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SUMMARY 33 

Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, 34 

promoting the association with beneficial microorganisms, but also affecting plant 35 

interactions with harmful organisms. They are also plant hormones in-planta, acting as 36 

modulators of plant responses under nutrient deficient conditions, mainly phosphate (Pi) 37 

starvation. In the present work, we investigate the potential role of SLs as regulators of early 38 

Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2’-epi-39 

GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and 40 

wheat under Pi deprivation. 2’-epi-GR24 application also increased SL production and the 41 

expression of Pi starvation markers under normal Pi conditions, being its effect dependent 42 

on the endogenous SL levels. Remarkably, 2’-epi-GR24 also impacted the root metabolic 43 

profile under these conditions, promoting the levels of metabolites associated to plant 44 

responses to Pi limitation, thus partially mimicking the pattern observed under Pi 45 

deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In 46 

agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the 47 

results, we propose that SLs may act as early modulators of plant responses to P starvation.   48 

 49 
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INTRODUCTION 58 

 59 

Phosphorus (P) is an essential nutrient for plants, as it is a structural component of many 60 

biomolecules, including nucleic acids, lipids and proteins, and it is involved in many cellular 61 

processes such as primary metabolism, protein activation, energy transfer, and signal 62 

transduction cascades (Ham et al., 2018; Scheible & Rojas-Triana, 2015). However, despite 63 

its relevance, P is one of the less-abundant macronutrients present in soils. It is mainly 64 

acquired by plants in the form of inorganic phosphate (Pi), which has high-affinity to mineral 65 

particles and organic matter, thus reducing its bioavailability markedly, and limiting plant 66 

growth and development (Lynch, 2011; Raghothama, 2000). Along evolution, plants have 67 

developed a set of complex physiological, biochemical, metabolic and molecular 68 

modifications to cope with Pi limitation in the soil, collectively known as Pi starvation 69 

responses (PSRs) (Ham et al., 2018; Puga et al., 2017). PSRs include alterations in shoot and 70 

root morphology, the regulation of high-affinity Pi transporters (PHT), modifications in the 71 

primary and secondary metabolism, as well as the exudation into the rhizosphere of Pi-72 

releasing enzymes, organic acids and signalling molecules to associate with beneficial soil 73 

microorganisms that can improve Pi uptake (Andreo-Jiménez et al., 2015; Campos et al., 74 

2018; Lambers et al., 2015; Puga et al., 2017). Overall, PSRs aim to improve P-use efficiency 75 

by affecting both Pi acquisition and reallocation and remobilization of internal P.  76 

Establishment and regulation of PSRs require a fine-tuned coordination and integration 77 

of local and systemic signalling pathways, which are mediated by a number of genes and 78 

signalling molecules (Ham et al., 2018; Lan et al., 2015; Puga et al., 2017; Scheible & Rojas-79 

Triana, 2015). It is well established that the transcriptional activator PHOSPHATE 80 

STARVATION RESPONSE 1 (PHR1), and related transcription factors, play a central role 81 

by regulating the expression of many Pi starvation-induced genes (Bustos et al., 2010; Rubio 82 
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et al., 2001; Zhou et al., 2008). PHR1 is constitutively expressed, but its activity is regulated 83 

by the plant Pi status. Indeed, PHR1 activity is negatively regulated by SYG1/Pho81/XPR1 84 

(SPX)-domain proteins (Fig. 1), which sense inositol phosphates (InsP) as a Pi signal (Puga et 85 

al., 2017; Secco et al., 2012). Under Pi limitation, InsP concentration drops, making the 86 

complex SPX-PHR1 no longer stable releasing PHR1. Then, PHR1 induces the expression of 87 

certain high-affinity transporters of the PHT1 family (Fig. 1), facilitating Pi-acquisition and 88 

translocation in-planta (Huang et al., 2013; Liu et al., 2012; Puga et al., 2017). PHR1 also 89 

promotes the expression of the microRNA miR399, whose levels are highly induced soon 90 

upon Pi limitation (Pant et al., 2008). miR399 modulates the activity of PHO2, encoding an 91 

ubiquitin-conjugating E2 enzyme involved in protein degradation (Lin et al., 2008). 92 

