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ABSTRACT

Solutions to free and forced oscillations have been found in terms of
an auxiliary set of eigenfunctions. The slosh force and moment for an arbi-
trary axisymmetric rigid tank at arbitrary Bond number have been derived
for both pitching and translation and expressed in terms of characterist' s
of an equivalent spring-mass system. Nuinerical examples have been con-

structed which compare favorably with available theories and experiments.



NO7TATION

a a reference length, say, maximuvm radius of the ullage
dA rdrd@

dA dA/al

ds 3-D surface element, e.g., rdfdrd.:

dsS dS/a3, nondimensional surface element

F equilibrium (mean) interface or f/a

Fa instantaneous interface

Fy horizontal force defined by Eq (19)

Fr -g—;:, slope of F in the generatrix plane

Fy x - component cf force on the tank

f equilibrium (mean) interface elevation

g gravitational acceleration

H amplitude of h/a, nondimensional slosh height

h interface perturbation

h, a reference length, say depth of liquid at center of tank
Mo, I rigid mass and moment of inertia of the mechanical model
Mp liquid mass

My pitching moment about y-axis

my kth slosh ma. -

Ny Rond namber

n outer normal

ng n/a, nondimensional normal distance
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pressure

equilibrium liquid pressure at origin - a constant

ullage pressure

equilibrium ullage pressure at origin - a constant

r/a, nondimensional radius

tank fixed cylindrical coordinates
time

volume of the liquid divided by a3
liquid volume (lower fluid)

wall wett.d by liquid

instantaneous wetted wall below instantaneous interface, F

translational amplitude in xg-direction
space-fixed rectangular coordinates

Ya, nondimensional hysteresis coefficient
hysteresis ccefficient

density difference, p - py

Kronecker delta

sign of n . 2, cos (n; z), or-gl

n
amplitude of pitching about y-axis
the mean curvature

perturbation of the mean curvature

jth eigenvalue (m=1)

jth eigenvalue corresponds to mth circumferential mode

lower fluid density

iv

e



ok
¢|

¢O

“k
Q¢

Subscripts
()1 ()
(g ()

().c.()

density of uilage fluid (vapor or gas)

surface tension

amplitude of nondimensional velocity potential, ¢/wa2
velocity potential of the auxiliary eigenfunctions
amplitude of nondimensional potential ¢k/wa2

see Equation (15)

amplitude of the nondimensional potential ¢"/w®a

velocity potential

velocity potential of the kth natural mode

additional velocity potential due to interface movement
velocity potential of liquid with a frozen interface
frequency of oscillation

kth

natural frequency

pa3dwl/e, product of Bond number and frequency parameter

at the vertex of the equilibrium intertace (origin)
at the contact point in the generatrix plane

related to center of gravity

( e effective value of ( )

(g ()

() ()
() ()

on F
associated with cos (m68) mcde

related to pitching



relaied to translation
on W

related to the ullage
just below the interface

just above the interface
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INTRODUCTION

The behavior and consequences of fuel sloshing in rockets under a
high effective gravity were recognized problems which have been quite well
understood (Refs. 1, 2, and 3). The problem of low-gravity fuel sloshing,
characterized by the significant role of interfacial tension, is now a subject
of importance for application to coasting rockets or orbital stations.

The equilibrium behavior of fluids at zero and/or low gravity has
been studied in References 4 through 7. The theoretical determination of
an equilibrium interface shape is nonlinear and requires a trial and error
procedure for a given contact angle (Refs. 5 and 6).

Satterlee and Reynolds (Ref. 8) have successfully solved the free
sloshing problem in cylindrical containers under low gravity and formulated
a variational principle for this purpose. Yeh (Ref. 9), using a similar
approach, solved the free and forced sloshing problem under low-gravity
conditions, without force and momesant or an equivalent mechanical model.
Dodge and Garza (Refs. 10 and 11) performed force measurements under
simulated low-gravity conditions and predicted forces of moment for cir-
cular cylindrical tanks under lateral (translational) motion. The equivalent
spring-mass model was given in Reference 10. Additional work by Dodge
and Garza for other special tanks was given in References 12and 13. A finite
difference approach with application to a hemispherically bottomed cylindrical

tank was given by Concus, Crane, and Satterlee in Reference 14.



