /4,,,, (£) cos l—eﬁs,w —Z-"!‘

{7.18) -

g max _ mt 42, e 2 an7X
+ Ba(2) sin = S 4_'&(;-: &) sin T

%
seems appropriate, and the following equations result :

See reference 25,
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) z ) s -
A,n. + A,,‘_ 7 _‘22 /L,,_ (/4,”. /4,,.‘_ + A’: + &, 5. _',_g:’it
F ok A (AL +BL) + ot A (42 +87)2 (7. 19a)

. 3 A . e
By * 8B, » L & G (BB + B + A A (7. L9b)

e

-1
P AR) ol B (AL BE) # ol Bp (A B =0

Here, n = nzTh, and «, and o, depend on £, where
£ = %’Q—L As L=, £+ 0 and &, , og—>0. Thus, (?.19)2then
becomes similar to the inextensional ring equations, but with —%‘L— in
place of Il.; .

Many cther axisymmetric systems exist; in general, any
axXisymmetric elastic body can exhibit similar behavior. 1he non-
linear vibration of circular discs (studied extensively by Tobias,
Refs. 26 and 27) is a very good example. The forced osciliations of
a spherical pendulum {Ref. 29) ard sloshing of a liquid in a circular
tank (Ref. 30) are others.

The present analysis seems to fit nicely within the general
resulis common to non-linear vibrations of axisymmetric systems.
Previous studies (Refs. € - 8) on the non-linear vibration of rings
appear to contain certain shortcomings which cause them to disagree

with both the theory and experiments presented herein.
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III. THE EXPERIMENTAL PROBLEM

Many aspects of the preceding analysis should be readily
observable experimentally. If these salient features are not detected,
both theory and experiment must be reexamined.

Preliminarv tests indicated ({(a) the jump phenomena and a

slight non-linearity of the ""softening' type, (o) the presence of the

ny
R

harmornic responses, and {(d) at certain combhinations of amplitude and

double frequency term at the nodes of cos , (c) several ultra-
frequency, the '"single bending mode' approximation was inadequate.
The latter observation prompted a study of the "self-coupled bending
modes', which successfully explained the experimental resulis.

The initial tests were followed by a more refined experimental
program. It had two main objectives, namely (1) to determine the
extent tn which the theory and experiments agreed quantitatively, and
(2) to measure the actual deflection shape of the vibrating ring. These
experiments led to analytical consideration of the ''additional non-
linearities' and a subsequent improvement in the results. Meagure-
ment of the actual vibration form demonstrated the validity of the
mode shapes which were assumed in the analysis.

The calculated response and the measured values were
generally found to be in good agreement. In retrospect, it seems that
the main benefit derived from the experiments was that they served as
an incdependent check on the analysis and motivated significant

improvements in it.
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3. 1. Description of the Experimental Set-Up

The ring used for these experiments was formed by an electro-
plating process in the same manner as the thin cylinders of reference
31. It was 8 inches in diameter, had an average thickness of 5. 14 x
10_3 inches, and an average length of 0. 988 inches. Based upon tests
which were done in connection withk cylinder specimens, the material

properties of the copper were taken to de

E = Young's modulus = 16 x 10° 1b/in®
pg = weight density ~ 0,322 Ib/in”
4 = Poisson's ratio = 0.3

The ring was suspended by four very thin threads, equally spaced
around the circumference, as shown in Fig. 8,

Two inductance-~type pickups were operated in a push-pull
arrangement to measure the deflections. They were supported on a
fixture with a large bearing that permitted them to travel circumfer-
entially around the ring. {see Figs. 9 and 10). The signal from each
pickup was fec through a carrier amplifier and into one side of a
differential amplifier; ite output was in turn sent through a band-pass
filter to a cathode ray oacilioscope. (A block diagram is given in Fig.
11). This arrangement resulted in an anti-syrmmetric operating
characteristic for the system, which was highly desirable,

For instance, if one were to represent a characteristic such

as Fig, 12 in a power series, he would have

3
I/= a.,J +a‘sz+a3§ o (8.1)
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where V is the output voltage, S is the displacement seen by the
system, and a, are the coefficients of the power series, If the
displacement is sinusoidal in tirne, the output voltage will contain

higher harmonics, due to the non-linearity of the system. That is, for

d = é, sinewt, the voltage is
52
Vit) = (2,8 +ZayS’)swert + =52 (1~ coszat)
3
_ 235,

siNSew L # -
il

Thus, if one attempis io measure a non-linear displacement
such as é = J, cosew t = a(a cos 2et + JB. cos 3w t, he will find
it difficult to determine the magnitude of 52 and J3' {In general,
ay 51 >z a, éi‘, ag 5? etc., and Jl can be found fairly
accurately.) To eliminate such "harmonic distortion" altogether, one
needs a perfectly linear pickup system, which is difficult to obtain. On
the other hand, it is possible (theoretically) to eliminate the even
order harmonics with a system having an anti-symmetric character-
istic; this led to the pickup arrangement used herein.

Vibrations of the ring were excited by oscillating a fine
tungsten wire (0. 001" dia.) that was attached to it, as shown in Figs.
8 and 10. A standard electrodynamic shaker was used to drive the
wire, with the latter serving as a soft coupling spring between the
shaker and the ring., The shaker amplitude and frequency were
controlled by a standard oscillator -~amplifier arrangement. (see Fig.
11). By recording the displacement of the shaker and knowing the

spring constant of the wire, it was possible to compute the force

acting on the ring.
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For example, consider a simple model of the ring-spring

system,
M
3 Ko M 4%
in which M = pwRhb = one-half the mass of the ring,
K = Mew 2 the stiffness of the ring when
n mn
vibrating in the nth ntode
k = the stiffness of the spring that couples
the ring to the shaker
d = the displacement of the shaker
w = the small amplitude radial displacement

of the ring.

The equation of motion of the system is
-y 2
Mo + M, cr = F(f):-_,,@(ar-—w") {8.2)

where the force exerted by the coupling spring is approximated by

AE) = _K(d - (8. 3)

With the shaker displacement c.( = Joc:os.w t, {8.2) can be

rearranged to read

r 1‘(@‘.:“4'%—)” = ﬁtj;caswt=/:(f) (8. 4}

Thus, it is apparent that the force input to the ring can be determined

by knowing Kk, 50’ and M. Itis also evident that the coupling spring
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constraing the ring and will affect the natural frequency of the system.
Finally, (8. 3) is valid only for a spring which (a) is perfectly linear,
and (b) has a kigh resonant frequency.

To avoid exerting a large congtraint on the ring, one requires

— << [ (8. 5)
a)_ﬁm_
which means using a very soft coupling spring. But, to neglect the

inertia of the spring itself in writing (8. 3) necescitates

] A

et <<
M sp

(8. 6)

where MSP is the effective mass of the spring in its first vibration
mode and <2 is the frequency of the motion which is being transmitted
to the ring. Unfortunately, the preceding requirements tend to
conflict with one another; i. e., soft springs tenc to have low resonant
irequencies.

