Skip to main content

Advertisement

Log in

Fluid and Solid Mechanical Implications of Vascular Stenting

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vascular stents have emerged as an effective treatment for occlusive vascular disease. Despite their success and widespread use, outcomes for patients receiving stents are still hampered by thrombosis and restensosis. As arteries attempt to adapt to the mechanical changes created by stents, they may in fact create a new flow-limiting situation similar to that which they were intended to correct. In vitro fluid mechanics and solid mechanics studies of stented vessels have revealed important information about how stents alter the mechanical environment in the arteries into which they are placed. Adverse nonlaminar flow patterns have been demonstrated as well as remarkably high stress concentrations in the vessel wall. In vivo studies of stented vessels have also shown a strong relationship between stent design and their dynamic performance within arteries. Alterations in pressure and flow pulses distal to the stent have been observed, as well as regional changes in vascular compliance. Considering the influence of flow and stress on the vascular response and the suboptimal clinical outcomes associated with stenting, knowledge gained from stent/artery mechanics studies should play an increasingly important role in improving the long-term patency of these devices. © 2002 Biomedical Engineering Society.

PAC2002: 8719Rr, 8780-y, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abbott, W. M., J. E. Megerman, J. E. Hasson, G. L'Italien, and D. F. Warnock. Effect of compliance mismatch on vascular graft patency. J. Vasc. Surg. 5:376–382, 1987.

    Google Scholar 

  2. Back, M., G. Kopchok, M. Mueller, D. Cavaye, C. Donayre, and R. A. White. Changes in arterial wall compliance after endovascular stenting. J. Vasc. Surg. 19:905–911, 1994.

    Google Scholar 

  3. Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.

    Google Scholar 

  4. Banes, A. J. Mechanical strain and the mammalian cell. In: Physical Forces and the Mammalian Cell, edited by J. A. Frangos. New York: Academic, 1993, pp. 81–123.

    Google Scholar 

  5. Berry, J. L., E. Manoach, C. Mekkaoui, P. H. Rolland, J. E. Moore, Jr. and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent: In vitro and in vivo analysis. J. Vasc. Intervent Radiol. 13:97–105, 2002.

    Google Scholar 

  6. Berry, J. L., J. E. Moore, Jr., V. S. Newman, and W. D. Routh. In vitro flow visualization in stented arterial segments. J. Vasc. Invest. 3:63–68, 1997.

    Google Scholar 

  7. Berry, J. L., A. Santamarina, J. E. Moore, Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Google Scholar 

  8. Berthiaume, F., and J. A. Frangos. Effects of flow on anchorage-dependent mammalian cells-secreted products. In: Physical Forces and the Mammalian Cell, edited by J. A. Frangos. New York: Academic, 1993, pp. 139–192.

    Google Scholar 

  9. Cantelmo, N. L., W. C. Quist, and F. W. Logerfo. Quantitative analysis of anastomotic intimal hyperplasia in paired dacron and PTFE grafts. J. Cardiovasc. Surg. 30:910–915, 1989.

    Google Scholar 

  10. Delfino, A., N. Stergiopulos, J. E. Moore, Jr., and J. J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.

    Google Scholar 

  11. Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    Google Scholar 

  12. DeWeese, J. A. Anastomotic neointimal fibrous hyperplasia. In: Complications in Vascular Surgery, edited by V. M. Brenhard and J. B. Towne. Orlando, 1985.

  13. Dotter, C. T. Transluminally placed coilspring endarterial tube grafts: Long term patency in canine popliteal artery. Invest. Radiol. 4:329–332, 1969.

    Google Scholar 

  14. Dotter, C. T., R. W. Buschman, M. K. McKinney, and J. Rösch. Transluminal expandable nitinol coil stent grafting: Preliminary report. Radiology 147:259–260, 1983.

    Google Scholar 

  15. Duerig, T. W., D. E. Tolomeo, and M. Wholey. An overview of superelastic stent design. Min. Invas. Ther. Allied Technol. 9:235–246, 2000.

    Google Scholar 

  16. Echave, V., A. R. Koornick, M. Haimov, and J. H. Jacobson. Intimal hyperplasia as a complication of the use polytetrafluoroethylene grafts for femoral-popliteal bypass. Surgery (St. Louis) 86:791–798, 1979.

