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The Effect of Wall Motions on the Govern­
ing Equations of Contained Fluids 
Roger Ohayon6 and Carlos A. Felippa 7 

The equations of motion for an acoustic fluid enclosed in a 
moving or flexible container are studied. It is shown that the 
determination of the reference state must account for the 
surface-integrated effect of the wall motions. The governing 
equation of transient motions about this state in the displace­
ment potential does not generally reduce to the classical wave 
equation unless special adjustments are made. The results are 
relevant to finite elements formulations based on the displace­
ment potential. 

1 Problem Description 

The results presented in this Note were obtained in the 
course of a wider study by Felippa and Ohayon (1989) of 
variational methods for transient motions and vibrations of 
acoustic fluids held in flexible and/or moving containers. 
These partial results merit special attention on two counts. 
First, they extend the classical dynamic equations of acoustic 
fluids to include wall motions as well as the static limit in a 
consistent manner. Second, they are relevant to finite element 
implementations that have not accounted for the correction 
terms described herein. Computations that are particularly af­
fected by these corrections involve liquid masses subject to 
prescribe dynamic motions, such as tanks and reservoirs under 
seismic ground motion excitations, and rocket fuel tanks 
under launch conditions. 

The general problem is as follows. A container (the struc­
ture) is totally or partly filled with a compressible, 
homogeneous liquid or gas (the fluid). Although the container' 
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is generally flexible, the rigid-but-moving container case is not 
excluded. The fluid is modeled as an acoustic medium (the 
linearly compressible generalization of an ideal fluid). We 
consider dynamic motions about a static reference state, which 
will be determined as part of the study. 

If the container is rigid and fixed, the reference state is well 
known: the static equilibrium solution in which the pressure 
is equal to the hydrostatic pressure, and the displacements 
may be taken as zero. The acoustic motions about this posi­
tion are governed by the homogeneous wave equation in the 
displacement potential. But if the container walls move, we 
show that a correction term that depends on the mean boun­
dary motion appears. The reference state is affected, and the 
resulting transient vibration problem is no longer given by the 
classical wave equation unless special adjustments are made. 

A boundary integral term representing the mean container 
motion was introduced by Aganovic (1981) for the surface 
wave problem of an incompressible fluid posed in terms of the 
velocity potential. Ohayon (1987) considered similar terms in 
the displacement potential formulation. The general forms 
presented in this Note for a compressible fluid are believed to 
be new. 

2 The Acoustic Fluid 

The three-dimensional volume occupied by the fluid is 
denoted by V. This volume is assumed to be simply connected. 
The fluid boundary S consists generally of two portions 

S:Sd USP. (1) 
Sd is the interface with the container at which the normal 
displacement dn is prescribed (or found as part of the coupled 
fluid structure problem) whereas sp is the "free surface" at 
which the pressure p is prescribed (or found as part of the 
"slosh" problem). If the fluid is fully enclosed by the con­
tainer, as is necessarily the case for a gas, then SP is missing 
and S=Sd. The domain is referred to a Cartesian coordinate 
system (x1, x2, x3) grouped in vector x. 

The fluid is under a body force field b which is assumed to 
be the gradient of a time-independent potential {3(x), i.e., 
b = V {3. All displacements are taken to be infinitesimal and 
thus the fluid density p is invariant. 

We consider three states or configurations: original, from 
which displacements, pressures and forces are measured, cur­
rent, where the fluid is in dynamic equilibrium at time t, and 
reference, which is obtained in the static equilibrium limit of 
slow motions. Transient motions are the difference between 
current and reference states. It should be noted that in many 
situations the original configuration is not physically at­
tainable. Table 1 summarizes the notation used in relation to 
these states. 

Field Equations. The governing equations of the acoustic 
fluid are the momentum, state, and continuity equations. 
They are stated as follows for the current configuration, and 
specialized to the reference configuration later. The momen­
tum (balance) equation expresses Newton's second law for a 
fluid particle: 

pd01 = - Vp1 + b= - Vp 1 + V{3. (2) 

The continuity equation may be combined with the linearized 
equation of state to produce the constitutive equation that ex­
presses the small compressibility of a liquid: 

p1 = -K V d1 = -pc2 V d1, (3) 
where K is the bulk modulus and c = ../K7P the fluid sound 
speed. If the fluid is incompressible, K, c- oo. This relation is 
also applicable to nonlinear elastic fluids such as gases 
undergoing small excursions from the reference state, if 
the constitutive equation is linearized there so that 
K =p0(dpldp)0• 
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Table 1 Notation for fluid states 

Quantities Domain Original Reference Current Transient 

Displacements v 
Velocities v 
Boundary displacements• s 
Displacement potential v 
Pressures v 
Body forcc:;s v 
Density v 
*Positive along outward normal 

The boundary conditions are 

d�= d� on Sd, p1 = jY on SP, (4) 
where d� is either prescribed or comes from the solution of an 
auxiliary problem as in fluid-structure interaction, and jJ may 
be either prescribed or a function of dn and b, as in the surface 
wave ("slosh") problem. 