These investigations indicate a need of a program f r a general
axisymmetric tank. A preliminary study on liquid sloshing in an arbitrary
axisymmetric tank was reported in Reference 15, but it is limited to trans-
lational oscillations. It is the object of the present paper to present a semi-
numerical approach for an arbitrary axisymmetric tank with simplified force
and moment calculations and the resultant mechanical model for both pitching
and translational oscillations. A general computer program will he com-
pleted to obtain sloshing frequenci- s, slosh mass, and mass-height, for
which a brief description is given in the Appendix. |

Governing Equations

Assuming irrotational incompressible flow, there is a space-fixed

velocity potential ¢ satifying the Laplace equation

vi4 = C (1)
As in thin airfoil theory, the velocit potential can be obtained by imposing
bou.dary conditions on the initial or mean position, but the hydrostatic pres-
sure due tc gravity possesses components along both the tank axis z and the
lateral axis x (Fig. 1) for piiching oscillations. The linearized Bernoulli's

equation states

= _ag - x60 =0 (2)
p-prtey, teglz-x0)
and
09
P‘Pul'*'pu‘at—u"’Pug(z'xey)zo (3)

for the liquid and the ullage, respectively, and Pp puI are constants.
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Boundary Conditions

The linearized interface kinematic condition states

2
oh . 3¢ { of
2= 1 + (=
at on kar) €1 (4)
where
€l = sgn ( n - z) (4a)

The interface dynamic condition states

P_ - P, = 0K = oKg + oK' (5)

For the ""mean' interface location f (in g2neral, p; = p; + pi, p;, pi being

constants),
ok + (p - py)gf - (pp - Py ) = 0 (6)

where the curvature of the mean interface, Kqs is axisymmetric and

r —
kg = - 190 )_ __or (6a)
r or p >
1 {2£)
Y \er/ )

Equation (6) holds for r = 0, thus

p? - pS = - 2 <ﬂ>
1 uI arz 1



The linearized interface dynamic condition is then

- (ph - Pyy) + ok’ rpd2

ot Pu—F— Bt 2+ (p - Pu)gh-(p - pu)gx9y—0 (7))t

where the perturbation curvature for cos (mf) variation

ah
Kk'= - i8-8 ar -mz h (7a)
e
NIRRT rz./1+/ﬁ\z
LY \9r/ | 'V \Br/)

m being unity for lateral excitation of a rigid tank. At point I, the origin,
h=0, ¢=0, «'=0, and thus pI = puI. For mostanalyses, p, = 0 was
assumed. We shall assume the impulcive pressure in the ullage is negligible,

i.e., ¢4 = 0. Then for sinusoidal oscillations, Equations (7) and (4) yield

-
1 8 |, 8H 2\-3/2 m2yg 2\-1/2

Q= = IR0+ -2+ F + :
{R ar[ ar( FR) R2 *FR JL Np, ™

+2%@=0onF (7b)i

The boundary condition on the wall is that the relative normal

velocity be zero, i.e., with cos (n, x) = %’;—i and cos (n, z) = g:; »
By _ 5 O (s
dn ¥ dn

tFor smus:ndal osF)llatmns and m=1, h=0, ¢= 4> =0, x=0, and k'=0 at

point I, thus pI I = 0. For other m values, pI uI = oKk}, which will e
omitted until needesd. .
iFor siuuesidal oscillations, without loss of generality, ’.‘o' @,, ¢ are

assumed to be propcrtional to sin (wt) while h is proportional to cos (wt),
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%:b k- ﬂ) 9
on y zan xan ™

’

for translational and pitching oscillations, respe_tively.
In addition, there is an interface contact point condition which takes

the form (Refs. 8, 9 and 15}

oh .

or Yh at point II 110)
where ¥ may be a frequency-dependent constant. However, if the contact
angle remains constant and if the not well-defined second derivative at the
contact point is neglected, we can show thaty = 0 (Ref. 15). This value has
been successfully used in References 10, 11, 12, and 13.

