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Abstract 

Magnetic magnetite (Fe3O4) nanoparticles have attracted a great deal of attention in both fundamental 
research and practical applications over the past decades. Down to the nanoscale, superparamagnetic 
Fe3O4 nanoparticles with only a single magnetic domain exhibit high magnetic susceptibility, which 
provides a stronger and faster magnetic response. Their superparamagnetic properties together with 
other intrinsic properties such as low toxicity, high surface area-to-volume ratio and simple separation 
methodology, making them ideal for environmental remediation, biomedical, and agricultural 
applications. This review discusses three conventional wet chemical methods, including chemical co-
precipitation, sol-gel synthesis and thermal decomposition for the preparation of superparamagnetic 
Fe3O4 nanoparticles with controlled size and magnetic properties. Nowadays, with the growing 
research interest in Fe3O4 nanoparticles, there is a great amount of researches reported on efficient 
routes to prepare size-controlled magnetic nanoparticles. Thus, this review is designed to report the 
recent information from synthesis to the characterization of Fe3O4 nanoparticles as well as the 
discussion of future perspective in this research area. 
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INTRODUCTION 

Nowadays, there is a widespread research on nanosized magnetic 

magnetite (Fe3O4) particles across many scientific disciplines, 

including both fundamental research and applications, mainly because 

of their unique and tuneable magnetic properties that can cater the 

essential needs for various applications (Ali et al., 2016; Babay et al., 

2015; Campos et al., 2015). Magnetite is one of the naturally occurring 

iron oxides that can be easily obtained and synthesized. In general, 

Fe3O4 nanoparticles with chemical formula of FeO.Fe2O3, possess

ferrimagnetic properties in bulk with high magnetization saturation, Ms

of 92 emu/g at room temperature and high Curie temperature, Tc of 

577°C (Wu et al., 2015). However, the magnetic properties of Fe3O4

nanoparticles are governed by their particle size. When the size of 

ferrimagnetic Fe3O4 nanoparticles is sufficiently small, they possess 

superparamagnetic properties with large response to the applied 

magnetic field (Ghazanfari et al., 2016). The transformation of 

ferrimagnetic to superparamagnetic properties is shown in Fig. 1, 

where the magnetic nanoparticles transform from a multi-domain 

magnetism to a single-domain magnetism with the reduction of size. 

Fig. 1 depicts the increase of coercivity due to the reduction of size to 

a maximum value at a specific size called critical diameter, Ds. At this 

condition, all of the magnetic spins are pointed in the same direction 

and thus, the magnetic characteristic is improved and the magnetic 

nanoparticles are usually difficult to be demagnetized due to high 

coercivity (Scepka, 2016). However, further size reduction will rapidly 

reduce the coercivity value until it reaches zero and the nanoparticles 

in this condition are said to be in a superparamagnetic state.  In general, 

Fe3O4 nanoparticles with a diameter below the threshold of 20 nm 

exhibit superparamagnetic properties (Baumgartner et al., 2013; 

Hasany et al., 2013; Sun, et al, 2014).  

Fig. 1 Schematic diagram of the dependency of coercivity, HC on the 
magnetic particle diameter, D. 

As shown in Fig 2, superparamagnetic Fe3O4 nanoparticles are 

different with the ferrimagnetic particles, in which they do not have 

coercive force or hysteresis loop due to single-domain magnetism, thus 

making them can only be magnetized in the presence of external 

magnetic field  (Laurent et al., 2017; Scepka, 2016). Therefore, these 

superparamagnetic Fe3O4 nanoparticles are easily controlled using 

external magnetic field (Ghazanfari et al., 2016; Indira & Lakshmi, 

2010; Ma & Chen, 2016). It is also worth mentioning that 

superparamagnetic nanoparticles give stronger and faster magnetic 

response towards external magnetic field (Wahajuddin & Arora, 2012). 

Due to the superparamagnetic together with other intrinsic properties 

such as low toxicity, high surface area-to-volume ratio and simple 

separation methodology, superparamagnetic Fe3O4 nanoparticles have 
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attracted much attention in the field of environmental remediation for 

pollution prevention and wastewater treatment (Auffan et al., 2009; 

Zhang, 2003; Zhao et al., 2008), as well as biomedical applications for 

protein immobilization such as diagnostic magnetic resonance imaging 

(MRI), bioseparation, biosensing and drug delivery (Busquets et al., 

2015; Lee & Hyeon, 2012; Mahmoudi et al., 2011). 

 

 
 
Fig. 2 Schematic diagram of the superparamagnetism and 
ferrimagnetism hysteresis curves. 
 

