General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

LOW-GRAVITY FUEL SLOSHING IN AN ARBITRARY AXISYMMETRIC RIGID TANK

by
Wen-Hwa Chu

TEGHNICAL REPORT NO. 8
Comiract No. NAS 8-20290 Control Ne. DCN 1.9-75-10030(IF)
SwRI Project No. 02-1846-02

Prepared for
Ceerge C. Marshall Space Flight Center
 Hunteville, Alabama

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 285i0, 8500 Culebra Road San Antonio, Texas 78228

LOW-GRAVITY FUEL SLOSHING IN AN ARBITRARY AXISYMMETRIC RIGID TANK

by
Wen.Hwa Chu

TECHNICAL REPORT NO. 8
Contract No. NAS 8-20290
Control No. DCN 1-9-75-10050(IF)
SwRI Project No. 02-1846-02

Prepared for
George C. Marshall Space Flight Center National Aeronautics and Spare Administrotion Huntsville, Alabama

April 1969

Approved:

H. Norman Abramson, Director

ABSTRACT

Solutions to free and forced oscillations have been found in terms of an auxiliary set of eigenfunctions. The slosh force and moment for an arbitrary axisymmetric rigid tank at arbitrary Bond number have been derived for both pitching and translation and expressed in terms of characterist :s of an equivalent spring-mass system. Nuinerical examples have been constructed which compare favorably with available theories and experiments.

p	pressure
P_{I}	equilibrium liquid pressure at origin - a constant
$\mathrm{P}_{\mathbf{u}}$	ullage pressure
$\mathrm{p}_{u_{I}}$	equilibrium ullage pressure at origin - a constant
R	r/a, nondimensional radius
$\mathrm{r}, \theta, \mathrm{z}$	tank fixed cylindrical coordinates
t	time
V	volume of the liquid divided by a ${ }^{3}$
V_{L}	liquid volume (lower fluid)
W	wall wettud by liquid
W_{e}	instantaneous wetted wall below instantaneous interface, F_{e}
x_{0}	translational amplitude in $\mathbf{x}_{\mathbf{s}}$-direction
$\mathrm{x}_{s}, y_{s}, z_{s}$	space-fixed rectangular coordinates
Γ	$\gamma \mathrm{a}$, nondimensional hysteresis coefficient
γ	hysteresis ccefficient
Δp	density difference, $\rho-\rho_{u}$
$\delta_{i j}$	Kronecker delta
ϵ_{1}	$\text { sign of } n \cdot z, \cos \left(n_{\varepsilon} z\right), \text { or } \frac{\partial z}{\partial n}$
θ_{y}	amplitude of pitching about y -axis
K	the mean curvature
k^{\prime}	perturbation of the mean curvature
λ_{j}	$\mathrm{j}^{\text {th }}$ eigenvalue ($m=1$)
λ_{mj} -	$j^{\text {th }}$ eigenvalue corresponds to $\mathrm{m}^{\text {th }}$ circumferential mode
p	lower fluid density

P_{u} density of uilage fluid (vapor or gas)
σ
Φ
() I () at the vertex of the equilibrium intertace (origin)
() (I) at the contact point in the generatrix plane
() C. G. () related to center of gravity
() e effective value of ()
() () on F
()$_{m}$ () associated with $\cos (m \theta)$ mude
()$_{p}$ () related to pitching
()$_{T}()$ relaied to translation
()$_{\mathrm{W}}()$ on W
()$_{u}()$ related to the ullage
(). () just below the interface
($)_{+}$() just above the interface

TABLE OF CONTENTS

Page
INTRODUCTION 1
Governing Equations 2
Boundary Conditions 4
Method of Solution 6
Analytical Results 7
Free Oscillations 7
Forced Oscillations 9
Force and Moment 10
Nu:nerical Examples 14
Flat Interface with High Pond Number 14
Flat Interface with Low Eond Numbers 14
Curve Interface with Low Bond Number and Zero Contact Angle 14
CONCLUSIONS 16
ACKNOW LEDGEMENTS 17
REFERENCES 18
APPENDIX - BRIEF DESCRIPTION OF A COMPUTER PROGRAM 21

INTRODUCTION

The behavior and consequences of fuel sloshing in rockets under a high effective gravity were recognized problems which have been quite well understood (Refs. 1, 2, and 3). The problem of low-gravity fuel sloshing, characterized by the significant role of interfacial tension, is now a subject of importance for application to coasting rockets or orbital stations.

The equilibrium behavior of fluids at zero and/or low gravity has been studied in References 4 through 7. The theoretical determination of an equilibrium interface shape is nonlinear and requires a trial and error procedure for a given contact angle (Refs. 5 and 6).

Satterlee and Reynolds (Ref. 8) have successfully solved the free sloshing problem in cylindrical containers under low gravity and formulated a variational principle for this purpose. Yeh (Ref. 9), using a similar approach, solved the free and forced sloshing problem under low-gravity conditions, without force and moment or an equivalent mechanical model. Dodge and Garza (Refs. 10 and 11) performed force measurements under simulated low-gravity conditions and predicted forces of moment for circular cylindrical tanks under lateral (translational) motion. The equivalent spring-mass model was given in Reference 10. Additional work by Dodge and Garza for other special tanks was given in References 12 and 13. A finite difference approach with application to a hemispherically bottomed cylindrical tank was given by Concus, Crane, and Satterlee in Reference 14.