Methnd of Solution

We shall decompose ¢ into two parts, ¢’ and ¢°: »° is the velocity
potential corresponding to a liquid contained by a rigid mean interface and
the tank walls. Thereifore, it satisfies the Laplace equation and the boundary
condition on the contour, Equation (8) for translation and Equation (9) for

pitching on Fe and We. It is noted that
6% = kox (11)

while ¢l‘; can be construcied numerically.
$' is the rerturbed velocity potential due to sloshing which is governed

by the interface conditions and zero normal velocity condition at the wall.

AR e S gl il 1l S # i 413 4



We shall employ a set of auxiliary characteristic functions, * ¥j orthogonal on
the curved interface and vanishing on the walls, instead of constructing natural
modes directly. The natural modes and frequencies are then calculated in
terms of a truncated series sztisfy‘ng the free sloshing (¢° = 0, Gy = 0) inter-
surface condition by the Galerkin method (Ref. 17).

The velocity potential ¢' for forced oscillations is then calculated by
expansion into normal modes and the interface condition is again satisfied by
the Galerkin method.

The force and moment are obtained by integration of pressure, not
only on the wall, but also on the interface si..ce the direct surface tension
force and moment on the tank is equivalent to those on the interface due to
pressure, 2ssuming the interface inertia is negligible as well as the interface
mass. To put results in the mechanical model form, the divergerce theorem
has been :ost useful (with some easy manipulations).

Analytical Results

Free Oscillations

For free oscillations, the natural mode ¢; is expanded into a trun-

cated series of the auxiliary eigenfunctions, i.e.,

& = —= Z Ck. ¥Ym . cos(mb) ¢j = ¢ . cos (mb) (122, b)
Gl j=1 ] ) )
a

*For direct application of the Winslow method (Ref, 16), we impose the simpler
normal derivation condition, 9y, /ano = Ay:, on F and used the well-known
influence coefficient technique to deterrnine the eigenvector q:J- on the inter-
surface, the eigenvalue )‘j’ and \llj on the wall,

IS (AL L1 i o



ck. is the kth eigenvector of the following matrix equation obtained by the
J

Galerkin method from integrating the nondimensional Equation (7b) with

weighting function ¢
i 2 Ap _ a2
{ Clymgg] + Vgl #m2 e, 1 +82Ng (B, ) - 22180, 1)

{cj}=0; Li=ltoJd,,  (13)

where

.dS = A 5. . (13a)*

i_J 4s (13b)

=— [Ry_ — (13c)

f (13e)
um F'\]l + F

*The orthogonality property of ¢ thus, kbmj can be easily proved (Ref. 15)
as in the high-G case.



r«pmizds

“%'ﬂi = j — (131)
F Ji1+F2
and m=1 for lateral excitation of a rigid tank.
Forced Oscillations
Let
S, o L e - Jr§x ,
d'= -w a < d' ’ = M = C. H
; ’ k J .
K=y - S~ i=1 9’
(14a, b, c)
in order tc satisfy the interface condition that
s 2 A 2
= X =
kzl 4 (ef - 229, = - %3, €,Ng SE2 0, = o (15)
€, = 0 for translational oscillation, €, = 1 for pitching oscillation.
We have by the Galerkin procedure
mx
Y a [ol-Hpaa- fog(-Hpas ., f:ltoKg, o (6)
k=1 F

ék can be solved from Equation (16) by matrix inversion. There is no r.eed

of storing information of d)j inside the fluid domain as only the force and

moment are of interest. It is noted in the limit (Refs. 8 and 9)

f°k(-Hz)dé= Oyt f”k('Hz)d-.‘.\ (17)*
F F

*This will be referred to as biorthogonal relation.
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then
dy = f‘PN(-Hz)dé/[h(-Hz)dé (18)
F F

which was utilized in proving that a unique spring-riass system exists for
both pitching and t: aslation.