    Google Scholar 

  17. Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E–6E, 1998.

    Google Scholar 

  18. Fabregues, S., K. Baijens, R. Rieu, and P. Bergeron. Hemodynamicsof endovascular prostheses. J. Biomech. 31:45–54, 1998.

    Google Scholar 

  19. Fischman, D. L., M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, and K. Detre. A randomized comparison of coronary artery stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 331:496–501, 1994.

    Google Scholar 

  20. Formaggia, L., F. Nobile, and A. Quarteroni, A one dimensional model for blood flow: Application to vascular prosthesis. In: MSCOM 2000, edited by T. Miyoshi. Berlin: Springer, 2001.

    Google Scholar 

  21. Fung, Y. C. What are residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19:237–249, 1991.

    Google Scholar 

  22. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Google Scholar 

  23. Heidekker, M. A., C. R. White, N. L'Heureux, and J. A. Frangos. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step. J. Biomech. Eng. (in press).

  24. Henry, F. S. Flow in stented arteries. In: Intra-and Extracorporeal Cardiovascular Fluid Dynamics, edited by P. Verdonck and K. Perktold. Boston: WIT, 2000, pp. 333–364.

    Google Scholar 

  25. Hoffmann, R., G. S. Mintz, K. Kent, L. Satler, A. Pichard, J. Popma, and M. Leon. Serial intravascular ultrasound predictors of restenosis at the margins of Palmaz-Schatz stents. Am. J. Cardiol. 79:951–953, 1997.

    Google Scholar 

  26. Hoffman, R., G. S. Mintz, G. R. Dussaillant, J. J. Popma, A. D. Pichard, L. F. Satler, K. M. Kent, J. Griffin, and M. B. Leon. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 94:1247–1254, 1996.

    Google Scholar 

  27. Humphrey, J., and S. Na. Elastodynamics and arterial wall stress. Ann. Biomed. Eng. (to be published).

  28. Kastrati, A. J., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schühlen, M. Seyfarth, C. Schmitt, R. Blasini, F.-J. Neumann, and A. Schömig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Google Scholar 

  29. Ku, D. N., D. P. Giddens, C. R. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque localization and low and oscillating shear stress. Arteriosclerosis (Dallas) 5:293–302, 1985.

    Google Scholar 

  30. Logerfo, F. W., W. C. Quist, M. D. Nowak, H. M. Cranshaw, and C. C. Haudenschild. Downstream anastomotic hyperplasia: A mechanism of failure in dacron arterial grafts. Arch. Surg. (Chicago) 197:479–483, 1983.

    Google Scholar 

  31. Mohammed, Z., J. E. Moore, Jr., A. Rachev, J. L. Berry, and E. Manoach. Stress concentration reduction in stented arteries using compliance transitioning. Int. J. Cardiovasc. Med. Sci. 3:137–147, 2000.

    Google Scholar 

  32. Moore, Jr., J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and the relationship to atherosclerosis. Arteriosclerosis (Dallas) 110:225–240, 1994.

    Google Scholar 

  33. Natarajan, S., and M. Mokhtarzadeh. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Med. Eng. Phys. 22:555–566, 2000.

    Google Scholar 

  34. Palmaz, J. C., G. M. Richter, G. Noldge, G. W. Kauffmann, and W. Wenz. Intraluminal Palmaz stent implantation. The first clinical case report on a balloon-expanded vascular prosthesis. [German]. Radiologe 27:560–5633, 1987.

    Google Scholar 

  35. Palmaz, J. C., D. T. Kopp, and H. Hayashi. Normal and stenotic renal arteries: Experimental balloon-expandable intraluminal stenting. Radiology 164:705, 1987a.

    Google Scholar 

  36. Peacock, J., S. Hankins, T. Jones, and R. Lutz. Flow instabilities induced by coronary artery stents: Assessment with an in vitro pulse duplicator. J. Biomech. 28:17–26, 1995.

    Google Scholar 

  37. Perktold, K. Ann. Biomed. Eng. (to be published).

  38. Rachev, A., E. Manoach, J. L. Berry, and J. E. Moore, Jr.. Model of stress induced remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J. Theor. Biol. 206:429–443, 2000.

