Applied Mathematical Sciences

Volume 153

Editors

S.S. Antman J.E. Marsden L. Sirovich

Advisors

J.K. Hale P. Holmes J. Keener J. Keller B.J. Matkowksy A. Mielke C.S. Peskin K.R. Sreenivasan

Springer

New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo

Applied Mathematical Sciences

- 1. John: Partial Differential Equations, 4th ed.
- 2. Sirovich: Techniques of Asymptotic Analysis.
- 3. *Hale:* Theory of Functional Differential Equations, 2nd ed.
- 4. Percus: Combinatorial Methods.
- 5. von Mises/Friedrichs: Fluid Dynamics.
- 6. Freiberger/Grenander: A Short Course in Computational Probability and Statistics.
- 7. Pipkin: Lectures on Viscoelasticity Theory.
- 8. *Giacaglia:* Perturbation Methods in Non-linear Systems.
- Friedrichs: Spectral Theory of Operators in Hilbert Space.
- 10. Stroud: Numerical Quadrature and Solution of Ordinary Differential Equations.
- 11. Wolovich: Linear Multivariable Systems.
- 12. Berkovitz: Optimal Control Theory.
- Bluman/Cole: Similarity Methods for Differential Equations.
- Yoshizawa: Stability Theory and the Existence of Periodic Solution and Almost Periodic Solutions.
- 15. Braun: Differential Equations and Their Applications, 3rd ed.
- 16. Lefschetz: Applications of Algebraic Topology.
- 17. Collatz/Wetterling: Optimization Problems.
- Grenander: Pattern Synthesis: Lectures in Pattern Theory, Vol. I.
- 19. Marsden/McCracken: Hopf Bifurcation and Its Applications.
- 20. Driver: Ordinary and Delay Differential Equations.
- Courant/Friedrichs: Supersonic Flow and Shock Waves.
- Rouche/Habets/Laloy: Stability Theory by Liapunov's Direct Method.
- Lamperti: Stochastic Processes: A Survey of the Mathematical Theory.
- 24. Grenander: Pattern Analysis: Lectures in Pattern Theory, Vol. II.
- 25. Davies: Integral Transforms and Their Applications, 2nd ed.
- Kushner/Clark: Stochastic Approximation Methods for Constrained and Unconstrained Systems.
- 27. *de Boor:* A Practical Guide to Splines: Revised Edition.
- Keilson: Markov Chain Models—Rarity and Exponentiality.
- 29. de Veubeke: A Course in Elasticity.
- Sniatycki: Geometric Quantization and Quantum Mechanics.
- 31. *Reid*: Sturmian Theory for Ordinary Differential Equations.
- 32. Meis/Markowitz: Numerical Solution of Partial Differential Equations.

- 33. *Grenander:* Regular Structures: Lectures in Pattern Theory, Vol. III.
- 34. *Kevorkian/Cole:* Perturbation Methods in Applied Mathematics.
- 35. Carr: Applications of Centre Manifold Theory.
- 36. Bengtsson/Ghil/Källén: Dynamic Meteorology: Data Assimilation Methods.
- 37. Saperstone: Semidynamical Systems in Infinite Dimensional Spaces.
- 38. Lichtenberg/Lieberman: Regular and Chaotic Dynamics, 2nd ed.
- Piccini/Stampacchia/Vidossich: Ordinary Differential Equations in Rⁿ.
- Naylor/Sell: Linear Operator Theory in Engineering and Science.
- 41. Sparrow: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors.
- Guckenheimer/Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.
- 43. Ockendon/Taylor: Inviscid Fluid Flows.
- Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.
- Glashoff/Gustafson: Linear Operations and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-Infinite Programs.
- Wilcox: Scattering Theory for Diffraction Gratings.
- Hale/Magalhães/Oliva: Dynamics in Infinite Dimensions, 2nd ed.
- 48. Murray: Asymptotic Analysis.
- Ladyzhenskaya: The Boundary-Value Problems of Mathematical Physics.
- 50. Wilcox: Sound Propagation in Stratified Fluids.
- Golubitsky/Schaeffer: Bifurcation and Groups in Bifurcation Theory, Vol. I.
- 52. Chipot: Variational Inequalities and Flow in Porous Media.
- 53. *Majda*: Compressible Fluid Flow and System of Conservation Laws in Several Space Variables.
- 54. Wasow: Linear Turning Point Theory.
- Yosida: Operational Calculus: A Theory of Hyperfunctions.
- 56. Chang/Howes: Nonlinear Singular Perturbation Phenomena: Theory and Applications.
- 57. Reinhardt: Analysis of Approximation Methods for Differential and Integral Equations.
- 58. Dwoyer/Hussaini/Voigt (eds): Theoretical Approaches to Turbulence.
- Sanders/Verhulst: Averaging Methods in Nonlinear Dynamical Systems.