To get around this problem, the tungsten drive wire was
devised. The wire that was used in the experiments gave k = 0.035

1b/in and had a firet resonant frequency of 300 cps; this resulted in

Am w®

— = 0.008 NP

“m A /M s/

= C.cor

for the mode which was studied in detail. To make the coupling spring
as linear as possible, the system was designed such that (a) the
deflections of the wire were much less than its length, and (b) the

initial tension applied to the wire was very high.
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The analysis of the ring was carried out with the assumption of
a "monochromatic'" forcing furction - F(t} = F cosewt. However, the
force which was experimentally applied to the ring actually contained
several frequencies. This harmonic distortion of the input arose irom
two main sources:
(1) the output displacement of the shaker itself contained
higher harmonics as well as cos wt, and
(2) the drive wire introduced harmonics, since it was a
non-linear spring.
It was possible to determine the distortion in the shaker output by using
a harmonic analyzer to examine the output voltage of the signal

generating coil’. The shaker displacement was found to be

é = c;f,[coswﬁ +0.03cos 2l 1"0,0/1:;353“;6] (8. 7}

for Jma.x = 0.2 inches (the maximum employed). The harmonics
introduced by the non-linear drive wire can be estimated from its static
calibration curve, Fig. 13. The force generated by the wire was

approximately

ACE) = h—é—-{i—/;:o.swz’: + O. 02 cos 340'6]

(k is the spring constant, and the geometry of

Fig. 13 has been used)

The shaker was equipped with a signal generating coil which
produced a voltage proportional to the velocity of the armature.
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for a pure harmonic displacement é = &, cosedt and ‘§1 =0.15

1
inches. Combining these effects, the force exerted on the ring by the

wire may be expressed as

FlE) = -jj[oswt 4-_,Z— cos Z2eut + Ay cos3ant
o]

- . - -2
where b2 and b3 depend non-linearly on éo’ and IDZImax = 0.033,

|b3] max £ 0.030 for the experiments described herein, Note
|b2l , lb3]<< 1, which means that the input forcing function was quite
clean',

Both the displacement pickup and the forcing function are a
source of extraneous non-linearities; such effects must be examined if
the data to be obtained on non-linear ring vibrations is to have much
significance. In addition, one must consider the non-linearities which
arise from the manner in which the ring was constrained by the drive
wire and suspension system,

When the equation analogous to (8. 2) is written down for large

displacements of the ring, one has

P2
L, t 1+k) Y + 5SS T T L)

g < rn

"37K°j° ’e"‘ ~f =K%)Cos_§23

where the deflection has been taken as

ar (. A it A —-—————/"'"4"‘2
A, ) = m(f)co.:/e Sy

ithe shaker displacement as S = 50 coswt, the effect of the

(8. 8)
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congtraints has been included, and the following non-dimensional para-

%
meters have been used :

T = e o = A
‘N ﬂﬁu‘nm j.—:.__———

o o P A A, Im

S v 22> P P R
g
Ke = K + K, ST
Putting

e ~ 4
/(a(a = G = Gf‘f/uﬂj)jwz J ¢.¢.—‘z— = =
and recalling that Kl << 1, one sees that {8, 8) is equivalent to (3. 4)

(one mode, inextensional) except for the terms which are underlined.

Nevertheless, an analysis of (8. 8) demonstrates that its solution is
practically identical to that of (3. 4). For example, using the method

of averaging on {8. 8) with tf(?.’) =A(7) cosf2Z + CO('L'-) gives
311Kc

50 = 5 F&Z and a "backbone curve' of

L2 = [ —

2 44
13514 [/___ 38/(‘ - Qf‘j + 0('24} (8. 9)

2,2
ve. {2 = 1 - ILBA_ + O(n") for (3.4). Since K~ 0.012, it is

apparent that the effect of the additional non-linear terms in (8. 8) is
very small, at least in the vicinity of resonance. Their presence is

felt mainly near {2 = %— » but even then the effcct is slight.

e .
(kg » mg are the stiffness and mass associated with the suspension
system).
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Similarly, one can show that the stability of the solutions is virtually
unaffected by such terms,
The preceding paragraphs demonstrate that the experimental
arrangement corresponded quite closely to the theoretical problem
analyzed in Section 2. 5. 2b. This agreement was borne out throughout

the experimental program, which is outlined in the next section.

3. 2. Steady-State Response

Preliminary tests were conducted with the ring suspended from
the ceiling on long threads and with a soft coil spring in place of the
tungsten drive wire. These tests demonstrated the basic features of
the response, including the appearance of the "self~coupled' bending
modes. Tkeir presence was detected by the use of Ligsajous figures,
as follows.

The voltage proportional to the radial deflection of the ring was
fed into the vertical axis of the oscilloscope, with the horizontal axis
being driven from the oscillator whickh controlled the shaker. The
resulting Lissajous figure indicated the amplitude and the phase
{relative to the input force) of the vibration at that point on the ring.
By moving the pickup around the circumference of the ring and noting
the Lissajous figures, it was possible to detect which modes were
present,

For example, when primarily a single bending mode responded
{near resonance) one saw the Lissajous patterns shown in the top half
of Fig, 14, The open vertical ellipses indicate a response that is

+ ‘90O out of phase with the forcing function (resonance) and the
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horizontal figure eights demonstrate the double frequency contraction
at the nodes of cos %X The amplitude of A was measured at the
antinode and the amplitude of (A ) at the 'nodes’ of cos o .
o'Z2e R

The appearance of the companion mode (sin nJR_r) occurred near
resonance of cos ERY and resulted in the lower pattern in Fig. 14. The
vertical ellipses at the antinodcs of cos %J_r indicate that it is + 90°
out of phase with the input. The lines at the antinodes of sin &
demonstrate that it is directly in (or out) of phase with the input, which

means that sin IE{ is + 90° out of phase with its companion mode., A

#
pattern such as Fig. 14 (b) can be produced by a deflection of the form

W(f%,?f) = jc:::(wd’-rq-;)Ccr’% +3‘sx~{wf+§):m% (8. 10)

Other combinations of modes are at variance with the experimental
results. The amplitude A was measured at the antinodes of cos ERY—,
and the amplitude of B at the nodes of cos %{Y" As further evidence
that a deiflection of the form (8, 10) was correct, travelling waves were
detected with the aid of a strobotach when Lissajous patterns such as
T'ig. 14 (b) were observed.

The exploratory tests were concluded after noting the linear
(small amplitude) vibration frequencies and many ultra- and sub-
harmonic responses of the ring; (see Table I). The [urcing [requency

in these tests was determined by an electronic counter which

monitored the output frequency of the oscillator.

* T —
The contraction term, -;-:g (A2 + BZ), has been omitted from (8. 10)

gince it has little effect on the Lissajous figures when the coupled
modes are present.
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When the preliminary set-up was replaced with the improved
arrangement of Fig. 9, it was possible to obtain response curves
which could e compared with the analysis. The apparatus was
designed to investigate the n = 4 mode in particular; thus the drive
wire and suspension threads were arranged such that the former was

at an antinode and the latter at four nodes of cos %Y- .

Typical response curves for this set-up are shown in Fig, 15

-

ny
R and the

(AQ)Za: and B values at an adjacent node. The amplitude of the

The A wvalues were measured at one antinode of cos

input force was held constant for the response curves of Fig, 15; this
was accomplished by maintaining a known, constant peak-to-peak

displacement (2 éo) of the shaker throughout each run. The force

k g
itself was calculated from F = 5 0. An electronic counter was

used to measure the frequency of the forcing function at each data
point; these values were then non-dimensionalized on the linear
frequency, which was known from prior tests.

Having measured (-g—‘_—) and F, and knowing n, M, and (5*,
one can compute the theoretical response, using (3. 50) and (6. 9). The
calculated values are shown in Fig, 15 by the solid lines.

A notable discrepancy between the response curves of Fig, 15

and the preliminary experiments was immediately apparent: the

improved set-up had altered the "jump' phenomena! Now the ring

b
The damping was determined from amplitude decay measurements;
see Section 3. 3, '"Some Transient Responses'.
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. ny o . Ny
jumped from one mode (cos R low amplitude) to two modes (sin 5
coSs %Yn}; previously it had remained in one mode when it jumped. The
cause of this behavior was found to be the drive wire.
. ny ny
By constraining the cos «- mode but not sin-z-, it had
raised the effective natural frequency of the former and left the latter
unchanged. This creates an overlapping of two instability regions
{see Fig. 16) and leads to the observed results. It was possible to
obtain the "standard" jumps found previously, by (a) adding concen-
trated viscous damping in the sin %X mode, thus moditying its
ingtability region, or (b) adding a small, concentrated mass to an

n

antinode of cos g, which lowered its natural frequency and separated

the unstable regions (see Fig. 16).