These investigations indicate a need of a program $f r$ a general axisymmetric tank. A preliminary study on liquid sloshing in an arbitrary axisymmetric tank was reported in Reference 15, but it is limited to translational oscillations. It is the object of the present paper to present a seminumerical approach for an arbitrary axisymmetric tank with simplified force and moment calculations and the resultant mechanical model for both pitching and translational oscillations. A general computer program will be completed to obtain sloshing frequenci slosh mass, and mass-height, for which a brief description is given in the Appendix.

Governing Equations

Assuming irrotational incompressible flow, there is a space-fixed velocity potential ϕ satifying the Laplace equation

$$
\begin{equation*}
\nabla^{2} \phi=C \tag{1}
\end{equation*}
$$

As in thin airfoil theory, the velocit potential can be obtained by imposing bou dary conditions on the initial or mean position, but the hydrostatic pressure due to gravity possesses components along both the tank axis z and the lateral axis \times (Fig. 1) for pitching oscillations. The linearized Bernoulli's equation states

$$
\begin{equation*}
p-p_{I}+p \frac{\partial \phi}{\partial t}+\rho g\left(z-x \theta_{y}\right)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
p-p_{u_{I}}+\rho_{u} \frac{\partial \phi_{u}}{\partial t}+\rho_{u g}\left(z-x \theta_{y}\right)=0 \tag{3}
\end{equation*}
$$

for the liquid and the ullage, respectively, and $P_{I^{\prime}} P_{u_{I}}$ are constants.

2248

Figure 1. Some Nomenclatures

Boundary Conditions

The linearized interface kinematic condition states

$$
\begin{equation*}
\frac{\partial h}{\partial t} \cong \frac{\partial \phi}{\partial n} \sqrt{1+\left(\frac{\partial f}{\partial r}\right)^{2}} \epsilon_{1} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon_{1}=\operatorname{sgn}(\underline{n} \cdot \hat{z}) \tag{4a}
\end{equation*}
$$

The interface dynamic condition states

$$
\begin{equation*}
p_{-}-p_{+}=\sigma K=\sigma K_{0}+\sigma K^{\prime} \tag{5}
\end{equation*}
$$

For the "mean" interface location f (in goneral, $p_{I}=p_{I}^{0}+p_{I}^{\prime}, p_{I}^{0}$, p_{I}^{\prime} being constants),

$$
\begin{equation*}
\sigma \kappa_{0}+\left(\rho-\rho_{u}\right) g f-\left(p_{I}^{0}-p_{u_{I}}^{0}\right)=0 \tag{6}
\end{equation*}
$$

where the curvature of the mean interface, κ_{0}, is axisymmetric and

$$
\begin{equation*}
\kappa_{0}=-\frac{1}{r} \frac{\partial}{\partial r}\left\{\frac{r \frac{\partial f}{\partial r}}{\sqrt{1+\left(\frac{\partial f}{\partial r}\right)^{2}}}\right\} \tag{6a}
\end{equation*}
$$

Equation (6) holds for $r=0$, thus

$$
p_{\underline{I}}^{0}-p_{u_{I}}^{0}=-2\left(\frac{\partial^{2} f}{\partial r^{2}}\right)_{I}
$$

The linearized interface dynamic condition is then

$$
\begin{equation*}
-\left(p_{u}^{\prime}-p_{u_{I}}^{\prime}\right)+\sigma K^{\prime}+\rho \frac{\partial \dot{\phi}}{\partial t}-\rho_{u} \frac{\partial \phi_{u}}{\partial t}+\left(\rho-\rho_{u}\right) g h-\left(\rho-\rho_{u}\right) g x \theta_{y}=0 \tag{7}
\end{equation*}
$$

where the perturbation curvature for $\cos (m \theta)$ variation

$$
\begin{equation*}
\kappa^{\prime}=-\left\{\frac{1}{r} \frac{\partial}{\partial r}\left[\frac{r \frac{\partial h}{\partial r}}{\sqrt{1+\left(\frac{\partial f}{\partial r}\right)^{2}}}\right]-\frac{m^{2}}{r^{2}} \frac{h}{\sqrt{1+\left(\frac{\partial f}{\partial r}\right)^{2}}}\right\} \tag{7a}
\end{equation*}
$$

m being unity for lateral excitation of a rigid tank. At point I, the origin, $h=0, \phi=0, \kappa^{\prime}=0$, and thus $p_{I}=p_{u_{I}}$. For most analyses, $p_{u}=0$ was assumed. We shali assume the impulzive pressure in the ullage is negligible, i. e., $\phi_{\mathbf{u}} \cong 0$. Then for sinusoidal oscillations, Equations (7) and (4) yield

$$
\begin{align*}
-\left\{\frac{1}{R} \frac{\partial}{\partial r}\left[R \frac{\partial H}{\partial r}\left(1+F_{R}^{2}\right)^{-3 / 2}-\frac{m^{2} H}{R^{2}}\left(1+F_{R}^{2}\right)^{-1 / 2}\right\}\right. & +N_{B_{e}} H \\
& +\Omega^{2} \Phi=0 \text { on } F \tag{7b}
\end{align*}
$$