(continued following index)

Level Set Methods and Dynamic Implicit Surfaces

With 99 Figures, Including 24 in Full Color

Stanley Osher	Ronald I	Fedkiw		
University of California at Los Angeles	Departm Stanford Stanford	Department of Computer Science Stanford University Stanford, CA 94305-9020		
Los Angeles, CA 90095-1555	USA			
USA	fedkiw@	cs.stanford.edu		
sjo@math.ucla.edu				
Editors:				
S.S. Antman	J.E. Marsden	L. Sirovich		
Department of Mathematics and	Control and Dynamical Systems, 107-81	Division of Applied Mathematics		
Institute for Physical Science and Technology	California Institute of Technology	Brown University Providence, RI 02912		
University of Maryland	Pasadena, CA 91125	USA		
College Park, MD 20742-4015	USA	chico@camelot.mssm.edu		
USA	marsden @cds.caltech.edu			

Cover photos: Top left and right, hand and rat brain - Duc Nguyen and Hong-Kai Zhao. Center campfire — Duc Nguyen and Nick Rasmussen and Industrial Light and Magic. Lower left and center, water glasses — Steve Marschner and Doug Enright.

Mathematics Subject Classification (2000): 65Mxx, 65C20, 65D17, 65-02, 65V10, 73V

Library of Congress Cataloging-in-Publication Data Osher, Stanley. Level set methods and dynamic implicit surfaces / Stanley Osher, Ronald Fedkiw p. cm. – (Applied mathematical sciences ; 153) Includes bibliographical references and index. (alk. paper) 1. Level set methods. 2. Implicit functions. I. Fedkiw, Ronald P., 1968- II. Title. III. Applied mathematical sciences (Springer-Verlag New York Inc.); v. 153 QA1.A647 vol. 153 [QC173.4] 510s-dc21 [515'.8]

2002020939

Printed on acid-free paper.

ISBN 978-1-4684-9251-4 ISBN 978-0-387-22746-7 (eBook) DOI 10.1007/978-0-387-22746-7

© 2003 Springer-Verlag New York, Inc.

Softcover reprint of the hardcover 1st edition 2003

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

98765432 SPIN 10920466

www.springer-ny.com

ssa@math.umd.edu

Springer-Verlag New York Berlin Heidelberg A member of BertelsmannSpringer Science+Business Media GmbH $Dedicated \ with \ love \ to \ Katy, \ Brittany, \ and \ Bobbie$

Preface

Scope, Aims, and Audiences

This book, *Level Set Methods and Dynamic Implicit Surfaces* is designed to serve two purposes:

Parts I and II introduce the reader to implicit surfaces and level set methods. We have used these chapters to teach introductory courses on the material to students with little more than a fundamental math background. No prior knowledge of partial differential equations or numerical analysis is required. These first eight chapters include enough detailed information to allow students to create working level set codes from scratch.

Parts III and IV of this book are based on a series of papers published by us and our colleagues. For the sake of brevity, a few details have been occasionally omitted. These chapters do include thorough explanations and enough of the significant details along with the appropriate references to allow the reader to get a firm grasp on the material.

This book is an introduction to the subject. We have given examples of the utility of the method to a diverse (but by no means complete) collection of application areas. We have also tried to give complete numerical recipes and a self-contained course in the appropriate numerical analysis. We believe that this book will enable users to apply the techniques presented here to real problems.