Adding the rass had another beneficial effect, as it greatly
reduced the tendency of the nodes to '"drift" circumferentially. Such
shifting of the nodes can be explained by considering small imperfec-
tions in the ring (variations in thickness, material properties, etc.)
as was pointed out by Tobias (Ref. 28)., The added mass was a short
plece of solder, (it weighed 0. 46 grams, vs. 18. 62 grams for the
entire ring) and it was glued to the ring directly alongside the drive
wire, Thig arrangement fixed the two "preferential modes' of the
ring (see Ref, 28) while simultaneously insuring that the forcing
functior would directly drive only one of them,

Four response curves were run onthe n = 4 mode with the
added mass; the results are shown in Fig, 17. (Again, the solid
lines represent the theoretical results, where £, has been used;

see {6.9)). A, B, and (Ao)zwwere measured as in the previous tests.
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The phase of the signal at the antinode was measured with a standard
phase meter., The electronic counter was set up to rmeasure the
period of the input signal (rather than the frequency) in these tests,
This enabled -g—; to be determined more accurately than previously*.

As seen from Fig, 17 a-e, the calculated results agree fairly
well with the measured values., On a frequency basis, Fig. 17 e
shows a difference of less than 1 per cent between theory and experi-
ment, and the '"backbone curves' of Fig. 17 a-d also show good
correlalion. The results seem to agree less well for the higher
amplitudes; this may be due to the non-linearity of the displacement
pickup. (The voltage measurements of A, B. etc. were converted to
displacements by using the linear gain factor of Fig. 12).

Figure 17 { shows qualitative agreement with the theory, but
the experimental data differ by 30 per cent from the improved
analysis (which includes the '"additional non-linearities"). However,
it should be noted that 10 units on the vertical scale of Fig. 17 {
represent a displacement of 0. 001", An error of 0. 001" in the
measurement of (Ao)z.:.o could account for the 30 per cent discrep-
ancy noted above. Since 2w for the n = 4 mode is equivalent to
66 cps, a possible source of error might have been the 60 cycle

"noise' present in the electronics.

For example, the counter would give the period of the wave as
0. 030280 + 0. 000010, with drift in the electronics accounting for the
slight variations in period.
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An approximate determination of the instability boundaries for

the companion mode can be made by extrapolating the steepest part of

the 3/h wvs.

:j curves onto the horizontal axis. This gives an
L
estimate of the --:j"- value at which the companion mode goes

[S
unstable; the corresponding amplitude of the driven mode can then be

found from A vs, The resulting instability boundaries are

w
‘01-
shown in Fig. 18; attempts to determine these houndaries directly by
experiment were unsuccessful. The other instability region -~ bounded
by the locus of vertical tangents - is also given in Fig. 18.

Similar responses, jumps, and instabilities were noted in
other modes as well as n = 4; some results for the n = 3 mode
are given in Fig. 109.

The mode shapes were measured by exciting one mode (n = 4)
and recording the amplitude at known positions along a hali-wave
length. Measurements were made at several amplitudes, on two half-
waves; the results are shown in Fig. 20, where the solid lines are the
assumed deflection shape.

The response voltage from the pickup system can be

represented as a Fourier series in time

V(fg f) = J{(/:{)Coswt + )é {»g) cos 2w t + £ (ﬁ)do:j’mt
with coefficients that vary around the circumference of the ring. The

coefficients, fl(y), fZ (v}, etc. contain the spatial variation of the
deflection shape combined with the harmonics introduced by the pickup
system, As shown by Fig. 20, f1; (y) is very nearly A cos I—II%C . By

passing the deflection signal through the harmonic analyzer and using
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a narrow (2 cps band width) filter, it was possible to determine the
circumferential variation of the first, second and third harmonics in
the signal. The results are given in Fig. 21; the higher harmonics
contain the influence of non-linearities in the displacement pickup,
despite efforts to avoid them,

It was thus linpossible to determine the true spatial variation
of the cos 2wt term of the deflection, but Fig. 21 does suggest a
major component that is constant in space. Furthermore, Figs. 20
and 21 indicate that (6. 8) is a good approximation to the deflection,
which would account for the presence of just such a uniform second
harmonic component. The perturbation calculations suggest that An(t)
itself contains some double frequency terms (which would vary as
cos ERX in space) but their presence could not be confirmed experi-
mentally.

The close agreement shown in ¥ig. 20 indicates that the main
motion of the ring {when vibrating in a single mode) was of the form
A cos —%—Y coswt, This conclusion is supported by Fig. 21, which
also suggests that the bulk of the third harmonic in the response signal
was generated by non-linearity in the displacement pickup.

In addition to the close examination of particular hali-waves of
the vibration mode, the root-mean-square response was plotted for
three-fourths of the ring's circumference. Results were obtained for
four different amplitudes; Fig. 22 is typical. Some non-uniformity in

the mode shape was apparent, with two antinode peaks varying 10 - 15

per cent from the mean antinode response. Anomalies of this type
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might be the result of circumferential variations in thickness,

material properties, pickup spacing, etc.

3.3, Some Transient Responses

Although the bulk of the experimental work was concerned with
the steady-state response of the ring, some transient motions werce
also of interest. For example, it was possible to cbserve the growth
of the companion mode as it went unstable or the decay of the
vibrations due to damping.

To accomplish the former, the excitatior was adjusted such
that the long time (steady-state} response would involve the vibration

aof both cos PRY and sinpf_;f . Ther a switch box was inserted in the

system, allowing one to sirmnultaneously turn on the excitation to the
ring and trigger the sweep of the oscilloscope. To obtain the
lransient response of the sin P}E{ mode, the pickup was fixed at a node
of cos ERY . When the excitation was suddenly switched on, the
oscilloscope recorded the amplitude of the former, showing that it
grew rapidly at first and then levelled off Lo Lthe steady-stale value,
The initial growth was much like an exponential increase, as is
predicted by stability theory; for large amplitudes, the non-linearity
of the ring (and the damping} limit the response.

In a similar fashion, the transient response of cos n_ﬁY and of
the shaker {velocity) were obtained, for the same excitation setting.
Typical results are shown in Fig, 23, which points out that the shaker
and the cos PRI mode responded rapidly to the excitation. As sin 2y

R
began to vibrate, it took energy from its companion mode, which
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caused the amplitude of cos %}r to dip slightly. (see Fig. 23). The
low frequency ripples in the amplituces occurred because the rigid
body mode of the system was excited by the shaker start-up.

Using a similar arrangement, but triggering the scope as the
excitation was switched off, damping traces for the n=3 and n =4
modes were obtained. Some typical traces are shown in Fig. 24,
which points out that the damping is amplitude dependent - i. e.,
non-linear. Damping in the n = 3 mode ranged from p = 0. 008 to

B

U. 003 in going from high to low amplitudes; similarly, 3 for

n =4 ranged from 0. 002 to 0. 001, Note that these values contain
the damoing effects exerted on the ring by the drive and suspension
system. Thne slight beating in Fig, 24 is again due to excitation of the

rigid body mode.