    Google Scholar 

  39. Rhee, K., and J. M. Tarbell. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and compliant artery. J. Biomech. 27:329–338, 1994.

    Google Scholar 

  40. Rockwell, D. Vortex-body interactions. Annu. Rev. Fluid Mech. 30:199–229, 1998.

    Google Scholar 

  41. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    Google Scholar 

  42. Rogers, C., M. A. Kjelsberg, P. Seifert, and E. R. Edelman. Heparin-coated stents eliminate mural thrombus deposition for days without affecting restenosis. (Abstract) Circulation 9(Suppl. 1):1–710, 1997

    Google Scholar 

  43. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement. Circ. Res. 84:378–383, 1999.

    Google Scholar 

  44. Rolland, P. H., A-B. Charifi, C. Verrier, H. Bodard, A. Friggi, P. Piquet, G. Moulin, and J.-M. Bartoli. Hemodynamics and wall mechanics after stent placement in swine iliac arteries: comparative results from six stent designs. Radiology 213:229–246, 1999.

    Google Scholar 

  45. Sato, M. Ann. Biomed. Eng. (to be published).

  46. Schajer, G. S., S. I. Green, A. P. Davis, and Y. N. H. Hsiang. Influence of elastic nonlinearity on arterial anastomotic compliance. J. Biomech. Eng. 118:445–451, 1996.

    Google Scholar 

  47. Sigwart, U., J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316:701–706, 1987.

    Google Scholar 

  48. Simon, C., J. C. Palmaz, and E. A. Sprague. Influence of topography on endothelization of stents: Clues for new designs. J. Long-Term Effects Med. Implants 10:143–151, 2000.

    Google Scholar 

  49. Sprague, E. A., J. Luo, and J. C. Palmaz. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J. Vasc. Interventional Radiology 8:83–92, 1997.

    Google Scholar 

  50. Stanek, B., D. Liepsch, and G. Pflugbeil. Flow studies of stents in models of the carotid artery. Third World Congress of Biomechanics. 1998, p. 206a.

  51. Stewart, S. F. C., and D. J. Lyman. Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J. Biomech. 25:297–310, 1992.

    Google Scholar 

  52. Sukavaneshvar, S., G. M. Rosa, and K. A. Solen. Enhancement of stent-induced thromboembolism by residual stenoses: Contribution of hemodynamics. Ann. Biomed. Eng. 28:182–193, 2000.

    Google Scholar 

  53. Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart J. 123:21–28, 1992.

    Google Scholar 

  54. Topol, E. J. Coronary-artery stents-gauging, gorging and gouging. N. Engl. J. Med. 339:1702–1704, 1998.

    Google Scholar 

  55. Truskey, G. A., K. M. Barber, T. C. Robey, L. A. Olivier, and M. P. Combs. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J. Biomech. Eng. 117:203–210, 1995.

    Google Scholar 

  56. Truskey, G. A. et al. Effect of fluid shear stress on the permeability of the arterial endothelium. Ann. Biomed. Eng. (to be published).

  57. Vernhet, H., J. M. Juan, R. Demaria, M. C. Oliva-Lauraire, J. P. Senac, and M. Dauzat. Acute changes in aortic wall mechanical properties after stent placement in arteries. J. Vasc. Interventional Radiology 11:634–638, 2000.

    Google Scholar 

  58. Walsh, P. W., F. Berkani, and J. E. Moore, Jr.Stented flow chamber for endothelial cell migration studies. European Society of Biomechanics, 2000.

  59. Wentzel, J. J., D. M. Whelan, W. J. VanDerGiessen, H. M. VanBeusekom, I. Andhyiswara, P. W. Serruys, and C. J. Slager. Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution. J. Biomech. 33:1287–1295, 2000.

    Google Scholar 

  60. Xu, X., and M. W. Collins. Fluid dynamics in stents. In: Endoluminal Stenting, edited by U. Sigwart. New York: Saunders, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J.E., Berry, J.L. Fluid and Solid Mechanical Implications of Vascular Stenting. Annals of Biomedical Engineering 30, 498–508 (2002). https://doi.org/10.1114/1.1458594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1458594

Navigation