The level set method has been used in a rapidly growing number of areas, far too many to be represented here. These include epitaxial growth, optimal design, CAD, MEMS, optimal control, and others where the simulation of moving interfaces plays a key role in the problem to be solved. A search of "level set methods" on the Google website (which gave over 2,700 responses as of May 2002) will give an interested reader some idea of the scope and utility of the method. In addition, some exciting advances in the technology have been made since we began writing this book. We hope to cover many of these topics in a future edition. In the meantime you can find some exciting animations and moving images as well as links to more relevant research papers via our personal web sites: http://graphics.stanford.edu/~fedkiw and http://www.math.ucla.edu/~sjo/.

Acknowledgments

Many people have helped us in this effort. We thank the following colleagues in particular: Steve Marschner, Paul Romburg, Gary Hewer, and Steve Ruuth for proofreading parts of the manuscript, Peter Smereka and Li-Tien Cheng for providing figures for the chapter on Codimension-Two Objects, Myungjoo Kang for providing figures for the chapter on Motion Involving Mean Curvature and Motion in the Normal Direction, Antonio Marquina and Frederic Gibou for help with the chapter on Image Restoration, Hong-Kai Zhao for help with chapter 13, Reconstruction of Surfaces from Unorganized Data Points, and Luminita Vese for help with the chapter on Snakes, Active Contours, and Segmentation. We particularly thank Barry Merriman for his extremely valuable collaboration on much of the research described here. Of course we have benefitted immensely from collaborations and discussions with far too many people to mention. We hope these colleagues and friends forgive us for omitting their names.

We would like to thank the following agencies for their support during this period: ONR, AFOSR, NSF, ARO, and DARPA. We are particularly grateful to Dr. Wen Masters of ONR for suggesting and believing in this project and for all of her encouragement during some of the more difficult times.

Finally, we thank our families and friends for putting up with us during this exciting, but stressful period.

Los Angeles, California Stanford, California Stanley Osher Ronald Fedkiw

Contents

Pr	eface		vii
Co	olor II	nsert (facing page 1-	46)
Ι	Imp	olicit Surfaces	1
1	Impl	icit Functions	3
	1.1	Points	3
	1.2	Curves	4
	1.3	Surfaces	7
	1.4	Geometry Toolbox	8
	1.5	Calculus Toolbox	13
2	Signe	ed Distance Functions	17
	2.1	Introduction	17
	2.2	Distance Functions	17
	2.3	Signed Distance Functions	18
	2.4	Examples	19
	2.5	Geometry and Calculus Toolboxes	21
II	\mathbf{Le}	vel Set Methods	23
3	Moti	on in an Externally Generated Velocity Field	25
	3.1	Convection	25

x	Contents

	3.2	Upwind Differencing	29
	3.3	Hamilton-Jacobi ENO	31
	3.4	Hamilton-Jacobi WENO	33
	3.5	TVD Runge-Kutta	37
		C C	
4	Mot	ion Involving Mean Curvature	41
	4.1	Equation of Motion	41
	4.2	Numerical Discretization	44
	4.3	Convection-Diffusion Equations	45
5	Ham	uilton-Jacobi Equations	47
	5.1	Introduction	47
	5.2	Connection with Conservation Laws	48
	5.3	Numerical Discretization	49
		5.3.1 Lax-Friedrichs Schemes	50
		5.3.2 The Roe-Fix Scheme	52
		5.3.3 Godunov's Scheme	54
			01
6	Mot	ion in the Normal Direction	55
	6.1	The Basic Equation	55
	6.2	Numerical Discretization	57
	6.3	Adding a Curvature-Dependent Term	59
	6.4	Adding an External Velocity Field	59
7	Cons	structing Signed Distance Functions	63
	7.1	Introduction	63
	7.2	Reinitialization	64
	7.3	Crossing Times	65
	7.4	The Reinitialization Equation	65
	7.5	The Fast Marching Method	69
8	\mathbf{Extr}	apolation in the Normal Direction	75
	8.1	One-Way Extrapolation	75
	8.2	Two-Way Extrapolation	76
	8.3	Fast Marching Method	76
9	Part	icle Level Set Method	79
	9.1	Eulerian Versus Lagrangian Representations	79
	9.2	Using Particles to Preserve Characteristics	82
	0.2		02
10	Codi	imension-Two Objects	87
	10.1	Intersecting Two Level Set Functions	87
	10.2	Modeling Curves in \Re^2	87
	10.3	Open Curves and Surfaces	90
	10.4	Geometric Optics in a Phase-Space-Based Level	
		Set Framework	-90