3. 4. Other Results of Interest

The n =4 mode was investigated in detail for reasons of
experimental convenience. The response of several other modes and
combinations of modes was also observed, as shown in Table I. It
will be noted that in addition to the "'standard'' ultraharmonic
responses where a single mode is excited, Table I contains coupled
responses where one mode vibrates at the driving frequency and
another mode at some multiple thereof. Such motions were readily
detected by use of the harmonic analyzer; the analysis indicated
these responses might occur. (see Section 2. 5.2),

Finally, since this work originated with a study of non-linear

cylindrical shell vibrations, it is of interest to report that recent
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experiments on cylinders (Ref. 32) have demonstrated many of the
phenomena noted here. In particular, the softening type non-linearity

and the double frequency contraction at the nodes have been detected.
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IV, CONCLUDING REMARKS

The similarity of the analytical results for a single bending
mode suggests that the main features of the non-linear {lexural vibra-
tions of thin rings can be obtained by using an "inextensional" theory.
This information can be applied to greatly simplify the analysis of
vibrations in which several bending modes participate. For example,
an inextensional study of the "self -coupled' bending modes demon-
strates that the single mode solution is valid only for certain
combinations of amplituce ancd frequency. Thus, when the single
{driven) mode exceeds a 'critical amplitude'’, its companion mode
becomes excited and participates in the motion.

Examination of the "general inextensional case' (involving an
infinite number of modes) shows that possible solutions are (a)
vibration of primarily a single bending mode, and (b) vibration of
primarily the "self-caupled’ modes., Furthermore, a stability
analysis of these solutions indicates that when certain restrictions are
met, all other bending modes play only a minor role in the vibrations.

Significant improvement in the analysis is obtained by
including the effect of "additional non-linearities' in the strain-
c¢isplacement relations. Retaining the effect of tangential inertia alsc
improves the calculations, but to a lesser extent. Both these modifi-
cations lose their importance as the mode number increases; however,
they cambine to cecrease the non-linearity parameter { € ) by more

than 25 per cent for the n = 4 mode.
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The experiments are in generally good agreement with the
analysis, both qualitatively and quantatively. Early tests exhibited
the jump phenomena, a non-linearity of the ""sofienlng" type, double
frequency contraction at the nodes, ultraharmonic responses, and the
appearance of the companion mode. Subsequent improved experiments
showed the measured responses to be in good agreement with the
calculated values, Similarly, measurements of the mode shape (for a
single mode) and of the contraction at the nodes indicate the appropri-
ateness of the assumed deflection form. Experirmental darping traces
peint out that the damping is amplitude dependent; this is substantiated
by the steady-state response curves. Consequently, to calculate
response curves that agree witk the measured values, (including the
maximum amplitude) one must know the damping which is appropriate
for that amplitude.

In conclusion, 1t seems that the basic approach presented here
is applicable to the non-linear vibration of thin cylindrical shells, as
well as many other axi-symmetric systems. First, the system is
assumed to vibrate in primarily a single mode, ancd its behavior is
examined. Then, the vibration of "self-coupled' modes must be
considered, since the non-linear coupling tends to excite the
companion mode. If possible, the vibration of an infinite numberxr of
modes should be studied and a stability analysis done Zo determine the
validity of the one and two-mode solutions. Finally, as the theoretical
results become available, their main features should be subjected to

experimental confirmation.
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In some cases, it will become apparent that these restrictead
analvses are useful only for relatively small amplitudes and that an
adequate study must involve additional modes. On the other hand, the
study of primarily one and two modes is sufficient to explain a great
deal about the non-linear vibrations of rings, and similar analyses

will undoubtedly prove worthwhile in many related problems.
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APPENDIX A

A more exact set of ring cquations can be obtained by retaining
. der 2 , 1 e
the agssumption (Ey—) << | but not assuming that — << 1. The
n
derivation itself is readily carried out by the application of Hamilton's
Principle, which involves the elastic strain energy, the kinetic energy,

and the potential energy of the applied forces.

The Strain Energy

The strain energy density (per unit volume) is dW = j'_- Ty 561‘
in general. For simplicity, the Zollowing assumptions will be made:
(@) Ozg =@
{""plane stress'" assumptions)
{c) E.a = 0

{(shearing strains are neglected)

m H /
I'hen, dW becomes simply AW = 5 Ty Eyy

or dW'= f[fyf]'z upon using Hooke's Law,

Since we eventually want to write dW in terms of the
displacements of the ring, it is necessarv to consider the strain-
displacement relations. The Lagrangian form of the pertinent

strain-displacement relation is given (Ref. 24) by

Sy = oo = gy (%27 %Eég)

/ J
sreia (35 -« ) 4 (e +22r )

in the notation of reference 24.

(A.1)
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The displacemenils & (d,&,¢) and «ofo,i,dj are taken Lo be
related to the displacements of the mid-surface of the ring, as
follows:

JC,Z, = o
(A.2)
Uhg = U+ & %

Here,

=L (2
% = R (ﬁ_”) ""’,éfc(-g%' —-m)(wf—%) (4. 3)

anc & and v are the radial and tangential displacements of the
mid-guriace {see Fig. 1).

For present purposes, it is sufficient to approximate (A. 3} by

% 16(3@ ﬂr)[/ (ao"-l‘ae}]-—-_.:—-_;é—(———-ag-—-,d (A, 4)
; . : AT < < /
i. e., by assuming /W . «;-3-/ .
After several manlipulations, one can show that the assumption

[+ 55 <<

is equivalent to

[ e

2
which is similar to {%—‘;) < < [ for the shallow shell equations.
Similarly, employing the assumption (A. 5) allows (A.1) to

be approximated by
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Ju
24 2
€, = £ - (4 + 3%o) / du, )2 (A. 6)
e == —Z el == _ u
R + & Z2(R+2)"\dé G,
Substituting (A. 2) and (A.4) inta {A. f) gives
(<, + 2
EOO = ! ¢9) -+ —""/' 2 (’dz - Z¢)z (A.T7)
R + 2 Z(R+2)
where the following notation has been used
/ + Je 2 e
_. L/ deer o, {A. B8)
¢ j—= _l;_é_ == e -—-{— Jo(z
° 28 R 2o
Finaily then, the strain energy in a ring of unit width is approximated
by A

29 Z—
W £ foo [ateenrae
o R
J/z
2 £ {A. 9)
=y (.,4 F _ 2.2
Wﬁ?/‘/"f{ 128l , & Eé}j{u;;de

ot 2, g +32 2(8+ £ )%
- 2

The =z integration can be done approximately by expanding

1 and S S in powers of (%). When this is done and the
R+ z) R + =) P R

inequalities
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[/6’ a‘é‘””’)]
/:C.Té)'? <</ {A.10)

[5] e £

AMA x

are used, (A.9) gives

KR zr <" 2 2 g2
o

/2 g% /2R
o+
L % g
et 4£’}‘{9

The inequalit ""'" >> —h ingures that the non-linear stretchin
9 ba g
max R

terms in (A. 9) exceed the non-linear bending terms. The former

3
have Eh as a coeificient, while the latter go as Eh
R 12r?

First Variation of the Strain Energy

To apply Hamiltan's Principle, it is necessary to compute the
iirst variation of the strain energy, the kinetic energy, and the virtual
work of the applied forces. Applying the standard techniques of

variational calculus to (A, 11} gives

2
- %f [-e S~ %A sy - At
. A

2 K




where
D‘/\‘J‘ Q
ol = tar _ Py — ___bﬁ_f'
i +’ ae ) rl }e

—

(A. 8)

P Nl A 34;')
& R\ 2s* P

To derive the equations of motion in the radial and tangential direc-
tions, one computes the variation of the strain energy with respect
to w and v respectively. Variations with respect to a particular

variable will be denoted by a bar, as follows:

’;"‘c} = The first variation of &L, with respect to w, etc.
Y

Using the definitions of &, Ky, and gbe , one firds

Jn{, = J:‘—O“ J,,c == __J.-. J_,u-
| = (L)
J.&/“r_—: ;%;(Iw) j,&Lfﬁ — (A.13)
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When (A, 13) are substituted in (A. 12) and various integrations
by parts are performed, the required variations of W are obtained.