Nanoparticles synthesizing method is one of the most challenging 

parts that will determine the shape, particle size, size distribution, and 

surface chemistry of the particles, hence defining their magnetic 

properties (Lopez-Perez et al., 1997; Kouchi et al., 1997; Sjogren et al., 

2014). In addition, the synthesizing method also expresses the 

structural imperfections or impurities in the particles to a great extent, 

as well as the distribution of such defects within the particles, hence 

affecting their sensitivity towards magnetic field (Akbarzadeh et al., 

2012; Majidi et al., 2014). In order to rule the magnetic properties of 

Fe3O4 nanoparticles, deep understanding on the reaction parameters is 

of key importance. Therefore, it is well known that the researchers took 

advantage of the adjustable reaction parameters to synthesize Fe3O4 

nanoparticles with different morphologies and develop thousands of 

functionalities. To date, numerous review papers on the synthesis, 

characterization and application of Fe3O4 nanoparticles have been 

published. However, up to now, the published reviews do not highlight 

the details of reaction parameters in synthesizing superparamagnetic 

Fe3O4 nanoparticles. Most of the reviews only discuss the synthesis of 

nanoparticles in general without focusing specifically on the 

superparamagnetic Fe3O4 nanoparticles. Hence, in this review, we will 

focus on the mechanism, process and influencing factors of three wet 

chemical synthetic methods for the synthesis of superparamagnetic 

Fe3O4 nanoparticles which are chemical co-precipitation, sol-gel 

synthesis and thermal decomposition. Not to mention, the capabilities 

of the abovementioned methods in controlling over particle size and 

magnetic properties will also be illustrated and compared.  

 

PREPARATION OF MAGNETITE NANOPARTICLES 
 

In the last two decades, a significant amount of researches has been 

devoted to synthesize magnetic Fe3O4 nanoparticles in order to achieve 

proper control over its particle size, shape, crystallinity, as well as 

magnetic properties (Ali et al., 2016). To date, there are three most 

important published routes for the synthesis of Fe3O4 nanoparticles, 

which are physical, chemical and biological routes. A chemical route is 

preferred over the other synthetic routes in terms of simplicity, 

efficiency and reproducibility (Ali et al., 2016). Compared to physical 

and biological routes, chemical route has the advantages in synthesizing 

new materials with better chemical homogeneity by modifying the 

combination of precursor (Ghazanfari et al., 2016), and well controlling 

the size, shape and composition of nanoparticles (Ali et al., 2016; Xu 

et al., 2014). Besides that, the chemical route is a time saving and cost-

effective technique for synthesizing nanoparticles as it does not require 

expensive equipment and chemicals (Nazari et al., 2014). However, 

there are some drawbacks in chemical route such as the formation of 

surplus intermediates and impurities, as well as the risk of colloidal 

agglomeration to happen during synthesis process (Ghazanfari et al., 

2016). In order to control and optimize the properties of nanoparticles 

such as particle size, size distribution, crystal structure and magnetic 

properties, the significant knowledge about the mechanism, process and 

influencing factors of the nanoparticles synthesizing methods is 

essential.  

 

Chemical co-precipitation 
Chemical co-precipitation is the most promising method in 

producing nanoparticles due to its ease of implementation and less 

hazardous chemical and procedure requirements (Cheng et al., 2012; 

Fu et al., 2012). In general, this method employs an alkaline solution to 

precipitate metal ions in an aqueous solution under an inert atmosphere 

at room temperature or elevated temperature (Chu & Hou, 2017). There 

are two main methods for the co-precipitation synthesis in solution of 

spherical magnetic Fe3O4 nanoparticles. The first method involves the 

partial oxidation of ferrous hydroxide suspensions followed by co-

precipitation (Sugimoto & Matijevic, 1980). Sugimoto and Matijevic 

succeeded in synthesizing spherical Fe3O4 nanoparticles of narrow size 

distribution with average diameter between 30 to 100 nm by partially 

oxidizing Fe (II) salt with a base and a mild oxidant. Aphesteguy et al. 

(2015) prepared Fe3O4 nanoparticles with average particle size of 58 

nm and Ms of 75emu/g by partially oxidizing FeSO4 with KOH and 

KNO3 which acted as a base and an oxidant agent, respectively. The 

reaction mechanism for this method is shown in the following equation, 

where Eq. (1) shows the mechanism of partial oxidation of FeSO4 to 

Fe(OH)2 (Sugimoto & Matijevic, 1980). 

 

𝐹𝑒𝑆𝑂4 +  2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2 + 𝑆𝑂4
2−                  (1) 

 

Equations below show the possible summary reactions, including the 

intermediate steps, for the precipitation of Fe(OH)2 to Fe3O4 by 

interacting with NO3
-
. 

 

3𝐹𝑒(𝑂𝐻)2 + 𝑁𝑂3
− → 𝐹𝑒3𝑂4 + 𝑁𝑂2

− + 3𝐻2𝑂             (2) 

 

3𝐹𝑒(𝑂𝐻)2 + 2𝑁𝑂2
− → 𝐹𝑒3𝑂4 + 2𝑁𝑂 + 2𝐻2𝑂 + 2𝑂𝐻−           (3) 

 

15𝐹𝑒(𝑂𝐻)2 +  2𝑁𝑂 → 5𝐹𝑒3𝑂4 + 2𝑁𝐻3 + 12𝐻2𝑂                      (4) 

 

The other method involves aging stoichiometric mixtures of ferrous 

and ferric hydroxides in aqueous solution, yielding magnetic Fe3O4 

nanoparticles (Massart & Cabuil, 1987). In addition, it has been proven 

that by adjusting the pH and the ionic strength of the precipitation 

medium, it is possible to control the mean size of the particles over the 

magnitude of one order (from 2 to 15 nm) (Tartaj et al., 2003). Hariani 

et al. (2013) prepared superparamagnetic Fe3O4 nanoparticles through 

the co-precipitation of ferric and ferrous ions with a molar ratio of 1:2 

under the presence of N2 gas for dye removal. The synthesized Fe3O4 

nanoparticles presented narrow size distribution in the range between 5 

to 20 nm with relatively high Ms of 89.46 emu/g at room temperature 

which was very close to the Ms value of bulk Fe3O4 (92 emu/g). The 

reaction process was carried out by precipitating the FeCl3 and FeCl2 

with NaOH under vigorous stirring at 30˚C, followed by aging process 

at 70˚C for 5h and the pH of solution was kept at ±12.  