The boundary condition on the wall is that the relative normal velocity be zero, i.e., with $\cos (n, x)=\frac{\partial x}{\partial n}$ and $\cos (n, z)=\frac{\partial z}{\partial n} \quad$,

$$
\begin{equation*}
\frac{\partial \varphi}{\partial n}=\dot{x}_{v} \frac{\partial x}{\partial n} \tag{i 0}
\end{equation*}
$$

\dagger For sinusoidal oscillations and $m_{1}=1, h=0, \phi=\phi_{\mathrm{u}}=0, x=0$, and $k^{\prime}=0$ at point I, thus $P_{I}^{\prime}-P_{u_{I}}^{\prime}=0$. For other m values, $P_{I}^{\prime}-P_{u_{I}}^{\prime}=\sigma R \frac{1}{I}$, which will ise omitted until needed.
\ddagger For sinuesidal oscillations, without loss of generality, $\dot{x}_{0}, \dot{\theta}_{y}, \phi$ are assumed to be propertional to $\sin (\omega t)$ while h is proportional to $\cos (\omega t)$,
and

$$
\begin{equation*}
\frac{\partial \phi}{\partial n}=\dot{\theta}_{y}\left(z \frac{\partial x}{\partial n}-x \frac{\partial z}{\partial n}\right) \tag{9}
\end{equation*}
$$

for translational and pitching oscillations, respe tively.

In addition, there is an interface contact point condition which takes the form (Refs. 8, 9 and 15)

$$
\begin{equation*}
\frac{\partial h}{\partial r}=\gamma_{h} \quad \text { at point II } \tag{i0}
\end{equation*}
$$

where γ may be a frequency-dependent constant. Hnwever, if the contact angle remains constant and if the not well-defined second derivative at the contact point is neglected, we can show that $\gamma=0$ (Ref. 15). This value has been successfully used in References 10, 11, 12, and 13.

Methnd of Solution

We shall decompose ϕ into two parts, ϕ^{\prime} and $\phi^{\circ}: \dot{j}^{\circ}$ is the veiocity potential corresponding to a liquid contained by a rigid mean interface and the tank wails. Therefore, it satisfies the Laplace equation and the boundary condition on the contour, Equation (8) for translation and Equation (9) for pitching on F_{e} and W_{e}. It is noted that

$$
\begin{equation*}
\phi_{\mathrm{T}}^{\mathrm{c}}=\dot{\mathrm{x}}_{0} \mathrm{x} \tag{11}
\end{equation*}
$$

while $\phi_{\mathrm{p}}^{\circ}$ can be constructed numerically.
ϕ^{\prime} is the ferturbed velocity potential due to sloshing which is governed by the interface conditions and zero normal velocity condition at the wall.

We shall employ a set of auxiliary characteristic functions, $* \psi_{\mathrm{j}}$ orthogonal on the curved interface and vanishing on the walls, instead of constructing natural modes directly. The natural modes and frequencies are then calculated in terms of a truncated series satisfying the free sloshing ($\varphi^{\circ}=0, \theta_{y}=0$) intersurface condition by the Galerkin method (Ref. 17).

The velocity potential ϕ^{\prime} for forced oscillations is then calculated by expansion into normal mudes and the interface condition is again satisfied by the Galerkin method.

The force and moment are obtained by integration of pressure, not only on the wall, but also on the interface si...e the direct surface tension foze and moment on the tank is equivalent to those on the interface due to pressure, assuming the interface inertia is negligible as well as the interface mass. To put results in the mechanical model form, the divergence theorem has been most useful (with sorne easy manipulations).

Analytical Results

Free Oscillations

For free oscillations, the natural mode ϕ_{k} is expanded into a truncated series of the auxiliary eigenfunctions, i.e.,

$$
\begin{equation*}
\Phi_{\mathrm{k}}=\frac{\phi_{\mathrm{k}}}{\omega_{\mathrm{a}}^{2}}=\sum_{j=1}^{\mathrm{j}_{\mathrm{mx}}}{c_{\mathrm{k}_{\mathrm{j}}} \psi_{\mathrm{m}_{\mathrm{j}}} \cos (\mathrm{~m} \theta)} \tag{12a,b}
\end{equation*}
$$

$$
\psi_{\mathrm{j}}=\psi_{\mathrm{m}_{\mathrm{j}}} \cos (\mathrm{~m} \theta)
$$

[^0]$c_{k_{j}}$ is the k th eigenvector of the following matrix equation obtained by the Galerkin method from integrating the nondimensional Equation (7b) with weighting function $\psi_{\mathrm{m}_{\mathrm{i}}}$
\[

$$
\begin{array}{r}
\left\{-\Gamma\left[\nu_{m_{i j}}\right]+\left[\gamma_{m_{i j}}\right]+m^{2}\left[\epsilon_{m_{i j}}\right]+\frac{\Delta \rho}{\rho} N_{B}\left[\beta_{m_{i j}}\right]-\Omega^{2}\left[\Delta_{m_{i j}}\right]\right\} \\
\left\{c_{j}\right\}=0 ; i, j=1 \text { to } J_{m x} \tag{13}
\end{array}
$$
\]