Contents	xi

II	I Ir	nage Processing and Computer Vision	95
11	Imag	ge Restoration	97
	11.1	Introduction to PDE-Based Image Restoration	97
	11.2	Total Variation-Based Image Restoration	99
	11.3	Numerical Implementation of TV Restoration	103
12	Snak	tes, Active Contours, and Segmentation	119
	12.1	Introduction and Classical Active Contours	119
	12.2	Active Contours Without Edges	121
	12.3	Results	124
	12.4	Extensions	124
13	Reco	onstruction of Surfaces from Unorganized	
	Data	a Points	139
	13.1	Introduction	139
	13.2	The Basic Model	140
	13.3	The Convection Model	142
	13.4	Numerical Implementation	142
rτ		Computational Dhyging	147
ΤV		omputational Physics	147
14	Нур	erbolic Conservation Laws and	- 10
	Com	pressible Flow	149
	14.1	Hyperbolic Conservation Laws	149
		14.1.1 Bulk Convection and Waves	150
		14.1.2 Contact Discontinuities	151
		14.1.3 Shock Waves	152
		14.1.4 Rarefaction Waves	153
	14.2	Discrete Conservation Form	154
	14.3	ENO for Conservation Laws	155
		$14.3.1 \text{Motivation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	155
		14.3.2 Constructing the Numerical Flux Function	157
		14.3.3 ENO-Roe Discretization	1.50
		(Third-Order Accurate)	158
		14.3.4 ENO-LLF Discretization	
		(and the Entropy Fix)	159
	14.4	Multiple Spatial Dimensions	160
	14.5	Systems of Conservation Laws	160
		14.5.1 The Eigensystem	161
		14.5.2 Discretization	162
	14.6	Compressible Flow Equations	163
		14.6.1 Ideal Gas Equation of State	164
		14.6.2 Eigensystem	164
		14.6.3 Numerical Approach	165

15	Two-	Phase Compressible Flow	167
	15.1	Introduction	167
	15.2	Errors at Discontinuities	168
	15.3	Rankine-Hugoniot Jump Conditions	169
	15.4	Nonconservative Numerical Methods	171
	15.5	Capturing Conservation	172
	15.6	A Degree of Freedom	172
	15.7	Isobaric Fix	173
	15.8	Ghost Fluid Method	175
	15.9	A Robust Alternative Interpolation	183
16	Shoc	ks, Detonations, and Deflagrations	189
	16.1	Introduction	189
	16.2	Computing the Velocity of the Discontinuity	190
	16.3	Limitations of the Level Set Representation	191
	16.4	Shock Waves	191
	16.5	Detonation Waves	193
	16.6	Deflagration Waves	195
	16.7	Multiple Spatial Dimensions	196
17	Solid	l-Fluid Coupling	201
	17.1	Introduction	201
	17.2	Lagrange Equations	203
	17.3	Treating the Interface	204
18	Inco	mpressible Flow	209
	18.1	Equations	209
	18.2	MAC Grid	210
	18.3	Projection Method	212
	18.4	Poisson Equation	213
	18.5	Simulating Smoke for Computer Graphics	214
19	Free	Surfaces	217
	19.1	Description of the Model	217
	19.2	Simulating Water for Computer Graphics	218
20	Liqu	id-Gas Interactions	223
	20.1	Modeling	223
	20.2	Treating the Interface	224
21	Two-	-Phase Incompressible Flow	227
	21.1	Introduction	227
	21.2	Jump Conditions	230
	21.3	Viscous Terms	232
	21.4	Poisson Equation	235

22 Low-Speed Flames 23			
	22.1	Reacting Interfaces	239
	22.2	Governing Equations	240
	22.3	Treating the Jump Conditions	241
23	Heat	Flow	249
	23.1	Heat Equation	249
	23.2	Irregular Domains	250
	23.3	Poisson Equation	251
	23.4	Stefan Problems	254
References 2			259
Index			271