The reaction mechanism of the latter method is simple as shown in 

Eq. (5). The reaction simply involves the precipitation of iron 

hydroxides, followed by the formation of iron oxides due to low water 

activity. The overall reaction mechanism is a dynamic equilibrium 

equation in which the formation of Fe3O4 nanoparticles is based on 

[Fe2+], [Fe3+] and [OH-] (Mascolo et al., 2013). Typically, the 

precipitation reaction is designed to mix Fe2+ and Fe3+ in a molar ratio 

of 1:2, which is the exact stoichiometry for Fe3O4 (Gorski & Scherer, 

2010). Moreover, the final [OH-] concentration is related to the pH and 

amount of alkaline solution used, where the pH range between 8 and 14 

is necessary for complete precipitation.  

 

         𝐹𝑒2+ +  𝐹𝑒3+ + 8𝑂𝐻−  ↔  𝐹𝑒(𝑂𝐻)2 + 2𝐹𝑒(𝑂𝐻)3  →
         𝐹𝑒3𝑂4 +  4𝐻2𝑂                 (5) 

The concentration and size of the magnetic nanoparticles of this 

method are much depended on the type of iron salts used (such as 

chlorides, nitrates and sulfates), ratio of ferric to ferrous ions, pH value, 

reaction temperature, ionic strength of the media, as well as other 

influencing factors such as stirring and dropping rates of alkaline 
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solution (Chu & Hou, 2017; Majidi et al., 2014). By controlling the 

reaction parameters, it is possible to synthesize superparamagnetic 

nanoparticles in the range between 2 and 15 nm (Majidi et al., 2014). It 

is also essential to ensure the reaction is carried out under inert gas 

protection in which it does not only protect the Fe3O4 nanoparticles 

against critical oxidation but also reduce the particle size (Laurent et 

al., 2008).  

Table 1 summarizes the influencing parameters of co-precipitation 

method which can control the nucleation and growth of Fe3O4

nanoparticles and thus, affecting the Fe3O4 nanoparticles properties 

such as particle size and Ms. It can be observed that the increase in pH 

of solution with amount of base can restrain the growth of Fe3O4

nanoparticles, resulting in smaller particle size and lower Ms (Mahdavi 

et al., 2013; Mascolo et al., 2013). Moreover, the particle size can be 

reduced with lower reaction temperature due to the expedition 

movement of particles that caused the growth rate to slow down (Khan

et al., 2011). In addition, Madhavi and his research team studied the 

synthesis of Fe3O4 nanoparticles with different starting reaction 

temperatures ranging from 25 to 85 ˚C. The team successfully 

synthesized the smallest Fe3O4 nanoparticles (8.3nm) with the starting 

reaction temperature of 45 ˚C. They claimed that the extent of 

aggregation of Fe3O4 nucleus was reduced by increasing the starting 

reaction temperature from 25 to 45 ̊ C, thus smaller Fe3O4 nanoparticles 

were obtained. However, the growth of Fe3O4 nucleus was 

promoted when the starting reaction temperature was higher than 45 ˚C, 

resulting in larger particle size of Fe3O4 nanoparticles (Mahdavi et al., 

2013). 

On the other hand, Khan et al. (2011) and Mahdavi et al. (2013) 

also found that the particle size of Fe3O4 nanoparticles was decreased 

with increasing stirring rate due to a higher degree of agitation that 

caused the energy to be transferred efficiently to the suspension 

medium and dispersed the reaction solution into smaller droplets. In 

addition, Pereira and coworkers (2012) discovered that 

isopropanolamine (MIPA) and diisopropanolamine (DIPA) could be 

employed as both alkaline and complexing agents in co-precipitation 

process to restrain the particle growth and provide higher surface spin 

order. In summary, particle size of Fe3O4 nanoparticles could be well 

controlled by replacing the alkanolamines (such as MIPA and DIPA) 

with a traditional base to obtain pH solution of around 12, as well as by 

employing lower reaction temperature (from 25 to 45 ˚C) and higher 

stirring rate (from 600 to 800 rpm). 

Sol-gel synthesis 
Sol-gel synthesis is a conventional wet chemical method that 

widely used for the preparation of nanosized metal oxides. In sol-gel 

processing, a ‘sol’ of nanometric particles is prepared through the 

hydroxylation and condensation of the molecular precursor (Chu & 

Hou, 2017; Hasany et al., 2013; Teja & Koh, 2009). The further aging 

process of the nanodispersed ‘sol’ will lead to the growth of particles 

and   

Table 1 Summary of the influencing parameters of chemical co-precipitation method for magnetic Fe3O4 nanoparticles synthesis. 
 