They are

2 2
b, =~ fstsort - B
o)
,ed)g(?‘_m)( /(,zﬁ*

E,Z &, 4,2 (A, 14a)
2y
EX { b A
+ £, — & < J?
£ ¢ 2R T 7R "‘Te{'j;z(?i“ ’g)
_':é/‘s‘-;é[o((a( +.._.)] der do

and

2R 2/’? (A. 14b)

£
féj_._ g—-———-) .,.L.___.(og.,r- )_}SMJG



139

The Kinetic Energy

The kinetic energy of the ring (for unit width) is approximated

by

;&{f/[( )2 4+ ()2 ] de

{A.15)

where the ring is assumed {0 have a constant density (before deforma-
tion) and the kinetic energy of rotation has been neglected. (See

Section 2, 6.2 for a discussion of rotary inertia effects).

The Potential Energy of the Applied Forces

The potential energy of the applied loading (for a ring of unit

\;vidth) is given by
27
A = — /jz(&’,f) w £ d6 (A.16)
[~

where the pressure ¢(8,t) is assumed to act only in the raqial
direction and is defined as positive outward {in the same manner as

wr),

Apnplication of Hamilton's Principle

Hamilton's Principle can be formulated as the stationary

variation of a certain time integrai:

j/ (T -V)dt = o (A. 17)
2
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where T is the kinetic energy of the system
V  is the potential energy of the internal
and external (applied) forces

and tl and tz are fixed times.

In the present problem, T is given by (A.15), and

V = (W + A) (A, 18)

where W and A are approximated by (A.11) and (A, 16) respectively.

From (A.17) and (A. 18}, one has
f'Z
/ (§r - Sw - SA)dt = © (A. 19)
tr

Employing (A. 8) and (A.14 - A.16) in (A.19), integrating by
parts, and performing the variation first with respect to w-, then with

respect to v gives equations of the form

2

t, s
f /[j{(w:,u; a"w-)] r-1- /,g(w;,.,.)fwar&jaft-a (A.20a)
f’, o

[+

and

f{[f(“’z”éf"‘)] +ff(w,«rj¢$ﬁrdo dt = o (A.20Db)
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The variations Sur and dar are nol completely arbitrary,
since physical considerations require w and v to be continuous and
single-valued. Thus, du and S must satisfy this constraint; in
particular, dar (o« ) must be identical with Senr (0= &%), etc. Using
this, and applying the standard arguments of variational calculus to
(A. 20} yields the differential equations of motion and the associated
poundary conditions.

From (A ZOa), one obtains

/o.»{-" )+j R er

e (555 +2 355

-%—-:-—f(éf—“i F) e 35) - &
Jpr 1 2
<5 (55)" ~ S5 (355 )]

(A.21a)

L

ar”

S
zef-(m’- - '55)[(%%4’2”;"

+”&]f = 2(8,%)

and boundary conditions of the form

B /,ele“ ( w)/ = f/ff‘ Ja )/

G =0 o =2

etc.

Equation (A, 20b) gives
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oK — %{3—3—" + ";;"; +E’(__.«.f_,,,)[w

j;a: +Z{E’ %_mjzjf = O (A.21D)

and the boundary condition
2 e I
& =0 & =2
By using the transformation y = R8 and manipulating the
various terms, (A,21) can be put in the form of (1.6}, In writing

(1.6), D has been used to replace -F—f—l;-— in (A, 21a).
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APPENDIX B

It is the purpose of this Appendix to demonstrate the approxi-
mate techniques which were used to obtain the solutions presented in
Sections Z. 3 and 2. 5. Some representative examples from Section
2.3 are examined ir detail, and the reader will have no difficuity
verifying the other solutions which are discussed in the body of the

thesis,

The Perturbation Method: Vibrations near Resonance

For simplicity, consider (3.4) in the case when G, = 0. Then
(3. 4) contains nZ as the non-linearity parameter. Defining 112 =€,
G, = €8, andc F= Q7 , (3.4) becomes

”

2y g [y, - 1]

{B.1)
-+ :f - £ )?"_ cos &
where \f(€)is required to satisfy the conditions
\i (&) = :r (-“94‘2"’")
J(0) = A
Jo(0)=0
gince periodic, steady-state solutions are being sought.
To apply the perturbation method, both ~ and {2 are
exparded in powers of the non-linearity parameter:;
= 2 3 e B.2a
f =, +ef + ety + € £ (B. 2a)

5
2 = [+ €w, + €%y + € 7¢Oy + - (B. 2b)
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Substituting (B. 2) into (B. 1) gives
[/-f- 2w, + €%(co,2 +2m,_)+---]{~}' + € ¢ €24 4
¢ v " -
tzltet et IS re(LF L)+
+~f:+2e~;;ji_ -,r—]Jz + Ny *r €f + erp v -
= € &Cosg

d(

where = has been replaced by ( ) for simplicity.

Q.
[

In keeping with the perturbation method, the equation and the
subsidiary conditions are saticfied for terms having iike powere of

€ . Thus, one has

0(€°): gﬂ +f =0

O(e’): F + -, +2w,~}’; "‘%[ii*‘fl"i““"

’

O(€%). ‘i S, (@t t20,)f + 20, F

rew g, [, + $7] + 3} [3.9 +v, 4.
29,41+ Z[LF+ 4] =0
etc. , with the conditions
{‘.(19),: S (F+ R ForR AiL <
o, (0) = A Y. (0) = o

. ¢ >0 (B.3)
S, (o) =0 ‘f:.(OJ=O}

Scolving these linear equations in succession gives

ole*): Y, = Acos® =« Acos Qv

' -w - A’
o) 3 + 9 =/[~ +zw,,4+-j~jc“a+~4—_cossa

To avoid secular terms, (since a periodic solution is desired) one puts
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AS
gn_’ 1‘2«.3,/4 ‘1"—4-—- = (B. 4)

3
Then \_)0, = a cosd -+ _,625/,\/19 — 342_ cos 365

3
and to satisfy (B.3) it is clear that b = 0 and a = % . Thus,

3
<, = _.3_2_ (cos & — cos3)
From 0(&2), one has {using £, and ¢ )
. 2 3
g+, =it rzwnh + 2l @AY

3
- [___._."j'é'q + ..’j.._s--.-‘— -'-'!-f]cosﬁ'«?

/é TZ2E
A 4%

Again, to avoid secular terms, one requires

A

Then ~j’ can be found, and the method can be continued; for present
2,

purposes, it is sufficient to stop at this point. The result for f is
eA”®
j(z) = Acos 2T +-—§E— (Cos_ﬁ‘.z’ - co.s_s.raz') +

Similarly, e, and e, are related to A by (B.4) and (B. 5), giving

L2 = [+ € (A Pn) + €2 (A B )+ (B.6)

Equation (B. 6) results in the response curves and the "backbone
curve' as well. The latter is obtained by putting A, = ¢ and consider-

ing the case of free vibrations. In this case, {B.4) gives
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3 2
2@,!4 +—Ai' = O) C.e,) a,{ E— -4—
4+ &
7A4%
whence (B. 5) yvieldsg ¢, = Hence, for free vibrations, the
4 “ Zse

inextensional ring results give

2 -+
7€4
R = / — €A + = e
e 256
which is plotted in Fig. 2.

Finally, to complete the calculation, r must be determined

2
from r = - = Substituting the result for ¢ gives
= A* e A*
UT) = "g—(/'f'c‘?f»znr)—z;;(f—-c‘:sq‘ﬂz‘)-(—-

up to 0{<€ ).