Force and Moment

The force aad momeni exeiied by a spring mace system (Fig. 2)
without damping can be written in the following form (Ref. 18)
@© m
& 2 k 1
Fy —waMF1+z—2—} (20)
T k=1"F (wk 1)
w?
- m, sz
MyT = xowZMFho{- + z Mk (h—k+ a2> 21 } (21)
F h
g =1 0 ho« (3 ] 1)
@
z @©  my [z
Fy = OV“ZMFho{ ey 'M—k<h_k+ az\ T } e}
P L7 2y TFVO how’(fh 1)
.
I m, /2
M, = 6,°Mph§———+ —k< K i ) : }
P Fh(l) =1 Mg \hg wzho (t.k _\
]
2
(23)
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Figure 2. Equivalent Mechanical Model

11



with rigid mass my, its location z5, and moment of inertia Iy gien by

m my
R z X
M
F w = 1 MF
20 _ 1 [2€.G.  « Zk Mk
hg mg | hg kzl hy Mg
Mg
T- = /m.. ug Qo '7-2\
U = “r _ “*tV 2_]_ K “_K
Moh? 2 KM W2 Z - hz)
Fho MFhO F 0 0

Since the force due to liquid pressure, Fx, is

sz'/‘ p-g—de
We + Fe 0

and the moment due to liquid pressure MY is

where

(24)

(25)

(26)

(27)

(28)

(29)

(29a)

12
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: 1 9 , Jmx
dsz—zf @ka_’r:.d§z—2 Z f—\p ds (29b)t
By W+F By =
]
V= Vp/ea : B, = J @, (-H) da (29¢, d)
F
and
z L
2 __1 (_3) (30)
a mk A4
Mp
where
- (0 0]
Do X Ck, By (30a)
j: J
w=J ¢j<§ 2 fg—) S (30b)
F+W B
and that

® N

Ir = Mpally If 2 ‘f gy =
F = Mpa~lp ’ F=y "p n  29n ds (31a, b)
w n

In deriving the mechanical model, p,, has been set to zero. A simple modi-

fication can be made for small ullage density by using

Ap
Ng ==N
Be p B

tFor finite Jmx, it was found that akT. determined by matrix inversion of

Equation (16) without using biorthogonal relation, yields results in better

agreement with Dodge's theory (Ref. 12) than Equation (29b) which is
correct in the limit.



the effective Bond number instead of the Bond number based on the density

of the liquid, provided that the dynamic pressure due to ullage mo‘ion is

negligible.

Numerical Examples

The computer program has been checked out by the following examples,

using the cylindrical tank results given in Reference 12 for comparison pur-

poses.

Flat Interface with High Bond Number

h

Np = 1000, :0 =23 , 12 %18 mesh yielded
2
—— = 1. 85 compared with 1. 847 from exact theory (Ref. 1, p 415).
g
=1
Mo = 0.193 compared with 0.194 from high-G theory (Ref. 18).

F

z] = -0.729'"* comparedwith -0.724" from high-G theory (Ref. 18).

Flat Interface with Low Bond Numbers

h
0
Ng =10 - 2 -2 34 - 12 X 18 mesh yielded

— DN

wia

= 2.15 compared with 2. *6 from exac! theory.

=

A finer mesh is required for better agreciment.

Curved Interface with Low Bond Number and Zero Contact Angle

%
LLO

Np = 100 . 2 =2.34 s 12 X 18 meshT yielded

*Here, the origin is at the vertex of the meniscus.
T12 net points on the interface and 18 net points on the ''side'' wall.
(See Appendix)

14
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w%a mj
— = 1.810 ’ —=0.442 ’ z) = -0.734" (a = 0.68").
g pa3
wza ml
compared with theoretical values of —g_ = 1.777 ’ — =0.438
pa

fro.a Reference 12.

wia
The experimental value of—;— lies between 1.78 to 1. 80.

2
wéa
With a 23 X 34 mesh, the present method yielded ot g =1.789 A
g

m
—L-9.445 , 2, =-0.732". For the 12 X 18 mesh, the

pad

CDC-6600 central processtime is 2 min, while for the 23 X 34 mesh
itis 21 min. Most of the computing time was expended for the genera-
tion of influence coefficients, each of which is a Neumann problem.
However, the influence coefficient method may be more convenient
than the inversion of a large matrix if not faster. No computer

running time was reported in Reference 14, which finds natural modes

by (partial) matrix inversion.