where

$$
\begin{align*}
& \beta_{m_{i j}}=\frac{\lambda_{m_{j}}}{a_{m_{i}}^{2}} \int_{F} \psi_{m_{i}} \psi_{m_{j}} d S=\lambda_{m_{j}} \delta_{i j} \tag{13a}\\
& \epsilon_{m_{i j}}=\frac{\lambda_{m_{j}}}{a_{m_{i}}^{2}} \int_{F} \frac{\psi_{m_{i}} \psi_{m_{j}}^{2} \sqrt{1+F_{R}^{2}}}{} d S \tag{13b}\\
& v_{m_{i j}}=\frac{2 \pi \lambda_{m_{j}}}{a_{m_{i}}^{2}}\left[R \psi_{m_{i}} \psi_{n_{1}}\right] \frac{\epsilon_{1}}{\left(1+F_{R}^{2}\right)_{I I}} \\
& \gamma_{m_{i j}}=\frac{\lambda_{m_{j}}}{a_{m_{i}}^{2}}\left\{\int_{F}^{\left[1+F_{R}^{2}\right]}-3 / 2 \frac{d \psi_{m_{i}}}{d R} \frac{d \psi_{m_{j}}}{d R} d S+\int_{F} \frac{F_{R} F_{R R}}{\left(1+F_{R}^{2}\right)}\right.
\end{align*}
$$

- $\left.\frac{d \psi_{m_{i}}}{d R} \psi_{m_{j}} d S\right\}$

$$
\begin{equation*}
\Delta_{m_{i j}}+\frac{1}{a_{m_{i}}^{2}} \int_{F}^{\psi_{m_{i}} \psi_{m_{j}}} \frac{\sqrt{1+F_{R}^{2}}}{\sqrt{2} S} \tag{13e}
\end{equation*}
$$

*The orthogonality property of ψ_{j}, thus, $\psi_{m_{j}}$ can be easily proved (Ref. 15) as in the high-G case.

$$
\begin{equation*}
a_{m_{i}}^{2}=\int_{F} \frac{\psi_{m_{i}^{2}}^{2} d S}{\sqrt{1+F_{R}^{2}}} \tag{l3f}
\end{equation*}
$$

and $m=1$ for lateral excitation of a rigid tank.

Forced Oscillations

Let

$$
\phi^{\prime}=-\omega^{2} a \sum_{k=1}^{K_{m x}} d_{k} \Phi_{k} \quad ; \quad d_{k}=\frac{\bar{d}_{k} \Omega^{2}}{\Omega_{k}^{2}-\Omega^{2}} ; \quad \Phi_{k}=\sum_{j=1}^{J_{m x}} c_{k_{j}}^{\phi_{j}}
$$

in order to satisfy the interface condition that

$$
\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{mx}}} \mathrm{~d}_{\mathrm{k}}\left(\Omega_{\mathrm{k}}^{2}-\Omega^{2}\right) \Phi_{\mathrm{k}}=-\Omega^{2} \Phi_{0} \quad \epsilon_{2} \mathrm{~N}_{\mathrm{B}} \frac{\Delta \rho}{\rho} \frac{\mathrm{x}}{\mathrm{a}} \theta_{r} \equiv \Phi_{\mathrm{N}} \Omega^{2}
$$

$\epsilon_{2}=0$ for translational oscillation, $\epsilon_{2}=1$ for pitching oscillation. We have by the Galerkin procedure

$$
\begin{equation*}
\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{mx}}} \overline{\mathrm{~d}}_{\mathrm{k}} \int_{\mathrm{F}} \Phi_{\mathrm{k}}\left(-\mathrm{H}_{\ell}\right) \mathrm{d} \underset{\sim}{A}=\int \Phi_{\mathrm{N}}\left(-\mathrm{H}_{\ell}\right) \mathrm{d} \underset{\sim}{A} \quad, \quad \ell=1 \text { to } \mathrm{K}_{\mathrm{mx}} \tag{16}
\end{equation*}
$$

\bar{d}_{k} can be solved from Equation (16) by matrix inversion. There is no reed of storing information of ϕ_{j} inside the fluid domain as only the force and moment are of interest. It is noted in the limit (Refs. 8 and 9)

$$
\begin{equation*}
\int_{F} \Phi_{k}\left(-H_{l}\right) d A=\delta_{k \ell} \int_{F} \Phi_{k}\left(-H_{\ell}\right) d A \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
\overline{\mathrm{d}}_{l}=\int_{\mathrm{F}} \Phi_{\mathrm{N}}\left(-\mathrm{H}_{\ell}\right) \underset{\sim}{\mathrm{d}} / \int_{\mathrm{F}} \Phi_{\ell}\left(-\mathrm{H}_{\ell}\right) \mathrm{d} \underset{\sim}{A} \tag{18}
\end{equation*}
$$

which was utilized in proving that a unique spring-riass system exists for both pitching and t : nslation.