Thc Perturbation Method: Vibrations Away from Resonance

A simple perturbation scheme is used when vibrations away
from the resonant frequency are examined. For example, consider

the cquations for the "'extensional' case:

j’zz-f-\f * Ff[/z'f"fz = G, Cos 27

2 £ - (3.5)
'Z/'Z.:.‘ -fF[/'&'r‘—‘%—] = LZ—COSJ'ZZ
With A= Qx , and % = (') , these become
.(22-j" o+ [A ¢ %z'] = G,cos¥
{B.7)

2
,22_(21/'5 + F[/t+--:4_£‘]=%€°caé’6
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For vibrations away from resconance, > and r must satisfy
J(9) = :f(’o +2r) (L) = A +21)
Expanding o and r in powers of the non-linearity parameter, (in
this case, m) one has
ff = f, ‘*'Z‘f, + ,szaz o
N A Y IR oV T
which are then substituted into (B. 7) to vield
Q[ + 0, + 1 # (et 04,4250 * ]
-f-/-"[.:(. A -"]{/o ERp ol #F 2nf. S+ } _
4
G, cos5 @

2 pa2y 5, o ~_{,"+2 AR
’Zﬂ[/o-f"(/"' ]'f"F[-/O‘.‘f'?/,-p.. f?;‘f" ]
= 26,
2

cos B

Equating the terms having like powers of n and solving, one

has

Olr°): D29, + 9, = G cosS

S = _ G coss

[ — (1%
and 2 2
/9:-.:——;:- = — (‘,GT;::.)’- (/+ cos 28)
O)): a*§ +, = - Sla (14c0s20)
and ,E[// * ﬁ_‘i] = __c_;:, cos &
£ 2
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whence

:f,:—_gi_éf_ [/1,_:05,249]
£{t-102%) /- gL2%

/f = __G—:Co.sﬁg — kf" il

ZF 2

zF 5(/ Y e/ nr )’ (- 4“9_;.]6059

G’e ‘4\. cos 3&
E (- 12%)* 1 - 42*)

etc. Up to 0(n), one has

G, 2 x
g = Smcer ¥ . LSm [1 + S2222F 7, o(x2)

[ 2% o) - £2%) [ — 4. 2*
G2 G2
S = o [+ Cos2T) + —
6(:—-r1°0"( °* )+ g Pmmy Lo

COoS 327 + cosse¥ co:s_.f’?.z.
) ]+ G j+0(’¢)

for G = G_, and analogous results for G_ = 0,
o n o
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The Method of Averaging

As a straightforward example, consider the inextensional

equations with lineayr viscous damping:
2z
Yoo *24F + F + TF s, » 2]

> 3.45

To apply the method of averaging, let
P(r) = A(z)cos [2F + $(z)] = AcosX
where A(7T) and ¢(T ) are taken to be slowly varying, Differentia-

ting, one has

"fz, = — 2 AsmX + A,KCosDC - 95?/{54’\!}.

In kKeeping with the averaging method, the underlined terms are set

equal to zero; thus,

A!.' cos X - ¢Z AS/N.)C = O (B. 8)

and T = — 2 A siw X

Differentiating once more gives
fpo = — 2% Acos X - S2Ar smn X — 2Ad, cosX
When the expressions for S, '.j'v , and D%-z are substituted into

(3. 45), one finds

[1~52%2) AcosX — 52 [ Ay siwX + Ad_cosx]
- _z/_.rz A s X --%: {_rzzAac:asJC cos 2K

(B. 9)
+ 2A Ay sINE Cost )X + L2 A% P, CoSBJC}

L AG cosXeas (X =) = Gncos (X~ ¢)
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Multiplying (B. 8) by 42 sinX and (B.9) by cos X and adding gives

[1- 2227 Acos 2K -z/g.aA.swx cosX — (2A

2 3
--22— [%f_é_ (caszx + cos X c::s.?}d) + L2 A‘Ar SJNZCQSSJZ

)
+ “{i:;_.f" (co.s_)( cos 3X + 3C°51X-)]
(B. 10)
A 2’:6" [..é’_— (cos 3x + Fcos X) cos ¢

~ SnX s @ X s ?5] = G,,, [Cosz)é Cc.sqé
+ sinXK cos X S/n ¢_7

Next, equation (B, 10) is averaged over one period, Sy integrating on
X from 0 to 27 The functions A{7) and d(T) are assumed to
be "slowly varying"; they are replaced in the integration by their

average values, A and ¢. Thus, (B.10) yields

- =3
[1-274 - 2z0A4 ¢, - ’Z‘_—Z__". A
2p* 2 A% &

8

(B.11za)

— G-M cos 5

Similarly, taking ein X times (B.9), adding — S2cos}¥

times (B, 8) and averaging over one period gives

2o A i_ 1*eA*A -
2RA; - 2f2A = = G s P (B.11b)

For steady-state vibrations, A and T',é are constant; in this case,

-

A, and H;_d vanisgh identically, which causes (B.11} to become
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-
{B.12u)

and
—2502 A= Guome (B. 12hb)
Squaring and adding these gives
{0-a14 - -’Li‘%z—’i’}z + 4—/‘"—"2"»3‘2'*r ey {B.13)

For given values of G_, nz, and {2, A can be computed from

{B.13). Then ?5 may be determined from {B. 12h).

For p = 0, (B.12) reduces to

(B. 14)

- 2_"22’;;-3
Z}—“zz]A#?‘# =Gm

If B is very small, (B.1l4) gives results that are very close to (B, 13}

except i the vicinity of
-
- 2 1R A
/7 - ,:2"],4 _ ~ = O
P -
i. e, , near {7 = /_l_ﬁ +
&

which ig the so-called "backbone curve'.

On the '"backbone curve'', (B. 13} gives

' 22 A% = 6. | e, G
2,6 <2
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which may be substituted in (B, 12b) to yield ¢ = — —2'“-— . This
corresponds to the resonance point in linear vibrations.

Finally, the approximate solution for  becomes

j(r) = A4 cos [<«r + 4-;]

with A and § determined from (B.12) and {B.11b) as indicated above.
A typical response curve is shown in Fig, 3., As mentioned previously,
the effect of the damping is to ""round off' the peak response,

The method of averaging was used to analyze the equations
which include the effects of extension (3. 5) and tangential inertia

{3.25 - 3.27). The results of those studies are presented in Section

2.3.2 and may be obtained in a manner similar to that described here.
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AFPPENDIX C

In discussing the stability of the one and two-mode solutions
(Sections 2. 5. la and 2, 5. 1lc¢), it was necessary to omit many of the
calculations and present only the results. The reader who is
interested in the details of the analyses will find them included in the

following paragraphs.

Approximate Stability Boundaries of Equation {5. éb)

Xeg t Rfs Xy 4 X

2 -2 -
+-}§—x[—_r22,4 cos 2(LN1v +¢)] (5. 6b)
+ —Qéﬁ G, coslr = O
If G, and Bs are both zero, (5. 6b) is just the Mathieu

equation. Similarly, when Go and B¢ do not vanish, it may be

transformed to the more general Hill's equation., To do this, let
-f. T
x(r)=«-ft)eﬂ" ave T o= RE
and define
o =2 (1-4° 2 2 24*
'_'_Q_z /ds) af=—j‘2_§.'léo 292.":"'—2’2
é, = €2 = ¢>

Then (5. 6b) may be written as

-
0= .‘_liu_'-, + [6, -+ 229M cos(2m &+ 6,,.)]14_ (5.10)

dz.n‘ Mox |
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In the vicinity of the nth unstable region, u is approximated

by
“(2) = e% s (a2 — ) (C.1)

Substituting this into {5. 10) ané equating the coefficients of the first
harmonic terms separately to zero, one finds
(8 =~ m?) = @, coszo
’2/“'”" = G smn2o
where 8 = &. -+-/J-2‘
Squaring and adding gives
(6 + u?* — ) + (2an)* = g2

wnich leads to

«* 2
//4 1""-2(69 + )’/Lz -+ (6." v 2'4‘,29" -}-m‘#-— 6:) o= 0
Solving this bi-quadratic results in
2 - 2. 2 }’fa
Vs (Qov‘f"")i[‘?‘meo-*a:.]

