Skip to main content
Log in

Short Term In Vivo Precision of Proximal Femoral Finite Element Modeling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As more therapies are introduced to treat osteoporosis, precise in vivo methods are needed to monitor response to therapy and to estimate the gains in bone strength that result from treatment. A method for evaluating the strength of the proximal femur was developed and its short term reproducibility, or precision, was determined in vivo. Ten volunteer subjects aged 51–62 years (mean 55.6 years), eight women and two men, were examined using a quantitative computed tomography (QCT) protocol. They were positioned, scanned, re-positioned and re-scanned. The QCT images were registered in three-dimensional space, and finite element (FE) models were generated and processed to simulate a stance phase load configuration. Stiffness was computed from each FE model, and strength was computed using a regression equation between FE stiffness and fracture load for a small set n=6 of experimental specimens. The coefficients of variation (COV) and repeatability (COR=2.23* √2*COV) were determined. The COV for the FE fracture load computed was 1.85%, and the detectable limit (coefficient of repeatability) for serial measurements was 5.85%. That is, if a change of 5.85% or more in computed FE fracture load is observed, it will be too large to be consistent with measurement variation, but instead can be interpreted as a real change in the strength of the bone. The detectable limit of this method makes it suitable for serial research studies on changes in femoral bone strength in vivo. © 2000 Biomedical Engineering Society.

PAC00: 8719Rr, 8759Fm, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERNCES

  • 1_AAPM Report No. 31; standardized methods for measuring diagnostic x-ray exposures. American Institute of Physics, New York, 1990, pp. 15–19.

  • 2_ Ardran, G. M., H. E. Crooks, and R. Birch. Constancy of radiation output during diagnostic x-ray exposures.Br. J. Radiol.51:867-874, 1978.

    Google Scholar 

  • 3_ Black, D. M., S. R. Cummings, D. B. Karpf, J. A. Cauley, D. E. Thompson, M. C. Nevitt, D. C. Bauer, H. K. Genant, W. L. Haskell, R. Marcue, S. M. Ott, J. C. Torner, S. A. Quandt, T. F. Reiss, and K. E. Ensrud. Randomised trial of effect of alendronate on risk of fractures in women with existing vertebral fractures.Lancet348:1535-1541, 1996.

    Google Scholar 

  • 4_ Chinn, S.The assessment of methods of measurement.Stat. Med.9:351-362, 1990.

    Google Scholar 

  • 5_ Cody, D. D., F. J. Hou, G. W. Divine, and D. P. Fyhrie. Femoral structure and stiffness in patients with femoral neck fractures. J. Orthop. Res. (to be published).

  • 6_ Cody, D. D., D. A. McCubbrey, G. W. Divine, G. J. Gross, and S. A. Goldstein. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties.J. Biomech.29:753-761, 1996.

    Google Scholar 

  • 7_ Cody, D. D., G. J. Gross, F. J. Hou, H. J. Spencer, S. A. Goldstein, and D. P. Fyhrie. Femoral strength is better predicted by finite element models than by QCT or DXA.J. Biomech.32:1013-1020, 1999.

    Google Scholar 

  • 8_ Cummings, S. R., D. M. Black, D. E. Thompson, W. B. Applegate, E. Barrett-Connor, T. A. Musliner, L. Palermo, R. Prineas, S. M. Rubin, J. C. Scott, T. Vogt, R. Wallace, A. J. Yates, and A. Z. LaCroix. Effect of alendronate of risk of fracture in women with low bone density but without vertebral fractures.J. Am. Med. Assoc.280(24):2077-2082, 1998.

    Google Scholar 

  • 9_ Deboeuf, F., D. Hans, A. M. Schott, P. O. Kotzki, F. Favier, C. Marcelli, P. J. Meunier, and P. D. Delmas. Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: The EPIDOS study.J. Bone Min. Res.12:1895-1902, 1997.

    Google Scholar 

  • 10_ Ensrud, K. E., D. M. Black, L. Palermo, D. C. Bauer, E. Barrett-Connor, S. A. Quandt, D. E. Thompson, and D. B. Karpf. Treatment with alendronate prevents fractures in women at highest risk.Arch. Int. Med.157:2617-2624, 1997.

    Google Scholar 

  • 11_ Flynn, M. J., J. Li, and D. D. Cody. Interactive alignment and subtraction of two tomographic 3D imaging studies.Proc. SPIE1898:870-878, 1993.

    Google Scholar 

  • 12_ Gluer, C. C., G. Blake, Y. Lu, B. A. Blunt, M. Jergas, and H. K. Genant. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques.Osteoporosis Int.5:262-270, 1995.