S —
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Conclusion

It seems tha' the present method yielded a practical way of computing
the fundamental aatural frequency, the first slosh mass, and its locaticn.
Higher masses and locations are usually not needed for design purpc~es and
can be obtainea by using finer meshes and longer machine time. A computer
program utilizing triangular meshes and Winslow method (Ref. 16) has been
successfully employed and is expected to be completed in the near future for
the titled problem. However, ti.: present logical diagram may be limited to

a convex axi' "mmetric tank for good accuracy.
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BRIEF DESCRIPTION OF A COMPUTER PROGRAM

The following steps of 2 computer program are briefly described:

Construction of a Triangular Mesh

The triangular mesh is generated as described in Reference 16 except
a simple parallelogram is used as the logical diagram (Fig. 3). For a
cylindrical tank of Bond number 100, the physical diagram is shown in
Figure 4. The lengths of the edge of the parallelogram can be adjusted for
each individual case to yield "near" uvniform triangular meshes, A con-
*ivuous wall needs to be broken into two parts for the logical diagram. This
only affects the local distribution of the triangular mesh and has shown to
yield equally good results for a half full spherical tank at high-G as well
as a cylindrical tank,

Construction of the Auxiliary Characteristic Functions

The char-cteristic funciions ¢ salisiy

v =0 (A-1)
9% _ 0 on W (A-2)
ano

0 .

_— = on F A-3
ong Ao (A-3)

¢ can be solved numerically with the constructed triangular mesh by Winslow
method (Ref, 1€)., Contact point is treated as one of the mesh points as
are the other boundary points, Hence, %5 may be discontinuous at the contact

point, Zero contact angle cannot be constructed graphically but results ot

2)
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Figure 3. A "imple Logical viagram For Triangular Mesh
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decrease mesh size give closer and closer approximations to the interface

and would probably lead to the correct limiting value.

For aninterior joint, ij, [¢ = ¢ij’ d = bl i)y T = 1pliyj), o= rij]

6 ol
2 wpld - 9) - — A0 =0 (A-4)
k=1 ij
v&here

Ay is the area of the ijth dodecagon (see Ref. 16)

Tij is the radius of the ijth point

Wy = .;.. (\Fy cot O + N\ _ ] T ) cot oy) k'= lto 6 (A-4a)

1
rk=§-(rij +rk+rk+1) )\k= 1 (A-4b, c)

6y, o) (see Fig. 3) can be expressed in terms of t), sy 11, tp 1,
Sk -1, and sy.

For interface point,

6

2
Zorldy - ¢) - T Ay +(§—i’) [% °3 *%56] rij = 0 (A-5)
k= ij 1,j

where

Note: (\j.1/2) Ref. 16 =Xj.1, (\j41/2) Ref, 16 = )‘j'

24
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To solve for the eigenfunctions on the interface, we use influence coefficient

LS 83

metheod in which /%) = 0 except (ZJ;) = 1 for the jt
9 | 1,j

\9n j

h

column of the

influence matrix, A standard eigenvalue problem involving only the interface

points, excluding ¢; ; at r = 0, is needed to obtain the eigenvalues xj and

eigenvectors ¢j. Knowing the jth eigenvector on the intersurface, the cor-

responding value of qu on the wall can be easily solved numerically again by

the method of over-relaxation,

For ijth point on the tank wall
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2 @klék - ¢) - —— Aj6 =0
k=1 1)
)\3:)\4:)\5:Oaxldkl:)\2:)\6:
X4 = XS = Xé = 0 and Xl = XZ = X3 -

On centerline, r = 0,
¢ =0form>1

@-=Oform=0
or

At contact point i =1, j = j«.

1 on the bottom wall

= 1 on the side wall

(A-6)

(A-7)

(A-9)



Calculation of Natural Frequencies, Slosh Masses, and Their Location

The remaining steps are relatively routine and therefore will not
be described, except it is remarked that trapezoidal rule was employed

conveniently in evaluating the integrals.
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