Abbreviations: NH4OH, Ammonium hydroxide; NaOH, Sodium Hydroxide; MIPA, Isopropanolamine; DIPA, Diisopropanolami

form a three-dimensional metal oxide network, denominated as ‘gel’. 

Additional heat treatment to the ‘gel’ is necessary to achieve the final 

crystalline state. For the preparation of Fe3O4 nanoparticles, Fe3+ ions 

of the precursor are hydrolyzed and condensed, based on reaction 

mechanism shown in Eq. (6) and (7) respectively. From the equation, 

Fe3+ ions are readily hydrolyzed and condensed to form ferrous 

hydroxides or oxides. 

 

𝐹𝑒3+ +  3𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3 + 3𝐻+   (6) 

12𝐹𝑒(𝑂𝐻)3  →  4𝐹𝑒3𝑂4 + 18𝐻2𝑂 + 𝑂2                   (7) 

Previously, the starting chemical solution or precursor employed 

for sol-gel synthesis is the metal alkoxides of the desired metal oxides. 

Metal alkoxides have high endurance towards hydrolysis process and 

give highly crystalline and uniform size of metal oxides nanoparticles 

Influencing 
parameters 

Base 
solutio
n 

Reaction 
conditions 

Ageing 
conditions 

pH Particle 
size (nm) 

Ms
300K

(emu/g) 
Hc 

(kOe) 
Note  Ref  

Stirring 
rate 
(rpm) 

Temp. 
(˚C) 

Temp
. (˚C) 

Time  

pH values NH4OH 800 45 80 1 h 8.0 11.8 - 
Nil 

Nil 

 

Smallest particle 
size occurred at 
pH 11 

 

(Mahdavi
et al., 
2013) 

9.0 9.0 - Nil 
10.0 7.8 - Nil 
11.0 9.3 - Nil 

NaOH 500 r.t. r.t. 3 h 10.3 11.5 75.3 Nil ↓particle size with 
↑pH value 

(Mascolo et 
al., 2013) 11.9 11.2 71.6 Nil 

12.1 11.0 69.8 Nil 
12.2 10.9 69.4 Nil 
12.6 10.7 68.3 Nil 

Reaction 
temp. 

NaOH 600 25 25 30 min 12.0 7.5 - - ↑particle size with 
↑reaction temp. 

(Khan et 
al., 2011) 600 60 60 30 min 12.0 10.3 - - 

600 80 80 30 min 12.0 11.6 - - 
NH4OH 800 25 85 1 h 11.0 - - Nil ↓particle size with 

↑reaction temp 
(<45 ˚C). 
↑particle size with 
↑reaction temp 
(>45 ˚C). 

(Mahdavi
et al., 
2013) 800 45 85 1 h 11.0 8.3  58.60 Nil 

800 85 85 1 h 11.0 13.2 - Nil 

Stirring rate NaOH 600 80 80 30 min 12.0 11.6 - - ↓particle size with 
↑stirring rate 

(Khan et 
al., 2011) 1100 80 80 30 min 12.0 8.0 - - 

NH4OH 400 45 80 1 h 11.0 9.4 78.0 Nil ↓particle size with 
↑ stirring rate 

(Mahdavi
et al., 
2013) 

600 45 80 1 h 11.0 8.3 70.0 Nil 
800 45 80 1 h 11.0 7.8 58.6 Nil 

Type of 
base 
solution 

NaOH - r.t. r.t. 2 h 11.0 8.6 58.0 Nil Alkanolamines 
good in control 
particle size 

(Pereira et 
al., 2012) MIPA  - r.t. r.t. 2 h 11.0 6.3 64.8 Nil 

DIPA - r.t. r.t. 2 h 11.0 4.9 60.4 Nil 
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(Qi et al., 2010; Xu et al., 2007). However, this alkoxides sol-gel 

synthesis method is not applicable to large-scale and economical 

production because of the complicated synthetic procedures and the 

commonly used reagents are poisonous and expensive (Owens et al., 

2016). In order to solve the limitations of alkoxides sol-gel synthesis 

method, metal salts such as chlorides, nitrates and acetates are used as 

the precursor in the later sol-gel synthesis method. Gash et al. prepared 

nanostructured iron (III) oxides (Fe2O3) monoliths through sol-gel 

synthesis method with an inexpensive reagent of iron (III) chloride as 

starting material (Gash et al., 2001). A few years later, Tang et al.

(2004) synthesized nanostructure magnetite (Fe3O4) thin film using the 

same synthetic procedures and reagents. However, they found that pure 

magnetite could not be obtained by using iron (III) chloride as the 

precursor due to the formation of impurities such as hematite (α-Fe2O3) 

and maghemite (γ-Fe2O3) during synthesis process, thus restricting its 

usefulness in applications. 

With the latest synthetic technique of sol-gel synthesis combined 

with annealing under vacuum, pure Fe3O4 nanoparticles have been 

successfully prepared using inexpensive, nontoxic ferric nitrate and 

ethylene glycol as a precursor (Aftabtalab et al., 2014; Setina et al., 

2013; Sundar & Piraman, 2013; Xu et al., 2007). Vacuum annealing is 

an additional heat treatment to the nanoparticles that yielding nanosized 

Fe3O4 powders and at the same time avoiding the oxidation of 

magnetite to iron (III) oxides such as maghemite and hematite. 