    Google Scholar 

  • 13_ Greenspan, S. L., E. R. Myers, L. A. Maitland, N. M. Resnick, and W. C. Hayes. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly.J. Am. Med. Assoc.271:128-133, 1994.

    Google Scholar 

  • 14_ Hirsch, C. and V. H. Frankel. Analysis of forces producing fractures of the proximal end of the femur.J. Bone Jt. Surg., Br. Vol.42:633-640, 1960.

    Google Scholar 

  • 15_ Hou, F. J., S. M. Lang, S. J. Hoshaw, D. A. Reimann, and D. P. Fyhrie. Human vertebral body apparent and hard tissue stiffness.J. Biomech.31:1009-1015, 1998.

    Google Scholar 

  • 16_ Karpf, D. B., D. R. Shapiro, E. Seeman, K. Ensrud, C. C. Johnston, S. Adami, S. T. Harris, A. C. Santora, L. J. Hirsch, L. Oppenheimer, and D. Thompson. Prevention of nonvertebral fractures by alendronate: A meta-analysis.J. Am. Med. Assoc.277:1159-1164, 1997.

    Google Scholar 

  • 17_ Kaufer, H., L. S. Matthews, and D. Sonstegard. Stable fixation of the intertrochanteric fracture.J. Bone Jt. Surg., Am.56:899-907, 1974.

    Google Scholar 

  • 18_ Keyak, J. H., M. G. Fourkas, J. M. Meagher, and H. B. Skinner. Validation of an automated method of three-dimensional finite element modeling of bone.J. Biomed. Eng.15:505-509, 1993.

    Google Scholar 

  • 19_ Keyak, J. H., J. M. Meagher, H. B. Skinner, and C. D. Mote. Automated three-dimensional finite element modeling of bone: A new method.J. Biomed. Eng.12:389-397, 1990.

    Google Scholar 

  • 20_ Keyak, J. H., S. A. Rossi, K. A. Jones, and H. B. Skinner. Prediction of femoral fracture load using automated finite element modeling.J. Biomech.31:125-133, 1998.

    Google Scholar 

  • 21_ Lang, T. F., J. H. Keyak, M. W. Heitz, P. Augat, Y. Lu, A. Mathur, and H. K. Genant. Volumetric quantitative computed tomography of the proximal femur: Precision and relation to bone strength.Bone (N.Y.)21:101-108, 1997.

    Google Scholar 

  • 22_ Liberman, U. A., S. R. Weiss, J. Broll, H. W. Minne, H. Quan, N. H. Bell, J. Rodriguez-Portales, R. W. Downs, J. Dequeker, M. Favus, E. Seeman, R. R. Recker, T. Capizzi, A. C. Santora, A. Lombardi, R. V. Shah, L. J. Hirsch, and D. B. Karpf. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis.N. Engl. J. Med.333:1437-1443, 1995.

    Google Scholar 

  • 23_ Lotz, J. C., E. J. Cheal, and W. C. Hayes. Fracture prediction for the proximal femur using finite element models: Part I—Linear analysis.J. Biomech. Eng.113:353-360, 1991.

    Google Scholar 

  • 24_ Lotz, J. C., E. J. Cheal, and W. C. Hayes. Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fracture.Osteoporosis Int.5:252-261, 1995.

    Google Scholar 

  • 25_ McClung, M. R.Current bone mineral density data on bisphosphonates in postmenopausal osteoporosis.Bone (N.Y.)19:195S-198S, 1996.

    Google Scholar 

  • 26_ Orr, T. E., G. S. Beaupre, D. R. Carter, and D. J. Schurman. Computer predictions of bone remodeling around porous-coated implants.J. Arthroplasty5:191-200, 1990.

    Google Scholar 

  • 27_ Peacock, M., C. H. Turner, G. Liu, A. K. Manatunga, L. Timmerman, and C. C. Johnston. Better discrimination of hip fracture using bone density, geometry and architecture.Osteoporosis Int.5:167-173, 1995.

    Google Scholar 

  • 28_ Smith, M. D., D. D. Cody, N. M. Cooperman, S. A. Goldstein, L. S. Matthews, and M. J. Flynn. Proximal femur bone density and its correlation to fracture load and hip screw penetration load.Clin. Orthop. Relat. Res.283:244-251, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cody, D.D., Hou, F.J., Divine, G.W. et al. Short Term In Vivo Precision of Proximal Femoral Finite Element Modeling. Annals of Biomedical Engineering 28, 408–414 (2000). https://doi.org/10.1114/1.278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.278

Navigation