3 The Reference State 

Taking the curl of both sides of (2) yields 

curl ii'1 =0. (5) 
The general integral of this equation for a simply connected 
domain is 

d 1=V1/; 1+a+bt, (6) 
where 1/; 1= 1/; 1 (x,t) is the displacement potential, a = a(x) and 
b = b(x) are time-independent vector functions, and t denotes 
the time. If accelerationless motions (for example, rigid body 
motions) are precluded by the boundary conditions, a and b 
vanish. Replacing di= v{/ into the momentum equation (2) 
we get 

Vp1 = -pV�1 + V/3, 
which spatially integrated gives 

pi= -p�t+/3+C (t) , 

(7)
(8) 

where the scalar C (t) is not spatially dependent. Next, in­
tegrate the constitutive equation (3) over V and apply the 
divergence theorem to Vd: 

(p1 )v + (pc2 v d1 )v = (p' )v + (pc2d:Js = 0. (9) 
Insertingp' from (8) into equation (9) furnishes a condition on 
C (t) , giving 

pc2 p .. 1 C (t) = - - [d:Js+ - (1/;1) V- - (/3) V v v v 
2 

= - pc [d:Js + pJ1 -/3, 
v 

(10) 

where v=(l)v is the fluid volume and ]= (j)vlv denotes the 
volume average of a function f defined over V. Substituting 
C (t) into (9) we get 2 

p1=- (p (�1-J1) + (/3-/3) - pc [d:Js· (11) v 
In the static limit the inertia terms may be neglected and we 
recover the reference solution 

pc 2 
pO = (/3-/j) - - [ct,:Js. (12) v 

For an incompressible fluid, [dnls = 0 but c- oo; thus it would 

be incorrect to conclude that p0 = {3-/3. To illustrate this 
point, consider a rigid cylindrical container of cross-section 
area A, filled with liquid up to height H = H1 + H2• The origin 
of the Cartesian system (x1, x2, x3) is placed at H2 below the 
free surface, with x1 =x upwards and normal to that surface 
(see Fig. 1) . The body force is the gravity field b = (- pg,0,0) ; 
thus {3 = -pgx + B, B being an arbitrary constant. 

0 
0 
0 
0 
0 
0 
p 

do di d=d1 -d0 
do di d=d1 -d0 
� di n dn =d:,-� ij;O fl f=fl-i/;0 
p O pi p=pt -po 

b= V/3 b= V/3 
p p 

Fig. 1 Cylindrical fluid container in gravity field 

In passing from the original configuration under zero body 
force to the reference configuration under gravity, the free 
surface moves downwards by the amount 

- o_ pgH2 gH2 
dn lx=H2 -'I} - - � 2c 2 . (13) 

Evaluation of (12) gives 

p0=pg(x- + (H2-H1)) +B-B 

(14) 

which is the correct hydrostatic pressure if o <<H. If one 
passes to the incompressible limit, c-oo and o-0, but c2o re­
mains fixed and equal to gH212. Note that substracting t3 
eliminates B. The associated displacement field is easily 
calculated to be 

d' � {: 1 � r 2� [H' : (x-H
,)']O 1 

+ d�"" (15) 

where d�01 is an arbitrary divergence-free rotational motion 
that satisfies the boundary conditions. 

4 Transient Motions 

Substracting the constitutive relations at the current and 
reference states we get 

p= -pc2 v21/;=pc2s, (16) 
where s= -V21/; is the condensation. Subtracting (12) from 
(11) yields 
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(17) 
On equating (16) and (17) we get modified forms of the wave 
equation that account either for nonzero mean boundary sur­
face motions, 

f-f 1 
S= V2f= -2- + - [dnJs, (18) c v 

or nonzero mean dilatation, 

c2(V2f-V2f) =c2(V2f +s) = f-f. (19) 
The second form follows from - us= [dnls, which is a conse­
quence of the divergence theorem. For an incompressible 
fluid, c-oo and s=[dnls=O, and from either form one 
recovers the Laplace equation V 2f = 0. 

Adjusting the Displacement Potential. If the transient 
displacement potential is modified by a function of time: 

f =f+P(t) , (20) 

wh_ ft the potential of (6)-(19), we may chose P(t) so that 
c2/; = V2f = -s for any t. (P(t) may be found by integrat­
ing c2J- v2f twice in time.) We then recover the classical 
wave equation 

(21) 

If this adjustment has been made, C (t) vanishes and (17) 
reduces to 

p= -pf. (22) 

As an example, consider again the container of Fig. 1 in 
which H1 =0 for convenience. At t::>O, the container is in the 
reference state of rest. At t�O, it is subjected to a prescribed 
constant velocity motion of the bottom surface, 

dn (t) Lo =-at, t�O, (23) 

positive upwards for a> 0. The unknown free surface vertical 
displacement is 11 (t), also positive upwards. As all quantities 
become independent of x2 and x3, the governing equation is 
one-dimensional: 

,/,II - - {;- f + 1 ( ) .,, -H -at+ri'c2 

where primes denote derivatives with respect to x1 =x. 
solution for 0::;; t::>H/c is 

11=0, f (x,t) = 

a{atx+ - x2 +P(t) , x::>ct,2c 

1 2 P(t) - Tact , x�ct. 

(2 4)

The 

(25) 

The adjustment condition gives P ( t) = -112 act2, and conse­
quently f=O for x�ct. Hence, for finite c we have f" =c2/;. 
If c-oo, the solution approaches the rigid body motion 11 =at. 
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