Magnetic ordering of Fe3O4 nanoparticles prepared by sol-gel synthesis 

is highly depended on the phases formed and the particle volume 

fraction, as well as very sensitive to particle size distribution and 

dispersion (Hasany et al., 2013). Therefore, parameters that influence 

the size distribution and dispersion of particles such as the 

concentration of precursor employed and annealing period and 

temperature, have attracted interest from many researchers. 

Table 2 depicts the summary of influencing parameters of the sol-

gel method for magnetic Fe3O4 nanoparticles synthesis. Most of the 

studies reported that Fe3O4 nanoparticles with particle size < 20nm 

possess superparamagnetic properties at room temperature. However, a 

study by Xu et al. showed that the superparamagnetic properties could 

only be achieved by Fe3O4 nanoparticles of size < 10nm. As shown in 

this table, Sundar and Piraman (2013) successfully proved that the size 

of nanoparticles was tailored by precursor concentration, where the 

increase of precursor concentration would enhance the nucleation rate 

and promote particles growth, thus resulted in larger particle size and 

higher Ms. Moreover, Xu et al. (2007), Qi et al. (2010), Sundar and 

Piraman (2013) and Shaker et al. (2013) also reported that crystallinity 

was improved at higher annealing temperature and consequently, the 

agglomeration of particles was decreased tremendously. In addition, Qi 

et al. (2010) found that the size of Fe3O4 nanoparticles was increased 

and crystallinity was improved with extending annealing period. They 

also believed that it was possible to obtain narrow nanoparticle size 

dispersion by decreasing the annealing period under vacuum. In brief, 

magnetic Fe3O4 nanoparticles with smaller particle size can be 

synthesized through sol-gel synthesis method using higher precursor 

concentration (1 M solution), lower annealing temperature (from 200 

to 250˚C) and shorter annealing time (from 1 to 2 hours). 

Thermal decomposition 
Thermal decomposition is a synthesis approach that involved high 

temperature to prepare narrow size distribution and highly crystalline 

magnetic Fe3O4 nanoparticles. The precursors used in thermal 

decomposition process are categorized into two classes, which are the 

organometallic compounds of iron (such as iron (III) acetylacetonate 

and iron (III) N-nitrosophenylhydroxylamine) and the organic 

surfactant and solvents (such as oleic acid, oleylamine, phenyl ether, 

benzyl ether and 1-octadecene). One or more organic surfactants and 

solvents are mixed and added in the reaction process as a stabilizer to 

obtain monodispersed Fe3O4 nanoparticles. The stabilizer can 

decelerate the nucleation process and affect the adsorption of additives 

on the nuclei and growth of the nanocrystal. This may restrain the 

growth of particles and favor the formation of small Fe3O4

nanoparticles (Majidi et al., 2014). 

Table 2 Summary of the influencing parameters of sol-gel method for magnetic Fe3O4 nanoparticles synthesis. 

Influencing 
parameters  

Precursors Annealing 
temp. (˚C) 

Particle size  
(nm) 

Ms
300K

(emu/g) 
Hc

300K

(kOe) 
Note  Ref  

Precursor 
conc. 

 

0.2M solution of ferric nitrate 
dissolved in ethylene glycol 

 

200  
 

7.8 - - 
 

↑particle size and Ms with 
↑precursor concentration 

 

(Sundar & 
Piraman, 
2013) 1M solution of ferric nitrate 

dissolved in ethylene glycol 

200 13.8 
 

- - 

Annealing 
temp. 

0.2 mol of ferric nitrate dissolved 
in 100 mL ethylene glycol 

200  18.0 31 0.04 ↑particle size, Ms and Hc
value with ↑annealing 
temp. 

(Xu et al. 
2007) 250  - 47 0.07 

400  25.0 60 0.23 
0.01 mol of ferric nitrate 
dissolved in 10 mL ethanol and 
mixed with 14 M solution of 
propylene oxide 

250   - - - XRD patterns showed 
↑particle size, Ms and Hc
value with ↑annealing 
temp. 

(Qi et al., 
2010) 300 10.0 - - 

400 - - - 

1 M solution of ferric nitrate 
dissolved in ethylene glycol 

200 13.8 36 Nil ↓particle agglomeration 
with ↑annealing temp. 

(Sundar & 
Piraman, 
2013) 

300  21.3 48 Nil 
400  28.7 55 Nil 

Ferric nitrate and ethylene glycol 
mixed with molar ratio of 6:46 

200  28.7 - - ↑particle size with 
↑annealing temp. 

(Shaker et 
al., 2013) 300  30.5 - - 

400  34.9 - - 
Annealing 
period 

1M solution of ferric nitrate 
dissolved in ethylene glycol 

300; 1 h - - - XRD patterns showed 
↑particle size and 
crystallinity with 
↑annealing period 

(Qi et al., 
2010) 300; 2 h 10 - - 

300; 3 h - - - 

Fe3O4 nanoparticles produced through this method are usually well-

controlled in size and shape because they are well crystallized with high 

saturation moment at high temperature (Wu et al, 2008; Ali et al., 

2016). The first report using the thermal decomposition of Fe(acac)3 in 

the presence of oleylamine and oleic acid acted as surfactants to 

produce Fe3O4 nanoparticles was reported by Sun and Zeng in 2002. 