Force and Moment

The force and momeni extited by a spring mase system (Fig. ?)
without damping can be written in the following form (Ref. 18)

$$
\begin{align*}
& \mathrm{F}_{\mathrm{H}}=\mathrm{F}_{\mathbf{x}}-\mathrm{M}_{\mathrm{F}} \mathrm{~g} \theta_{\mathrm{y}} \tag{19}\\
& \mathrm{~F}_{\mathrm{H}_{\mathrm{T}}}=\mathrm{x}_{0} \omega^{2} \mathrm{M}_{\mathrm{F}}\left\{1+\sum_{\mathrm{k}=1}^{\infty} \frac{\mathrm{m}_{\mathrm{k}}}{\mathrm{M}_{\mathrm{F}}} \frac{1}{\left(\frac{\omega_{k}^{2}}{\omega^{2}}-1\right)}\right\} \tag{20}\\
& M_{y_{T}}=x_{0} \omega^{2} M_{F h_{0}}\left\{\frac{z^{c} \cdot G \cdot}{h_{0}}+\sum_{k=1}^{\infty} \frac{m_{k}}{M_{F}}\left(\frac{z_{k}}{h_{0}}+\frac{a}{h_{0} \omega^{2}}\right) \frac{1}{\left(\frac{\omega_{k}^{2}}{\omega^{2}}-1\right)}\right\} \tag{21}\\
& F_{H_{p}}=\theta_{y} \omega^{2} M_{F} h_{0}\left\{\frac{z_{C . G}}{h_{0}}+\sum_{k=1}^{\infty} \frac{m_{k}}{M_{F}}\left(\frac{z_{k}}{h_{0}}+\frac{a}{h_{0} \omega^{2}}\right) \frac{1}{\left(\frac{\omega_{k}^{2}}{\omega_{2}}-1\right)}\right\} \tag{22}\\
& M_{y_{p}}=\theta_{y} \omega^{2} M_{F} h_{0}^{2}\left\{-\frac{I_{F}}{M_{F} h_{0}^{2}}+\sum_{k=1}^{\infty} \frac{m_{k}}{M_{F}}\left(\frac{z_{k}}{h_{0}}+-\frac{a}{\omega^{2} h_{0}}\right)^{2} \frac{1}{\left(\frac{u_{k}}{\omega^{2}}-1\right)}\right\} \\
& +\theta_{y} \mathrm{gM}_{\mathrm{F}^{h_{0}}}\left(\frac{\mathrm{z}_{\mathrm{C}} . \mathrm{G} .}{\mathrm{h}_{0}}\right) \tag{23}
\end{align*}
$$

Figure 2. Equivalent Mechanical Model
with rigid mass m_{0}, its location z_{0}, and moment of inertia I_{0} gi en by

$$
\begin{align*}
& \frac{m_{0}}{M_{F}}=1-\sum_{k=1}^{\infty} \frac{m_{k}}{M_{F}} \tag{24}\\
& \frac{z_{0}}{h_{0}}=\frac{1}{\frac{m_{0}}{M_{F}}}\left[\frac{z_{C} \cdot G .}{h_{0}}-\sum_{k=1}^{\infty} \frac{z_{k}}{h_{0}} \frac{m_{k}}{M_{F}}\right] \tag{25}\\
& \frac{I_{\hat{U}}}{M_{F} h_{0}^{2}}=\frac{I_{F}}{M_{F} h_{0}^{2}}-\left(\frac{m_{\hat{U}}}{M_{F}} \frac{z_{\hat{U}}^{2}}{h_{0}^{2}}+\sum_{k=1}^{\infty} \frac{m_{k}}{M_{F}} \frac{z_{k}^{2}}{h_{0}^{2}}\right) \tag{26}
\end{align*}
$$

Since the force due to liquid pressure, F_{x}, is

$$
\begin{equation*}
F_{x}=\int_{W_{e}+F_{e}} p \frac{\partial x}{\partial n} d S \tag{27}
\end{equation*}
$$

and the moment due to liquid pressure M_{y} is

$$
\begin{equation*}
M_{y}=\int_{W_{e}+F_{e}} p\left(z \frac{\partial x}{\partial n}-x \frac{\partial z}{\partial n}\right) d S \tag{28}
\end{equation*}
$$

it can be shown that

$$
\begin{equation*}
\frac{m_{k}}{M_{F}}=d_{k_{T}} f_{k}^{\prime} \frac{l}{V} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}^{\prime}=\sum_{j=1}^{\infty} c_{k} \int_{F} \lambda_{j} \not{ }_{j} \frac{x}{a} d S \tag{29a}
\end{equation*}
$$

$$
\begin{align*}
& \overline{\mathrm{a}}_{\mathrm{k}_{\mathrm{T}}}=\frac{1}{\beta_{\mathrm{k}}^{2}} \int_{\mathrm{W}+F} \Phi_{\mathrm{k}} \frac{\partial \mathrm{x}}{\partial \mathrm{n}} \mathrm{dS} \cong \frac{1}{\beta_{\mathrm{k}}^{2}} \sum_{\mathrm{j}=1}^{\mathrm{J}_{\mathrm{mx}}} \mathrm{c}_{\mathrm{k}_{\mathrm{j}}} \lambda_{\mathrm{i}} \int_{F} \frac{x}{a} \psi_{\mathrm{j}} \mathrm{dS} \tag{29b}\\
& \mathrm{~V}=\mathrm{v}_{\mathrm{L}} / \mathrm{pa} \mathrm{a}^{3} \quad, \quad \beta_{\mathrm{k}}^{2}=\int_{F} \Phi_{\mathrm{k}}\left(-H_{\mathrm{k}}\right) \mathrm{dA} \tag{29c,d}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{z_{k}}{a}=\frac{1}{\frac{m_{k}}{M_{F}}}\left(\frac{l_{k}^{\prime}}{v}\right) \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& \ell_{k}^{\prime}=\bar{d}_{k_{T}} \sum_{j=1}^{\infty} c_{k_{j}} \mu_{j} \tag{30a}\\
& \mu_{j}=\int_{F+W} \psi_{j}\left(\frac{z}{a} \frac{\partial x}{\partial n}-\frac{x}{a} \frac{\partial z}{\partial n}\right) d S \tag{30b}
\end{align*}
$$