Subsequently, down-regulation of PHO2 prevents the degradation of PHO1, a Pi transporter 93 

involved in Pi loading into the xylem (Liu et al., 2012). In parallel to miR399, PHR1 also 94 

promotes the expression of the non-protein coding gene IPS1 (Franco-Zorrilla et al., 2007). 95 

IPS1 sequesters free miR399 through a target mimicry mechanism, preventing the interaction 96 

miR399-PHO2 and the degradation of PHO2 transcripts (Fig. 1) (Franco-Zorrilla et al., 97 

2007). Thus, plant Pi acquisition and homeostasis is finely regulated mainly by the interaction 98 

of the triad IPS1-miR399-PHO2. 99 

Plant responses to environmental challenges, including Pi starvation, are also mediated 100 

by phytohormones. Thus, it has been shown that Pi deficiency response is associated with 101 

downregulation of gibberellins and cytokinins, while other phytohormones such as auxin, 102 

ethylene, abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA) and strigolactones 103 

(SLs) are up-regulated (Chiou & Lin, 2011; Khan et al., 2016; López-Ráez et al., 2008; Pérez-104 

Torres et al., 2008; Prerostova et al., 2018; Song et al., 2016). SLs are the latest plant 105 

hormones described, acting as modulators of plant responses under nutrient deficient 106 

conditions, mainly Pi starvation, and other abiotic stresses such as drought and salinity (Al-107 
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Babili & Bouwmeester, 2015; Andreo-Jiménez et al., 2015). They are carotenoid-derived, 108 

belonging to the apocarotenoid class, as ABA. They are produced by the action of a β-109 

carotene isomerase (D27) and sequential oxidative cleavage by two carotenoid cleavage 110 

dioxygenases (CCD7 and CCD8), giving rise to carlactone, the precursor of all canonical SLs, 111 

including strigol- and orobanchol-type (Al-Babili & Bouwmeester, 2015; Waters et al., 2017). 112 

Under Pi limitation, they hinder shoot growth and promote root system development - 113 

inhibiting primary root growth, promoting lateral root formation, and root hair number and 114 

elongation -, thus increasing soil exploration capacity and improving minerals and/or water 115 

acquisition under stress (Kapulnik et al., 2011; Ruyter-Spira et al., 2011). In addition to their 116 

role as phytohormones, they are important ex-planta signalling molecules in the rhizosphere, 117 

promoting the association with beneficial microorganisms, such as arbuscular mycorrhizal 118 

fungi and rhizobia, also to improve nutrients (mainly Pi and nitrogen) and water acquisition 119 

(López-Ráez et al., 2017). Despite the key role of SLs under Pi starvation, how they modulate 120 

plant responses and whether they are also involved in P signalling remain unclear. We have 121 

previously proposed that higher Pi acquisition efficiency in a commercial wheat cultivar 122 

might be related to its improved SLs-P signalling, which modulates PHO2 activity (Campos 123 

et al., 2019). To further investigate the potential role of SLs as regulators of early Pi 124 

starvation signalling, here we explore the transcriptional and metabolic responses of the plant 125 

to a short-term pulse of the synthetic SL analogue 2’-epi-GR24, both under normal and Pi 126 

limitation conditions. Moreover, the expression pattern of Pi starvation signalling maker 127 

genes was assessed in the tomato SL-deficient line SlCCD8-RNAi L04. Our results suggest 128 

that SLs can act as modulators of plant responses during Pi limitation. Improving our 129 

understanding of Pi starvation signalling is essential to develop new agricultural strategies in 130 

order to optimize plant Pi uptake and reduce the use of P fertilizers. 131 

 132 
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MATERIALS AND METHODS 133 

 134 

Plant growth conditions and treatments 135 

Tomato (Solanum lycopersicum L. cv. MoneyMaker) and wheat seeds (Triticum aestivum cv. 136 