Reducing agent (1,2-hexadecanediol) and organic solvents (phenyl 

ether and benzyl ether) with high boiling point (> 250˚C) were added 

in the reaction process with the purpose to partially reduce Fe3+ to Fe2+

and achieve high temperature respectively (Sun & Zeng, 2002). They 

successfully synthesized Fe3O4 nanoparticles with particle size that 

precisely controlled between 4 to 16 nm.  

In 2009, this procedure was further simplified by Xu and his team. 

They found that oleylamine could serve as solvent, surfactant and at the 

same time as reducing agent, thus the reaction process could be 

simplified by using fewer chemicals. In this simplified procedure, 
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Fe(acac)3 was heated with oleylamine and benzyl ether at 300˚C for 

complete decomposition. Moreover, the size of synthesized Fe3O4

could be precisely controlled in between 7 to 10 nm by varying the 

volume ratio of oleylamine and benzyl ether. The latter procedure was 

much more cost-effective as compared to the earlier method as the 

oleylamine was inexpensive and strong enough to act as a reducing 

agent, and could be used to replace other expensive reducing agents 

such as 1,2-hexadecanediol (Xu et al., 2009). Besides that, Fe3O4

nanoparticles capped with oleylamine have weaker bonding with 

nanoparticle surface as compared to oleic acid, thus could be easily 

replaced by another ligand for surface modifications (Xie et al., 2006). 

In thermal decomposition process, the formation of high 

monodispersed, narrow size distribution and highly crystalline 

magnetic Fe3O4 nanoparticles are much depended on the nucleation and 

particle growth steps under high temperature (Wu, et al., 2008; Wu, et 

al., 2015; Lassenberger, et al., 2017). Therefore, the size, morphology 

and magnetic behavior of nanoparticles can be easily controlled by 

adjusting the reaction temperature and time as well as the concentration 

and ratio of the solvent-surfactant mixture (Ghazanfari et al., 2016; 

Laurent et al., 2008). The Ms of synthesized magnetic nanoparticles can 

be improved with higher reaction time and temperature. However, the 

size and size distribution of nanoparticles can also be significantly 

affected by higher reaction time and temperature. Therefore, the 

preparation of small particle size and narrow size distribution magnetic 

nanoparticles with high Ms through higher reaction time and 

temperature are challenging. 

Table 3 summaries the parameters that influence the average 

particle size and magnetic behavior of synthesized Fe3O4 nanoparticles 

through thermal decomposition of Fe(acac)3. Maity et al. (2008) 

studied the effects of reaction temperature and time, surfactant as well 

as solvent on the preparation of high Ms value Fe3O4 nanoparticles with 

particle size maintained in an acceptable range of size distribution. 

They found that the growth rate and crystallinity were increased with 

increasing reaction temperature. However, wide size distribution was 

observed at higher reaction temperature which was mainly caused by 

uncontrolled crystal growth at the higher reaction temperature. On the 

other hand, increased average particle size and wider size distribution 

were occurred at longer reaction time. This phenomenon was known as 

‘Ostwald ripening’ where small particles became smaller and large 

particles became larger with extending reaction time. Thus, it could be 

concluded that the particle size and Ms of Fe3O4 nanoparticles were 

increased with increasing reaction time and temperature, but at the same 

time induced the undesired widening of size distribution. Therefore, 

Maity and his coworkers adopted the effect of surfactant and solvent 

for the synthesis of Fe3O4 nanoparticle with narrow size distribution. 

They found that the size distribution of particles was improved in the 

presence of oleic acid even at the higher reaction time and temperature 

(Maity et al., 2008). This could be due to the selective adsorption of 

coordinating surfactant on the particle surface, thus resulted in uniform 

growth of particles. 

In 2009, another research team further studied the effect of solvent 

on the size and size distribution as well as Ms value under increasing 

reaction time and temperature. The particle size was increased as a 

result of increasing reaction time and temperature, but the size 

distribution of particles was well controlled in the absence of the 

solvent. They claimed that the growth of particles was confined in the 

absence of the solvent due to the reason that the particles were 

surrounded with very dense stabilizing surfactant environment which 

restrained the growth of particles. Besides that, Maity et al (2009) also 

found that the average particle size of synthesized Fe3O4 nanoparticles 

could be controlled by varying the reaction temperature. By 

synthesizing Fe3O4 nanoparticles at a higher reaction temperature of 

330˚C with a reaction time of 4 h, nanoparticles with larger particle size 

and higher Ms were obtained. In short, smaller particle size and narrow 

distribution magnetic Fe3O4 nanoparticles with higher Ms value could 

be synthesized through solvent-free thermal decomposition reaction by 

decomposing Fe(acac)3 with a mixture of oleic acid and oleylamine 

under higher reaction temperature (from 300 to 330˚C) and longer 

reaction time (from 2 to 4 hours).  

  

Table 3 Summary of the influencing parameters of thermal decomposition method for magnetic Fe3O4 nanoparticles synthesis. 

Influencing 
parameters 

Solvent 
surfactant 
mixture 

Reaction conditions Particle 
size 
(nm) 

Ms
300K

(emu/g) 
Hc

300K

(kOe) 
Size 
distribution 

Note  Ref  

Temp. 
(˚C) 

Time (h) 

Reaction 
Temp. 