and that

$$
\begin{equation*}
I_{F}=M_{F} a^{2} I_{F}^{*} \quad, \quad I_{F}^{*} \cong-\frac{i}{V} \int_{W} \Phi_{p}^{0}\left(\frac{z}{a} \frac{\partial r}{\partial n}-\frac{x}{a} \frac{\partial z}{\partial n}\right) d \underset{\sim}{S} \tag{31a,b}
\end{equation*}
$$

In deriving the mechanical model, ρ_{u} has been set to zero. A simple modification can be made for small ullage density by using

$$
N_{B_{e}}=\frac{\Delta \rho}{\rho} N_{B}
$$

\dagger For finite J_{mx}, it was found that d_{k}, determined by matrix inversion of Equation (16) without using biorthogonal relation, yields results in better agreement with Dodge's theory (Ref. 12) than Equation (29b) which is correct in the limit.
the effective Bond number instead of the Bond number based on the density of the liquid, provided that the dynamic pressure due to ullage motion is negligible.

Numerical Examples
The computer program has been checked out by the following examples, using the cylind:ical tank results given in Reference 12 for comparison purposes.

Flat Interface with High Bond Number

$\frac{\omega_{1}^{2} \mathrm{a}}{\mathrm{g}}=1.85$ compared with 1.847 from exact theory (Ref. $1, \mathrm{p} 415$).
$\frac{m}{M_{F}}=0.193$ compared with 0.194 from high-G theory (Ref. 18).
$z_{1}=-0.729^{\prime \prime} \%$ compared with $-0.724^{\prime \prime}$ from high-G theory (Ref. 18).
Flat Interface with Low Bond Numbers
$N_{B}=10 \quad, \quad \frac{\mathrm{~h}_{0}}{\mathrm{a}}=2.34 \quad, \quad 12 \times 18$ mesh yielded
$\frac{\omega_{1}^{2} \mathrm{a}}{\mathrm{g}}=2.15$ compared with $2 .{ }^{1} 6$ from exac: theory.
A finer mesh is required for better agrecinent.

Curved Interface with Low Bond Number and Zero Contact Angle
$N_{B}=100 \quad, \quad \frac{h_{0}}{a}=2.34 \quad, \quad 12 \times 18$ mesh \dagger yielded

[^1]$\frac{\omega_{1}^{2}}{g}=1.810 \quad, \quad \frac{m_{1}}{\rho a^{3}}=0.442 \quad, \quad z_{1}=-0.734^{\prime \prime}\left(a=0.68^{\prime \prime}\right)$.
compared with theoretical values of $\frac{\omega_{1}^{2} \mathrm{a}}{\mathrm{g}}=1.777 \quad, \frac{\mathrm{~m}_{1}}{\rho \mathrm{a}^{3}}=0.438$ fro: a Reference 12.
The experimental value of $\frac{\omega_{1}^{2}}{g}$ lies between 1.78 to 1.80 .
With a 23×34 mesh, the present method yielded $\frac{\omega_{1}^{2} a}{g}=1.789$, $\frac{\mathrm{m}_{1}}{\mathrm{fa}^{3}}=0.445 \quad, \mathrm{z}_{1}=-0.732^{\prime \prime}$. For the $12 \times 18 \mathrm{mesh}$, the CDC -6600 central process time is 2 min , while for the 23×34 mesh it is 21 min . Most of the computing time was expended for the generation of influence coefficients, each of which is a Neumann problem. However, the influence coefficient method may be more convenient than the inversion of a large matrix if not faster. No computer running time was reported in Reference 14, which finds natural modes by (partial) matrix inversion.

Conclusion

It seems tha: the present method yielded a practical way of computing the fundamental aturai frequency, the first slosh mass, and its location. Higher masses and locations are usually not needed for design purpcees and can be obtainea by using finer meshes and longer machine time. A computer program utilizing triangular meshes and Winslow method (Ref. 16) has been successfully employed and is expected to be completed in the near future for the titled problem. However, ti.. present logical diagram may be limited to a convex axi "mmetric tank for good accuracy.

ACKNOW LEDGEMEITTS

The author woult like to take th: ; opportunity to thank Mr. Donald R. Saathoff, Senior Mathematician, for writing the computer program, and Dr. Frarklin T. Dodge for his helpful discussions.

The present research is supported by NASA contract NAS8-20290,
George C. Marshall Space Flight Center.

1. Abramson, H. N. (ed.), "The Dynamic Behavior of Liquids in Moving Containers, " NASA Office of Scientific and Technical Information SP-106, Washington (1966).
2. Abramson, H. N., "Dynamic Behavior of Liquids in Moving Containers, " Applied Mechanics Reviews, 16, 7, pp 50i-506. July 1963.
3. Cooper, R. M., "Dynamics of Liquids in Moving Containers," ARS Journal, 30, p 725, August 1960.
4. Neu, J. T. and Good, R, J. , "Equilibrium Behavior of Fluids in Containers at Zero-Gravity, " AIAA Journal, 1, 4.; pp 814-819, April 1963.
5. Satterlet. H. M. and Chin, J. H., "Meniscus Shape Under Reduced-Gravity Conditions," Symposium on Fluid Mechanics and Heat Transfer Under Low Gravitational Jonditions, June 1965.