Now recall that
_ ,%Iﬂze

It is apparent that X{¥) will ke unstable if
2
2 8 . 2 <+ -
- L ”_gz‘
Thus, the condition for instability of (5, 6b) near the nth unstable

~ 5 SAE
X(Z‘)—eb(,(z')e/a—:e. Lt SiN (mg - 7)

reglion is

2

- (G, +m*) ﬁ[‘fm“e.qaa,,:]& > % (C. 2}

Since &> 0, (& -J-.M.’“) is also positive, and {C. 2) is equivalent to

[9”3*'4"‘:&} > [6o+m? + 2K izjz
L2
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ag the instability condition. Conversely, the requirement for

stability is

2,
PO + ot < [ Garmt + L T1* (5.11)

L2

Stability of the Solutions when both Self-Coupled Bending Modes

are Excited

To investigate the stability of the solution (5.22b), the method

of averaging was used. To apply this technicue, let

i —

/‘? = Aa ‘f“ﬁ.(Z’) ?-5-._-, > F 50(3.)
B = B +.A4E =@+ ¥ B

|

where the steady-state solution has been redesignated by
F () = A, cos[- 2T+ @& ]

T_,(Z) = Ea SN [JZ z + 52«] (5.27)

and a, b, ¥, and W~ are perturbations in the amplitudes and

phases of the steady-state solution.

To obtain the equations governing the perturbations, equations

(5. 26) are substituted into {5.15), and use is made of the fact that

(5.27) satisfies (5.17). Only the first order terms in the perturbation

guantities are retained, and the following equations result:
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Ka + 420,40 + 4k % ¢ [c smE

dz

* 4525, K,,.jja - K. ;3{’.5 — 4.123’,@14’ + g’z,/g‘éig’go(c.m)

Fta-kede s My b+ i0dk g

i d -
A K2 4 ad kv -—MB%'L: - o . 3h)

G -
—-’“_Sﬂ_ﬁ'm —-Lz%__ 4_@&% ""L*,%

+ [4-.(2[.4.3. - Gycas 9{]50-—-4_{2@_5‘_')1"_. g_K’ %‘gj = o (C.3c)
— A - de d A -
4 ’Qa' l-f dv * M 2_2.: -+ 4.-(2-4‘ A-b?

—Z,/gf_j%, 42l ¥ =« o

(C. 3d)
where the following notation has been introduced:
K’ - G’n cos #' 6_(22';4_: 7 — - _
;] = — [q-.-r-gf_‘zA.Boslﬂ’-ZAo

° 2 ?

—a i
Ke= 2l (2 +202), Ky=— 202/ fees2d,)

2 B
Lz = 2.0 + E'gA'” , [_+ = L. &52A, B, cos24,

_ .2t g2 —_ 2
M'S = 2 N ﬂa =_f23°(2+ = )
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Equations (C. 3) form a linear system with constant coefficients;

to solve them, one inserts

a(r) = 4, E.Az EP(?;) - P eA

Bz) - A4 2™ sy =% e F

r

(5.29)

and requires a non-trivial solution. This results in an eigenvalue

problem, whose determinant is given below:

K H2iytdKe) (Gusmd- (AB-4.0Ek)
4102 B, Ky—AK,)
(2L, -0K) M, (40dk +AL k) (-Am,
o ) - 4274 k)
(5%:'_9‘-- My) (Mg~ £52KY (= Guoosd, (- ARK,

+ 40114 8) - +2&L)

.—(AL*.‘{-%_QK’) ’\Azf (4_0;51-4'/\;4;(3) "(4-0'1;%)

(C. 4)

When this is multiplied out, a polynomial for A results. The
Routh-Hurwitz criteria (or some other stability criteria) can then be
applied to the polynomial to determine if Re()\) % 0. This procedure
must be carried out for each combination of ./-‘-xo, 1_30, Eo* ';‘2 , Gn etc. ,
to determine the stable and unstable regions of the solution (5. 22a).

An alternative procedure is to golve the eigenvalue problem
numerically on a computer directly for the eigenvalues themselves.
This approach was considered, but it has not been carried out.

Finally, one can obtain approximate stability houndaries by
neglecting the effect of damping in {C. 4). Considerable simplification

results, and the determinant may then be put in the form (5.31). In
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this casc, it becomes practical to do the computations by hand, and a

polynomial of the form

2+ 2.2 (2 tE2) 2% 4 Ap2 (g ) e o (532

is obtained, where the substitution z = 242 A has been useé. For
the roots of {5.32) to have non-negative real parts, the conditions
22 (t+,8%) 20
and
4221+ (B + 3(5) — (£)] 20
must be satisfied.

Solving (é)‘-—- 3 (5)4—- (é%)z—/ = O, one finds a positive real
r‘oot, (é Jz = 3,38 and two negative roots; the latter have no
physical significance. By examining (5.33) in the vicinity of

({—:)2 = 3. 38, one can show that the inequality will be satisfied (and
the two mode solution will be stable} if (é )2. = 3.38.

The above result was obtained by neglecting the damping terms
ir. the stability determinant; from previous experience, one suspects
that inclucing damping will alter the undamped stability boundaries in

a relatively small region., This is sketched qualitatively in Fig. 7.
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TABLE I

EXPERIMENTAL RESPONSE SURVEY

Mode {s) Driving
Vibrating Frequency Type of Responge
{cps)

n = 2 7.1
n o= 3 17.5
n = 4 33.0
n = 6 78,0 Resonance at the
n = 7 107. 4 Driving Frequency
n = 8 139.2
n = 9 179.6
n = 10 222.8
n = 3 8.8 Ulitraharmonic, order 1/2
n = 4 11.1 Ultraharmonic, arder 1/3
n = 7 213, 0 Subharmonic, order 2
n = 8 69. 8 Ultraharmeonic, order 1/2
n = 8 47, 6 Ultraharmonic, order 1/3

n = 9 92.3 Cltraharmonic, order 1/2
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TABRBLE I {(cont'd)

EXPERIMENTAL RESPONSE SURVEY

Mode {s5) Driving
Vibrating Frequency Type of Response
(cps)
n =3 n = 3 at 26,7 cps,
} wr |
n = b n = b at 53,4 cps
n = 4 n = 4 at 39.0 cps,
} 39.0 {
n = 6 n = 6 at 78,0 cps
n = 4 n = 4 at 35.8 cps,
} 35. 8 {
n =7 n = 7 at 107.4 cps
n = 4 n = 4 at 35.3 cps,
} 35.3 {
n = 8§ n = 8 at 141,2 cps
n = 5 n = 5 at 60,5 cps,
} 50. 5 {
n = 9 n = 9 at 181,5 cps
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FIG. | RING GEOMETRY AND COORDINATE SYSTEM
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=
'
o 5 COMPAN!0§ MODE,
" siN 22
]
- @GQG
o ep ©
= O | : © c |
< 0.96 088 @ 100 .02 104
L
0 0
G@%
Q
< :
- ® ;
m
. g‘) {3
@ @
T o
o @
3
[O]
-7 %GGG'@ o) o
BACKBONE GURVE — | DRIVEN MODE,
\“A cos .
O ]
0]
f @
. e 'k
w5 \ ©
g 3 \ G
d ,@@G ]
= . 5 @0 [ 0o | _
< o} 8 [} ¢
0
0.96 Q.o .00 .02 .04
W
Wy
FIG.I{7¢ n=4 RESPONSE (MASS ADDED)



<
@ g | B —
g COMPANION MODE,
> SIN 0¥ o °
L R &
E.J Q o
3 o _ 0 o
0.96 0.968 w 1.00 1.02 (.04
Wy
0 @ G — 3 %
:
< :
) %
o o)
L= 1 @
3 ®
%%
I
B
- °%0%0 06 4
i E
DRIVEN MODE,
cos Y
. .BACKBQNE CU. R
= 10
.
< RS
Lid oy @
(' © ®
2 5 B —O-
= o o,
= OG ®
% da @m
< o 0] @ @ &
¢ 096 0.98 w .00 .02 .04
W
FIG.i7b n =4 RESPONSE (MASS ADDED)

SHAKER DISPLACEMENT : 2 8, = 200 x 10" 2 IN.