 

BET + OM 
 

220 
 

2 
 

3 
 

46 Nil 
 

narrow  
 

↑particle size with 
↑reaction temp. 

 

(Maity
et al., 
2008) 

PET + OM 265 2 5 51 Nil narrow 
BET + OM 300 2 9 60 Nil relatively wide 
ODE + OM 330 2 24 74 Nil wide 

Reaction 
time 

BET + OM 300 0.5 7 57 Nil relatively narrow ‘Ostwald ripening’ 
occurred BET + OM 300 4 12 65 Nil very wide 

Surfactant BET + OM + OA 300 0.5 6 - Nil very narrow Size distribution 
improved in the 
presence of OA BET + OM + OA 300 4 14 67 Nil very narrow 

Absence of 
solvent 

OM 300 0.5 8 - Nil narrow Growth of particles 
was confined  OM 300 4 10 65 Nil relatively narrow 

Absence of 
solvent 

OM + OA 300 0.5 5 - Nil very narrow ‘Ostwald ripening’ 
did not occur 

(Maity
et al., 
2009) 
 
 

OM + OA 300 2 6 58 Nil narrow 
OM + OA 300 24 11 71 Nil narrow 

OM + OA 330 0.5 7 - Nil relatively narrow ↑particle size with 
↑reaction time OM + OA 330 4 10 76 Nil relatively narrow 

Abbreviations: OM, Oleylamine; OA, Oleic acid; BET, Benzyl ether; PET, Phenyl ether; ODE, 1-Octadecene 

http://www.foxitsoftware.com/shopping


Koo et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 23-31 

28 

Table 4 Comparison of the three different synthesis methods for the preparation of magnetic Fe3O4 nanoparticles (Hasany et al., 2013; Maity et al., 
2009; Wu et al., 2015; Xu et al., 2014; Zhao et al., 2008). 
 

 Chemical co-precipitation Sol-gel synthesis Thermal decomposition 

Reaction and conditions Simple, inert atmosphere Complicated, ambient Complicated, inert atmosphere 
Reaction temperature 
(˚C) 

25 – 70 25 -  80 100 – 350 

Reaction period Hours Hours – days Hours 
Size distribution Relatively narrow Narrow Very narrow 
Shape control  Not good Good  Very good 
Yield  High/ scalable Medium High/ scalable 
Advantages • Simple and efficient 

• Require less hazardous chemical 
and procedure 

• Mass production possibility in 
industrial scale 

• Possible to obtain materials with 
a predetermined structure 

• Good control of the 
microstructure and the 
homogeneity of the reaction 
products 

• Possible to embed molecules 
• Precisely control in size, shape, 

aspect ratio and internal structure 

• Easy to control particle size and 
shape 

• High crystallinity production 

Disadvantages  • Not suitable for the preparation of 
accurate stoichiometric phase 

• Utilization of strong base  
• Broad size distribution 

• Release large amount of alcohol 
during calcination process 

• Require post-treatment with high 
annealing temperature and 
vacuum condition 

• Weak bonding, low wear-
resistance and high permeability 

• Require high reaction 
temperature  

• Require relatively expensive 
organometallic compound as 
precursor 

• Products dissolve in non-polar 
solvent 

COMPARISONS 
 

The comparison of the three synthetic methods (sol-gel synthesis, 

chemical co-precipitation and thermal decomposition) for the magnetic 

Fe3O4 nanoparticles preparation was shown in Table 4. Among these 

three approaches, chemical co-precipitation is the most effective, cheap 

and simplest pathway to obtain magnetic Fe3O4 nanoparticles. 

However, the particles have the tendency to agglomerate during the 

process which can hamper their interfacial area, thereby hindering their 

magnetism and dispersibility. Thus, it is difficult to obtain high 

crystalline and narrow particle size through chemical co-precipitation 

method. On the other hand, sol-gel synthesis is an alternative method 

for the production of Fe3O4 nanoparticles at low temperature and 

ambient conditions with good control in particle size at specific 

conditions. Nevertheless, the sol-gel synthesis method releases a large 

amount of ethanol in the reaction and thus, safety considerations are 

required during the synthesis process. Besides that, it also requires a 

post-treatment with high annealing temperature under vacuum 

condition which is energy consuming and expensive. Lastly, highly 

monodispersed, narrow size distribution and highly crystalline Fe3O4

nanoparticles can be synthesized through thermal decomposition. 

However, this synthesis method is also energy consuming because high 

temperature is required during reaction process. 

CHARACTERIZATION OF MAGNETIC Fe3O4

NANOPARTICLES 
 

For a better understanding of surface properties, comprehensive 

characterization techniques are used to study the morphology, particle 

size, size distribution, composition, and magnetic properties of 

superparamagnetic Fe3O4 nanoparticles. The fundamental techniques 

employed to investigate the magnetic Fe3O4 nanoparticles includes 

FTIR, EDX, XRD, SEM, TEM, DLS, VSM and SQUID. The details of 

characterization techniques for the assessment of the magnetic Fe3O4

nanoparticles physicochemical properties were shown in Table 5. 