Tukan) were surfaced-sterilized in 4% sodium hypochlorite containing 0.02% (v/v) Tween 137 

20, rinsed thoroughly with sterile water and germinated for 2 d in a plate on moistened filter 138 

paper at 25°C in darkness. Subsequently, seedlings were grown hydroponically in 3 L plastic 139 

containers with modified Long Ashton nutrient solution (Hewitt, 1966) containing 800 μM of 140 

Pi with constant aeration in a greenhouse for 4 weeks. After that, half of the plants were 141 

transferred to a modified nutrient solution without Pi (-P) and were let to grow for another 142 

week before applying 2’-epi-GR24 treatments. The other half was maintained under normal 143 

Pi (+P) conditions. Nutrient solution was replaced twice in a week. The active diasteroisomer 144 

2’-epi-GR24 (orobanchol-type) (Fig. S1) was applied to the nutrient solution (with and 145 

without Pi) at 4 different concentrations (0, 10, 100 and 1000 nM) for 1 h. The SL analogue 146 

2’-epi-GR24 was kindly provided by Dr. Xie (Utsunomiya University, Japan). To prepare 2’-147 

epi-GR24, 1 mg of the compound was dissolved in 330 µl of pure acetone to obtain a stock 148 

solution of 1 M. The stock was serially diluted in sterile demiwater to obtain the desired final 149 

concentrations. Then, the corresponding nutrient solution was replaced without 2’-epi-GR24, 150 

and plants were grown for additional 24 h. Six seedlings per treatment were grown. Shoots 151 

and roots were collected, weighted, frozen in liquid nitrogen and kept at -80ºC until use. 152 

Plants of the SL-deficient tomato line SlCCD8-RNAi line L04 and its corresponding 153 

wild-type cv. Craigella (LA3247) were grown in pots as described in Lopez-Raez et al 2008 154 

(López-Ráez et al., 2008). Seeds were surfaced-sterilized and germinated as described above. 155 

The seedlings were sown and grown in 0.5 L pots with sand/vermiculate (1:1) for 4 weeks in 156 

a greenhouse at 21/18°C with 16/8 h photoperiod and 70% humidity. Plants were watered 157 
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twice a week with modified Long Ashton nutrient solution (Hewitt, 1966). Half of the plants 158 

(Craigella and SlCCD8-RNAi) were watered with standard Pi levels (800 µM), whereas the 159 

other half was watered with 25% Pi of the standard solution (200 µM), to subject the plants to 160 

Pi limitation and induce the characteristic SL-deficient phenotype. Six seedlings per cultivar 161 

and treatment were grown. Roots from each pot were collected separately, frozen in liquid 162 

nitrogen and stored at -80°C until use. 163 

 164 

Extraction and quantification of strigolactones from roots 165 

SL quantification was performed as described in Rial et al. 2018 (Rial et al., 2009). Fifty mg 166 

of tomato root extracts from each treatment were ground in a mortar with liquid nitrogen. 167 

Root material was extracted with 1 mL of ethyl acetate in an ultrasonic bath for 10 min, 168 

centrifuged for 10 min at 5000 rpm, concentrated in a rotary evaporator, and stored at -80 °C. 169 

Before the analysis, the extracts were dissolved with MeOH to achieve a ratio 1:1 g · L
-1

 170 

(w/v). (±)-GR24 (racGR24), used as internal standard, was dissolved in MeOH to 10 mg · L
-1

 171 

and added to all samples at 10 µg · L
-1

. The samples were analysed on a Bruker EVOQ Triple 172 

Quadrupole Mass Spectrometer (Bruker, Madrid, Spain), using as ionization source an 173 

electrospray (ESI+). The samples were injected and separated using an ACE Excel 1.7 C18 174 

(100 mm × 2.1 mm, 1.7 μm particle size) (Advanced Chromatography Technologies Ltd., 175 

Aberdeen, Scotland) maintained at 40°C. The mobile phases were solvent A (water, 0.1% 176 

formic acid) and solvent B (MeOH, 0.1% formic acid), with a flow rate set to 0.3 mL/min. 177 