178

, COMPANION MODE,
3 sin oY
3 "
n; 1O} 5_9,
S
- o
: %
3 o ® ®
0.96 0.98 T}J_ .00 .02 .04
L
: |
1 |
: S 8.
S/ i
o G’@%@ %
Q, i
o ® 04 o o |
;
BACKBONE P _
CURVE ‘: DRIVEN M,?yDE,
N, cos -
20 - N\ _
=
S
I
W
o
2 10 o
— ®
a o
5 %o 6
@
5 o ° ® e
0~ . P L e P
0.96 ose , 1.00 102 .04
e
FIG. IT¢ n=4 REGSPONSE (MASS ADDED Y

SHAKER DISPLACEMENT : 28, = 300 x I0°3IN.



179

-~ i
£ e COMPANION
o °1'®  MoDE,siN -
5 " o | °
@
; N
= %
< 0 &
0.96 098 w_1.00 1.02 .04
Opr—e or—e ,
o—o -
; iﬁ%
- !
& 1 |
2 d g
| o6
; o P
Qeno o]}
0]
- ®oo eP o ¢
DRIVEN. MODE
BACKBONE ny !
CURVE —/\i COS “R
20
£
s
<t
W ®
S 1o o
Lt o]
3 Te |
% . @ GJD
2 o ol © © 5 |
° 0.96 088 100 1.02 .04
FIG.I7d n=4 RESPONSE (MASS ADDED)

SHAKER DISPLACEMENT : 2 8§, = 400 x |0 3IN.



AMPLITUDE, A/h

25

20 ;

15

0

Fi1G.

R 1
- o €c = 3.08x 10”4 '
¥ !
| %
@ '

5 © :
" .
X o
i ©

©
I &
N /
g )

o
N [2)
o
E
I [} 1
0.96 Q98 1,00 - 102 .04
w
oL

I7¢ CALCULATED AND MEASURED RESPONSE. n = 4,

MASS ADDED, 23, = 300x 10"3 |N.



00L

NnuDD._._.._n:zdv SA S3GON 3HL L1V DINOWHVH OGNOJ3S 111'91d

(3ANLITdANY) ~ T“l
2 -4

009 005 00t 00€ 002 00l

181

:SWY3L HY3NHII-NON .._420__.:004 3HL ONIGNTON ‘AHO3HL — — -

K
(ne)2 + & Im - K45 yo4* rHOIHL ]
¢ | INIWINIIXT o

o

8

g
‘OINOWHYH puZ TYNOISNIWIO-NON

<
)

o8

yb
M2(ovy)



182

SNOI93H ALITNIEVLSNI

660

NOI1923y

SIHL NI d3110X3
300N NOINVdAWOD

e)

4/v ‘3ANLINdWY

Q
o

660

3HL 40 S31HVYANNOY 81914

Im

™ 860

|

40 sSad071

SINIONVL TVOILEIA

4/v ‘3ANLITdWY



183

£ 5
35 I
- COMPANION MODE, o
Ll ny ] e
g : SIN"'_R'T' 9
= . |°
& %
= 0 02
< 096 - 098 w 1.00 .02 .04
@
®
LC
20 f -
DRIVEN MODE,
cos & )
R )
15 2
= ® @
.
< . .
B 10 o
D Q
- e
-
o o] o
E .
<l @ c]
®
5 vy
@ @
e ] @ @
0]
®
)
O .
0.96 .98 .00 .02 1.04
W
FIG.I9 n=3 RESPONSE (MASS ADDED)

SHAKER DISPLACEMENT: 2 8, = 100 x 10°3IN.



184

— ASSUMED SHAPE,

1.0 Alamax SIN f
/ Amax. = 27.1 h =0.139 IN. \
& | L &
0 0.2 0.4 0.6 0.8 1.0
Adyax. o EXPERIMENTAL DATA
.O A

Ayax = 5.8 h=0.081 IN.
) L J
0 0.2 0.4 0.6 0.

N

m/
=k

Alamax.

Ayax,” 9-6h =0.049 IN.

-
o6

0 Q.2 0..4 _ 0.6 0.8

/ Amax =1.36h =0.007 IN.
] H

o 0.2 0.4 0.6 0.8 1.0
f, FRACTION OF THE HALF WAVELENGTH

/

FIG.20 DEFLECTION SHAPES



Vl/V 185
|0 IMAX. o |
/rv N SIN f
o
FIRST HARMONIC} \@\
)} i : ) N
0 0.2 0.4 0.6 0.8 , 1.0
2/v, ;
2NODE P
© ®
X ° ©
LO® o © e &——
SECOND HARMONIC
| |
Q v 0.2 0.4 0.6 0.8 1.0
3/v
e IMAX.

M THIRD HARMONIC
) |

> : | D
(0] 0.2 0.4. 0.6 0.8 1.0
'_f, FRACTION OF THE HALF WAVELENGTH

viy,t) = V/{y) cos wt + Voly)cos 2wt
+ Vz(y) cos 3wt + -
RATIO OF THE HARMONICS:

AMPLITUDE OF VIBRATION : Apay=16.1h = 0.083 IN.

FIG.21 SPATIAL VARIATION OF THE RESPONSE VOLTAGE



ASNOdS3IY 3H1 40 NOILIVIHVA TIVILN3H34ANNDHID  2¢ "9l1d

NOILlISOd TVILN3IY3I4WN2YHID

2 9 S _ b ¢ =z !
& :
: 7
“ 1>
et F<
s 2
Y 3
x c
o
m
[Na)
it
v "€-2 3AVM J1VH 3HL NO 3INOQ
}™ SO0 4 J83mM ( 914) SINIWINASYIN 3HL 40 1SOW

g | ‘2 GNY ‘G°E°1 1V G30V1d JuaMm
SAV3IYHL L¥0ddNS "3IQOW v =U JHL 30 SIAON IHL ANV
MM 3AING 3HL 40 NOILVIQT FHL SMOHS WYHOVIQ



187

n
GROWTH OF THE COMPANION MODE (SIN _H)r]

- [=0.5 SEC.

ny
GROWTH OF THE DRIVEN MODE (COS )

mree s e

/ =] |= 1.0 SEC. - }*l.o}*sec‘

n
(BOTH MODES EXCITED) (ONLY COS i EXCITED)

MESSs swwwn

'. I""'l"’l"l"|’l'|'||I AR
|,|HljtITI - +~r

T
[ "' UVUVTTTTY

~| [=-o0.05sEC.

INITIAL GROWTH START UP OF THE
n
OF COS T" SHAKER

(VELOCITY TRACE)

FIG. 23 STARTING TRANSIENTS



— A=42 3 h

;
.'

- - 1.0 SEC.

n=3 MODE

FIG. 24

188

-l
ol

_A=|.88h

~| |<o0.5sEC.

__A=8.48h

& )

~ = 0.5 SEC.

r_4|’-'l|.=l.EB h

DAMPING TRACES



