Skip to main content
Log in

Shear Stress Distribution in the Trabeculae of Human Vertebral Bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The statistical distribution of von Mises stress in the trabeculae of human vertebral cancellous bone was estimated using large-scale finite element models. The goal was to test the hypothesis that average trabecular von Mises stress is correlated to the maximum trabecular level von Mises stress. The hypothesis was proposed to explain the close experimental correlation between apparent strength and stiffness of human cancellous bone tissue. A three-parameter Weibull function described the probability distribution of the estimated von Mises stress (r2) > 0.99 for each of 23 cases). The mean von Mises stress was linearly related to the standard deviation (r2=0.63) supporting the hypothesis that average and maximum magnitude stress would be correlated. The coefficient of variation (COV) of the von Mises stress was nonlinearly related to apparent compressive strength, apparent stiffness, and bone volume fraction (adjusted r2=0.66, 0.56, 0.54, respectively) by a saturating exponential function [COV=A+B exp(−x/C)]. The COV of the stress was higher for low volume fraction tissue (<0.12) consistent with the weakness of low volume fraction tissue and suggesting that stress variation is better controlled in higher volume fraction tissue. We propose that the average stress and standard deviation of the stress are both controlled by bone remodeling in response to applied loading. © 2000 Biomedical Engineering Society.

PAC00: 8719Rr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aitken, J. M. Relevance of osteoporosis in women with fractures of the femoral neck. Brit. Med. J. 288:597–601, 1984.

    Google Scholar 

  2. Bay, B. K., T. S. Smith, D. P. Fyhrie, and M. Saad. Digital volume correlation: Three-dimensional strain mapping using x-ray tomography. Exp. Mech. 39:218–227, 1999.

    Google Scholar 

  3. Brown, T. D., and A. B. Ferguson. Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop. Scand. 51:429–437, 1980.

    Google Scholar 

  4. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone-role of the lacuno-canalicular network. FASEB J. 13:S101–112, 1999.

    Google Scholar 

  5. Bury, K. Statistical Distributions in Engineering. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  6. Chamay, A. Mechanical and morphological aspects of experimental overload and fatigue in bone. J. Biomech. 3:263–270, 1970.

    Google Scholar 

  7. Choi, K., J. L. Kuhn, M. J. Ciarelli, and S. A. Goldstein. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J. Biomech. 23:1103–1113, 1990.

    Google Scholar 

  8. Cowin, C. S., L. Moss-Salentijn, and M. L. Moss. Candidates for the mechanosensory system in bone. J. Biomech. Eng. 113:191–197, 1991.

    Google Scholar 

  9. Currey, J. D., and K. Brear. Tensile yield in bone. Calcif. Tissue Res. 15:173–179, 1974.

    Google Scholar 

  10. Frost, H. M., H. Roth, and A. R. Villanueva. Physical characteristics of bone. Part IV: Microscopic prefailure and failure patterns. Henry Ford Hospital Med. Bull. 9:163–190, 1961.

    Google Scholar 

  11. Fuchs, H. O., and R. I. Stephens. Metal Fatigue in Engineering. New York: Wiley, 1980.

    Google Scholar 

  12. Fyhrie, D. P., and M. B. Schaffler. Failure mechanisms in human vertebral cancellous bone. Bone (N.Y.) 15:105–109, 1994.

    Google Scholar 

  13. Gibson, L. J. The mechanical behavior of cancellous bone. J. Biomech. 18:317–328, 1985.

    Google Scholar 

  14. Gibson, L. J., and M. F. Ashby. Cellular Solids New York: Pergamon, 1988.

    Google Scholar 

  15. Goulet, R. W., S. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27:375–389, 1994.

    Google Scholar 

  16. Hou, F. J., S. M. Lang, S. J. Hoshaw, D. A. Reimann, and D. P. Fyhrie. Human vertebral body apparent and hard tissue stiffness. J. Biomech. 31:1009–1015, 1998.

    Google Scholar 

  17. Jepsen, K. J., D. T. Davy, and D. J. Krzypow. The role of the lamellar interface during torsional yielding of human cortical bone. J. Biomech. 32:303–310, 1999.

    Google Scholar 

  18. Keaveny, T. M., E. F. Wachtel, C. M. Ford, and W. C. Hayes. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J. Biomech. 27:1137–1146, 1994.

    Google Scholar 

  19. Koch, J. C. Laws of bone architecture. Am. J. Anat. 21:177, 1917.

  20. Malvern, L. E. Introduction to the Mechanics of a Continuous Medium, Englewood Cliffs, NJ: Prentice-Hall, 1969.

    Google Scholar 

  21. Martin, R. B., and D. B. Burr. Structure, Function and Adaptation of Compact Bone. New York: Raven, 1989, pp. 186–213.

    Google Scholar 

  22. Melton, L. J., III and B. L. Riggs. Epidemiology of agerelated fractures. In: The Osteoporotic Syndrome, edited by L. V. Avioli. Orlando: Grune and Stratton, 1983, pp. 45–72.

    Google Scholar 

  23. Mori, S., R. Harruff, W. Ambrosius, and D. B. Burr. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone (N.Y.) 21:521–526, 1997.

    Google Scholar 

  24. Murray, P. D. F. Bones. Cambridge: Cambridge University Press, 1936.

    Google Scholar 

  25. Newton-John, H. F., and D. B. Morgan. The loss of bone with age, osteoporosis, and fractures. Clin. Orthop. Relat. Res. 71:229–252, 1970.

    Google Scholar 

  26. Owen, R. A., L. J. Melton, III, K. A. Johnson, D. M. Ilstrup, and B. L. Riggs. Incidence of Colles' fracture in a North American community. Amer. J. Publ. Health. 72:605–607, 1982.

    Google Scholar 

  27. Parfitt, A. M., C. H. E. Mathews, A. R. Villanueva, M. Kleerekoper, B. Frame, and D. S. Rao. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J. Clin. Invest. 72:1396–1409, 1983.

    Google Scholar 

  28. Pauwels, F. Biomechanics of the Locomotor Apparatus. New York: Springer, 1980.

    Google Scholar 

  29. van Rietbergen, B., H. Weinans, R. Huiskes, and A. Odgaard. A new method for the determination of trabecular tissue elastic properties and loading, using micro-mechanical finite element models. J. Biomech. 28:69–82, 1995.

    Google Scholar 

  30. van Rietbergen, B., R. Muller, D. Ulrich, P. Ruegsegger, and R. Huiskes, Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech. 32:443–451, 1999.

    Google Scholar 

  31. Wenzel, T. E., M. B. Schaffler, and D. P. Fyhrie, In vivo trabecular microcracks in human vertebral bone. Bone (N.Y.) 19:89–95, 1996.

    Google Scholar 

  32. Wolff, J. The Law of Bone Remodeling. Berlin: Hirshwald (translation, New York: Springer, 1986), p. 1892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyhrie, D.P., Hoshaw, S.J., Hamid, M.S. et al. Shear Stress Distribution in the Trabeculae of Human Vertebral Bone. Annals of Biomedical Engineering 28, 1194–1199 (2000). https://doi.org/10.1114/1.1318928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1318928

Navigation