Hastings, J. J. and Rutherford, R. D., 'Low Gravity Liquid-Vapor Interface Shapes in Axisymmetric Containers and a Computer Solution, "NAS:- TM X 「 1790 , October 1968.
7. Petrash, D. A. and Otto, E. W., 'Studies of the Liquid Vapor Interface Configuration in Weightlessness, " ARS Space Power System Conference, Santa Monica, California. Paper No. 2514-62 (1962).
8. Satterlee, H. M. and Reynolds, W. C. 'The Dyramics of the Free Liquid Surface in Cylindrical Containers Under Strong Capillary and Weak Gravity Conditions, " TR LG-2, Department of Mechanical Engineering, Stanford University, May 1, 1964.
9. Yeh, Gordon C. K., "Free and Forced Oscillations of a Liquid in an Axisymmetric Tank at Low-Gravity Environments, " J. Appl. Mechanics, 34, 1: pp 23-28, March 1967.
10. Dodge, F. T. and Garia, L. R., "Experimental and Theoretical Studies of Liquid Sloshing at Simulated Low Gravities, " Tech. Rept. No. 2, Contract No. NAS8-20290, Control No. DCN 1-6-75-00010, SwRI Project 02-1846, Southwest Research Institute, October 1966. See also J. Appl. Mech. , 34, 3, pp 555-562, September 1967.
11. Dodge, F. T. and Garza, L. R., 'Simulated Low-Gravity Sloshing in a Cylindrical Tank Including Effects of Damping and Small Liquid Depth, " Proc 1968 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, pp 67-69, 1968.
12. Dodge, F. T and Garza, L. R.., 'Simulated Low-Gravity Sloshing in Spherical Tanks and Cylindrical Tanks with Inverted Ellipsoidal Bottoms, " Tech Rept No. 6, Contract NAS8-20299, Control No. DCN 1-6-75-00010, SwRI Project No. 02.: 946, Southwest Research Institute, February 1968.
13. Dodge, F. T. and Garza, L. R., :Siosh Force, Naturai Frequency, and Damping of Low-Gravity Sloshing in Oblated Ellipsoidal Tanks," Tech Rept No. 7, Coniract No. NAS8-20290, Control No. DCN 8-75-00043(IF), SwRI Project No. 02-1846, Southwest Research Institute, - ebruary 1969.
14. Concus, P., Crane, G. E., and Satterlee, H. M., "Low Gravity Lateral Sloshing in Hemispherically Bottomed Cylindrical Tanks," Proc. 1968 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, pp 80-9?, i963.
15. Chu, W. H., 'Low Gravity Liquid Sloshing in an Arbitrary Axisymmetric Tank Performing Translational Oscillations, " Tech Rept No. 4, Contract No. NAS8-20290, Control No. DCN 1-6-75-00010, SwRI Project No. 02-1846, Sol Shwest Resear h Institute, March 1967.
16. Winslow, A. M., 'Numerical Solutions of the Quasilinear Poisson Equations in a Non-uniform Triangular Mesh, " Journal of Computational Physics, 1, 2, pp 149-172, November 1966.
17. Sokolnikoff, I. S., "Mathematical Theory of Elasticity," 2nd edition, McGraw-Hill Book Company, Inc., New York, (1956).
18. Abramson, H. N., Chu, W. H., and Ransleben, G. E., Jr.,
'Representation of Fuel Sloshing in Cylindrical Tanks by an Equivalent Mechanical Model, ' ARS Journal, pp 1697-i 705, December 1961.

APPENDIX

BRIEF DESCRIPTION OF A COMPUTER PROGRAM

The following steps of a computer program are briefly described: Construction of a Triangular Mesh

The triangular mesh is generated as described in Reference 16 except a simple parallelogram is used as the logical diagram (Fig. 3). For a cylindrical tank of Bond number 100 , the physical diagram is shown in Figure 4. The lengths of the edge of the parallelogram can be adjusted for each individual case to yield "near" uniform triangular meshes. A con+i uous wall needs to be broken into two parts for the logical diagram. This only affects the local distribution of the triangular mesh and has shown to yield equally good results for a half full spherical tank at high-G as well as a cylindrical tank.

Construction of the Auxiliary Characteristic Functions
The char-cteristic functions $\dot{\phi}$ satisíy

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{A-1}
\end{equation*}
$$

$\frac{\partial \phi}{\partial n_{0}}=0 \quad$ on W
$\frac{\partial \phi}{\partial n_{0}}=\lambda \phi \quad$ on F.
ϕ can be solved numerically with the constructed triangular mesh by Winslow method (Ref. l6). Contact point is treated as one of the mesh points as are the other boundary points. Hence, $\frac{\partial \phi}{\partial n}$ may be discontinuous at the contact point. Zero contact angle cannot be constructed graphically but results of

2250

Figure 3. A -imple Logical viagram For Triangular Mesh

FIGURE 4. A PHYSICAL DIAGRAM OF TRIANGULAR MESHCYLINDRICAL TANK
decrease mesh size give closer and closer approximations to the interface and would probably lead to the correct limiting value.