CONCLUSION AND FUTURE PERSPECTIVE 
 

The recent information on the synthesis and characterization 

techniques for magnetic Fe3O4 nanoparticles have been discussed in 

this review. In recent years, there are many research articles have been 

published in this field and significant development has been achieved. 

This review highlights the three conventional wet chemical synthetic 

methods including chemical co-precipitation, sol-gel synthesis and 

thermal decomposition. The three methods are compared in terms of 

mechanism, reaction process and influenced factors that affect particle 

size and size distribution, hence defining the magnetic properties of 

Fe3O4 nanoparticles. However, absolute control over the structural 
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Table 5 Characterization techniques for the assessment of the physicochemical properties of magnetic Fe3O4 nanoparticles. 
 

Modality 
Analyzed physical 

and chemical 
properties 

Advantages Limitations Ref 

FTIR 
Chemical bonding 
and functional 
group 

• Rapid and cheap measurement 
• Suitable for gas, liquid, bulk and powdered 

solid samples, and thin films 

Sensitivity for nanoscale analysis is 
comparatively low 

(Barrios et al., 
2012; Gaffney et 
al., 2002) 

EDX Chemical elements, 
estimate chemical 
proportion, and 
overall mapping 

• A full elemental spectrum can be obtained 
in only a few seconds 

• Can be used in semi-quantitative mode to 
determine the chemical composition by 
peak-height ratio relative to a standard 

• Can be employed together with other 
characterization technique, such as SEM 
and TEM 

• Cannot detect the lightest elements 
• Less commonly used for actual 

chemical analysis 
• Long analysis time 
 

(Joshi et al., 2008) 

 
XRD 

Shape, size and 
structure   

• Well-organized modalities 
• High spatial resolution at atomic level 
 

• Only for crystalline materials 
• Only one binding or conformation 

site is analysed 
• Accessibility is lower compared to 

electron diffraction  

(Felici, 2002; 
Sharma et al., 2012) 

SEM Shape, size and 
dispersion  

• SEM image shows the surface structure of 
the sample 

• Requirement of conducting sample 
or coating conductive materials 

• Only for dry samples 
 

(Cornell & 
Schwertmann, 
2000; Leonard et 
al., 2012) 

TEM Shape 
heterogeneity, size 
and dispersion  

• Higher spatial resolution than SEM  
• Direct measurement of size and shape of 

nanoparticles 
• TEM image shows the internal structure of 

the sample 

• Ultrathin samples are needed 
• Samples required in non-

physiological states 
• Equipment is expensive 

(Cornell & 
Schwertmann, 
2000; Hurley et al., 
2015; Leonard et 
al., 2012) 

DLS Particle size, size 
distribution, and 
agglomeration 
based on 
hydrodynamic 

• Constructive way for rapid and more 
consistent measurement 

• Moderate expenses on equipment  

• Restricted size determination 
• Unable to distinguish between 

nanoparticles with slight differences 
in diameter 

• Unable to resolve polydisperse 
samples precisely 

(Ali et al, 2016; 
Fissan et al, 2014) 

VSM Magnetic properties  • High sensitivity up to 10-6 emu  
• Fully automated 
• Suitable for liquid or solid phase in bulk, 

powder, nanoparticle and thin film forms of 
samples 

• Require correction for 
demagnetizing field  

• Applicable only for small samples 
•  

(Grössinger, 2008) 

SQUID Magnetic properties  • High sensitivity up to 10-8 emu  
• Suitable for thin and single grain sample 

with weak magnetic features 
• The most sensitive devices in analysing 

magnetic properties 
• Applicable for temperature range up to 400K 

• Noise sensitive 
• Complex handling 
• Time consuming 

(Grössinger, 2008; 
Hurley et al., 2015) 

Abbreviations: FTIR, Fourier-transform infrared spectroscopy; EDX, energy dispersive x-rays analysis; XRD, X-ray diffraction; SEM, scanning 
electron microscope; TEM, transmission electron microscope; DLS, dynamic light scattering; VSM, vibrating sample magnetometer; SQUID, 
superconducting quantum interference device 
 
characteristics such as size, size distribution, shape and crystallinity 

remains a challenge. These structural characteristics have critical 

influences on the electrical, mechanical, optical and magnetic 

properties of Fe3O4 nanoparticles, which in turn will determine their 

performance in various applications. 

Moreover, the magnetic properties such as magnetization 

saturation, the magnetic susceptibility of Fe3O4 nanoparticles are 

governed by their particle size and significantly affected by the size 

distribution and agglomeration of particles. From the discussion above, 

it can be seen that the research developments on both chemical co-

precipitation and sol-gel synthesis methods are focused more on size 

reduction of the Fe3O4 nanoparticles without considering the size 

distribution and magnetic properties. On the other hand, the 

development of thermal decomposition methods is based on the size 

reduction while maintaining the narrow size distribution and high 

magnetization saturation. Being the most commonly used magnetic 
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nanoparticles, it is utterly important to identify the magnetic properties 

of Fe3O4 nanoparticles in order to cater to specific requirements of 

different applications. However, there have been limited studies on the 

magnetic properties of the synthesized superparamagnetic Fe3O4

nanoparticles. Therefore, future study should be focused on the 

synthesis of superparamagnetic Fe3O4 nanoparticles with high 

magnetization saturation and magnetic susceptibility while retaining 

their desired particle size and size distribution. 
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