The linear gradient was: 0-0.5 min, 50% B; 0.5-5 min, to 100% B; 5-7 min, 100% B; 7-7.5 178 

min, to 50% B, and 7.5-10.5 min, 50% B. The injection volume was 5 μL. The instrument 179 

parameters were: spray voltage +4500 V, cone temperature 300°C, cone gas flow 15 psi, 180 

heated probe temperature 400°C, heated probe gas flow 15 psi, nebulizer gas flow 55 psi and 181 

collision pressure 2.0 mTorr. The compound-dependent parameters for orobanchol, solanacol 182 
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and the IS, the parent or precursor ions, the fragments obtained by MRM analysis and the 183 

collision energy to achieve each fragmentation are provided in Table S1. Orobanchol and 184 

solanacol were kindly supplied by Professor Xiaonan Xie and Professor Koichi Yoneyama 185 

(Weed Science Center, Utsunomiya University, Japan), and racGR24 was provided by 186 

Professor Binne Zwanenburg (Department of Organic Chemistry, Radboud University, 187 

Nijmegen, Netherlands). 188 

 189 

RNA isolation and gene expression analysis by quantitative real time RT-PCR (qPCR) 190 

Total RNA was extracted using TRIsure reagent (Bioline, Barcelona, Spain) according to the 191 

manufacturer’s instructions. Subsequently, the RNA was treated with RQ1 DNase (Promega, 192 

Madrid, Spain) and purified through a silica column using the RNA Clean & Concentrator kit 193 

(Zymo Research, Madrid, Spain). RNA was quantified using a Nanodrop (Thermo Fisher 194 

Scientific, Madrid, Spain), and its integrity checked by gel electrophoresis before stored at -195 

80ºC. The first strand cDNA was synthesized with 1 µg of purified total RNA using the 196 

PrimeScript RT Master Mix kit (Takara, Saint-Germain-en-Laye, France) according to the 197 

manufacturer’s instructions. Real time quantitative RT-PCR (qPCR) was performed in a 198 

StepOnePlus real-time PCR system (Thermo Fisher Scientific, Madrid, Spain), using the TB 199 

Green Premix ExTaq kit (Takara, Saint-Germain-en-Laye, France) and specific primers 200 

(Table S2). Five independent biological replicates were analysed per treatment. Relative 201 

quantification of specific mRNA levels was performed using the comparative 2
-Δ(ΔCt)

 method 202 

(Livak & Schmittgen, 2001). Expression values were normalized using the housekeeping 203 

gene SlActin for tomato and TahnRNPQ (the heterogeneous nuclear ribonucleoprotein Q) for 204 

wheat (Grün et al., 2018).   205 

 206 

Metabolic analyses 207 
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Untargeted metabolic profiles of tomato roots were performed by liquid chromatography and 208 

electrospray ionization (LC-ESI) full scan mass spectrometry, as describe in Rivero et al., 209 

2008 (Rivero et al. 2018). Briefly, 50 mg of freeze-dried root material was extracted at 4°C 210 

with 1 ml of MeOH:H2O (10:90, v:v) containing 0.01% of HCOOH. After the centrifugation 211 

at full speed at 4°C for 15 min, the supernatant was filtered through 0.2 μm cellulose filters 212 

(Regenerated Cellulose Filter, 0.20 μm, 13 mm D. pk/100; Teknokroma, Barcelona, Spain). 213 

Subsequently, 20 μl were injected into an Acquity UPLC system (Waters, Mildford, MA, 214 

USA) interfaced with a hybrid quadrupole time‐of‐flight instrument (QTOF MS Premier). 215 

