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Preface 

This set of lecture notes was written for a Nachdiplom- Vorlesungen course given at 
the Forschungsinstitut fUr Mathematik (FIM), ETH Zurich, during the Fall Semester 
2000. I would like to thank the faculty of the Mathematics Department, and especially 
Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver 
the lectures in a very stimulating environment. Part of this material was also taught 
earlier as an advanced graduate course at the Ecole Poly technique (Palaiseau) during 
the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and 
at the University of Wisconsin (Madison) in the Fall 1998. This project started in the 
Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental 
Research (Bangalore). 

One main objective in this course is to provide a self-contained presentation of 
the well-posedness theory for nonlinear hyperbolic systems of first-order partial 
differential equations in divergence form, also called hyperbolic systems of con
servation laws. Such equations arise in many areas of continuum physics when 
fundamental balance laws are formulated (for the mass, momentum, total energy ... 
of a fluid or solid material) and small-scale mechanisms can be neglected (which are 
induced by viscosity, capillarity, heat conduction, Hall effect ... ). Solutions to hyper
bolic conservation laws exhibit singularities (shock waves), which appear in finite time 
even from smooth initial data. As is now well-established from pioneering works by 
Dafermos, Kruzkov, Lax, Liu, Oleinik, and Volpert, weak (distributional) solutions 
are not unique unless some entropy condition is imposed, in order to retain some 
information about the effect of "small-scales". 

Relying on results obtained these last five years with several collaborators, I 
provide in these notes a complete account of the existence, uniqueness, and contin
uous dependence theory for the Cauchy problem associated with strictly hyperbolic 
systems with genuinely nonlinear characteristic fields. The mathematical theory of 
shock waves originates in Lax's foundational work. The existence theory goes back 
to Glimm's pioneering work, followed by major contributions by DiPerna, Liu, and 
others. The uniqueness of entropy solutions with bounded variation was established 
in 1997 in Bressan and LeFloch [2]. Three proofs of the continuous dependence 
property were announced in 1998 and three preprints distributed shortly thereafter; 
see [3,4,9]. The proof I gave in [4] was motivated by an earlier work ([6] and, in col
laboration with Xin, [7]) on linear adjoint problems for nonlinear hyperbolic systems. 

In this monograph I also discuss the developing theory of nonclassical shock 
waves for strictly hyperbolic systems whose characteristic fields are not genuinely 
nonlinear. Nonclassical shocks are fundamental in nonlinear elastodynamics and 
phase transition dynamics when capillarity effects are the main driving force be
hind their propagation. While classical shock waves are compressive, independent of 
small-scale regularization mechanisms, and can be characterized by an entropy in
equality, nonclassical shocks are undercompressive and very sensitive to diffusive 
and dispersive mechanisms. Their unique selection requires a kinetic relation, as I 
call it following a terminology from material science (for hyperbolic-elliptic problems). 

This book is intended to contribute and establish a unified framework encom
passing both what I call here classical and nonclassical entropy solutions. 
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x PREFACE 

No familiarity with hyperbolic conservation laws is a priori assumed in this course. 
The well-posedness theory for classical entropy solutions of genuinely nonlinear sys
tems is entirely covered by Chapter I (Sections 1 and 2), Chapter II (Sections 1 and 
2), Chapter III (Section 1), Chapter IV (Sections 1 and 2), Chapter V (Sections 1 
and 2), Chapter VI (Sections 1 and 2), Chapter VII, Chapter IX (Sections 1 and 2), 
and Chapter X. The other sections contain more advanced material and provide an 
introduction to the theory of nonclassical shock waves. 

First, I want to say how grateful I am to Peter D. Lax for inviting me to New 
York University as a Courant Instructor during the years 1990-92 and for introducing 
me to many exciting mathematical people and ideas. I am particularly indebted to 
Constantine M. Dafermos for his warm interest to my research and his constant and 
very helpful encouragement over the last ten years. I also owe Robert V. Kohn for 
introducing me to the concept of kinetic relations in material science and encouraging 
me to read the preprint of the paper [1] and to write [6]. I am very grateful to Tai-Ping 
Liu for many discussions and his constant encouragement; his work [8] on the entropy 
condition and general characteristic fields was very influential on my research. 

It is also a pleasure to acknowledge fruitful discussions with collaborators and 
colleagues during the preparation of this course, in particular from R. Abeyaratne, F. 
Asakura, P. Baiti, N. Bedjaoui, J. Knowles, B. Piccoli, M. Shearer, and M. Slemrod. 
I am particularly thankful to T. Iguchi and A. Mondoloni, who visited me as post-doc 
students at the Ecole Poly technique and carefully checked the whole draft of these 
notes. Many thanks also to P. Goatin, M. Savelieva, and M. Thanh who pointed out 
misprints in several chapters. 

Special thanks to Olivier (for taming my computer), Aline (for correcting my 
English), and Bruno (for completing my proofs). Last, but not least, this book would 
not exist without the daily support and encouragement from my wife Claire. 

This work was partially supported by the Centre National de la Recherche Sci
entifique (CNRS) and the National Science Foundation (NSF). 

Philippe G. LeFloch 
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