For an interior joint, $i j,\left[\phi=\phi_{i j}, \quad \phi_{k}=\phi_{k}(i, j), r_{k}=r_{k}(i, j), r=r_{i j}\right]$

$$
\begin{equation*}
\sum_{k=1}^{6} \omega_{k}\left(\phi_{k}-\phi\right)-\frac{m^{2}}{r_{i j}} A_{i j} \phi=0 \tag{A-4}
\end{equation*}
$$

where
$A_{i j}$ is the area of the $\mathrm{ij}^{\text {th }}$ dodecagon (see Ref. 16)
$r_{i j}$ is the radius of the $i j^{\text {th }}$ point
$\omega_{k}=\frac{1}{2}\left(\lambda_{k} \bar{r}_{k} \cot \theta_{k}+\lambda_{k-1} \bar{r}_{k-1} \cot \sigma_{k}\right) \quad k=1$ to 6
$\bar{r}_{k}=\frac{1}{3}\left(r_{i j}+r_{k}+r_{k+1}\right) \quad \lambda_{k}=1$
(A-4b, c)
θ_{k}, σ_{k} (see Fig, 3) can be expressed in terms of t_{k}, s_{k+1}, t_{k-1}, $\mathbf{s}_{\mathrm{k}-1}$, and s_{k}.

For interface point,

$$
\begin{equation*}
\sum_{k=1}^{6} \omega_{k}\left(\phi_{k}-\phi\right)-\frac{m^{2}}{r_{i j}} A_{i j} \phi+\left(\frac{\partial \phi}{\partial n}\right)_{1, j}\left[\frac{1}{2} s_{3}+\frac{1}{2} s_{6}\right] r_{i j}=0 \tag{A-5}
\end{equation*}
$$

where

$$
\lambda_{6}=\lambda_{1}=\lambda_{2}=0, \quad \lambda_{3}=\lambda_{4}=\lambda_{5}=1
$$

Note: $\left(\lambda_{j-1 / 2}\right) \operatorname{Re} f, 16=\lambda_{j-1},\left(\lambda_{j}+1 / 2\right)$ Ref. $16=\lambda_{j}$.

To solve for the eigenfunctions on the interface, we use influence coefficient method in which $\left(\frac{\partial \phi}{\partial n}\right)_{1, \mathrm{i}}=0$ except $\left(\frac{\partial \phi}{\partial n}\right)_{1, j}=1$ for the $\mathrm{j}^{\text {th }}$ column of the influence matrix. A standard eigenvalue problem involving only the interface points, excluding $\phi_{1,1}$ at $r=0$, is needed to obtain the eigenvalues λ_{j} and eigenvectors ψ_{j}. Knowing the $j^{\text {th }}$ eigenvector on the intersurface, the corresponding value of ψ_{j} on the wall can be easily solved numerically again by the method of over-relaxation.

For $\mathrm{ij}^{\text {th }}$ point on the tank wall

$$
\begin{equation*}
\sum_{k=1}^{6} \omega_{k}\left(\phi_{k}-\phi\right)-\frac{m^{2}}{r_{i j}} A_{i j} \phi=0 \tag{A-6}
\end{equation*}
$$

$\lambda_{3}=\lambda_{4}=\lambda_{5}=0$ and $\lambda_{1}=\lambda_{2}=\lambda_{6}=1$ on the bottom wall
$\lambda_{4}=\lambda_{5}=\lambda_{6}=0$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$ on the side vsall

On centerline, $r=0$,

$$
\begin{align*}
& \phi=0 \text { for } m \geq 1 \\
& \frac{\partial \phi}{\partial r}=0 \text { for } m=0 \tag{A-7}
\end{align*}
$$

At contact point $\mathrm{i}=1, \mathrm{j}=\mathrm{j}_{\mathrm{mx}}$.

$$
\begin{align*}
& \sum_{k=1}^{6} \omega_{k}\left(\phi_{k}-\phi\right)-\frac{m^{2}}{r_{i j}} A_{i j} \phi+\left(\frac{\partial \phi}{\partial n}\right)_{l, j_{m x}}\left(\frac{1}{2} s_{3}\right) r_{i j}=0 \tag{A-9}\\
& \lambda_{3}=\lambda_{4}=1 \quad, \quad \lambda_{1}=\lambda_{2}=\lambda_{5}=\lambda_{6}=0
\end{align*}
$$

Calculation of Natural Frequencies, Slosh Masses, and Their Location
The remaining steps are relatively routine and therefore will not be described, except it is remarked that trapezoidal rule was empioyed conveniently in evaluating the integrals.

[^0]: *For direct application of the Winslow method (Ref. 16), we impose the simpler normal derivation condition, $\partial \psi_{j} / \partial n_{0}=\lambda \psi_{j}$, on F and used the well-known influence coefficient technique to determine the eigenvector ψ_{j} on the intersurface, the eigenvalue λ_{j}, and ψ_{j} on the wall.

[^1]: *Here, the origin is at the vertex of the meniscus. $\dagger 12$ net points on the interface and 18 net points on the "side" wall. (See Appendix)