Subsequently, a second fragmentation function was introduced into the TOF analyser to 216 

identify the signals detected. This function was programmed in a t‐wave ranging from 5 to 45 217 

eV to obtain a fragmentation spectrum of each analyte (Gamir et al. 2012). Positive and 218 

negative electrospray signals were analysed independently to obtain a global view of the data 219 

conduct. To elute the analytes, a gradient of methanol and water containing 0.01% HCOOH 220 

was used. Six independent biological samples were randomly injected. The LC separation was 221 

performed using an UPLC Kinetex 2.6 μm particle size EVO C18 100 A, 50 x 2.1 mm 222 

(Phenomenex, Madrid, Spain). Chromatographic conditions and solvent gradients and further 223 

were established as described by Rivero et al. (2018). 224 

 225 

Full scan data analysis 226 

Full scan data files were acquired with the Masslynx 4.1 software (Masslynx 4.1; Waters, 227 

Barcelona, Spain) and were transformed from .raw format into .cdf with Databridge tool 228 

provided by Masslynx software. The software R (http://www.r-project.org/) was used to 229 

process chromatographic data file using the XCMS algorithm (www.bioconductor.org) to 230 

obtain the peak peaking, grouping signals and signal corrections. Peak area was normalized 231 

relative to the dry weight. To test the metabolic differences between treatments, a 232 

http://www.r-project.org/
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nonparametric Kruskal-Wallis test (P < 0.05) was performed. Partial least square discriminant 233 

analysis and heat map analysis were performed with the metaboAnalyst 4.0 (Chong & Xia, 234 

2018). Adduct and isotope correction, filtering, clustering, exact mass mapping and metabolic 235 

pathway exploration was carried out with the packages MarVis filter, MarVis cluster and 236 

MarVis pathway that are integrated in the Marvis suit 2.0 (Kaever et al., 2015). Metabolite 237 

identification was carried out based on exact mass accuracy and fragmentation spectra 238 

matching with different online database. The database kegg (https://www.genome.jp/kegg/) 239 

was used for exact mass identity and for fragmentation spectrum analysis, the Massbank and 240 

the Metlin databases were used (www.massbank.jp; www.masspec.scripps.edu). 241 

 242 

Statistical analyses 243 

Data were subjected to one-way analysis of variance (ANOVA) using the software SPSS 244 

Statistics v. 20 for Windows (SPSS Inc., Chicago, IL, USA). Duncan’s multiple range test 245 

was applied when suited. Full scan data was subjected to Kruskal-Wallis test and signals with 246 

P-value ≤ 0.05 between treatments were used for identification.  247 

 248 

RESULTS 249 

 250 

Low doses of 2’-epi-GR24 stimulate strigolactone biosynthesis in roots under normal 251 

and low Pi conditions 252 

 253 

It is well known that SL biosynthesis is promoted under Pi deficiency (López-Ráez et al., 254 

2008; Yoneyama et al., 2012). Here, we explore the potential feedback in SL biosynthesis 255 

under both optimal and deficient Pi conditions. Tomato plants were grown hydroponically 256 

under normal Pi conditions (+Pi) or subjected to Pi limitation for a week (-Pi). Then, half of 257 

https://www.genome.jp/kegg/
http://www.masspec.scripps.edu/
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the plants of each condition were given a 1h-pulse with different concentrations (0, 10, 100 or 258 

1000 nM) of 2’-epi-GR24. The SL analogue racGR24 is a racemic mixture of four 259 

diastereoisomers, where some of the enantiomers do not present SL activity (Scaffidi et al., 260 

2014). Here, to avoid side-effects of the non-active molecules, the active diasteroisomer 2’-261 

epi-GR24 (orobanchol-type) (Fig. S1) was applied to the nutrient solution. Upon the 1h-pulse, 262 

plants grew for additional 24 h with the corresponding nutrient solution (with or without Pi) 263 

without 2’-epi-GR24 to evaluate the response to the treatment. 264 

As expected, the levels of the characterized tomato SLs orobanchol and solanacol (Fig. 265 

S1) (López-Ráez et al., 2008) were promoted after one week Pi starvation (Figs. 2a and b). In 266 

addition, the levels of these two SLs were further enhanced by the exogenous application of 267 

2’-epi-GR24. Remarkably, this effect was dose-dependent, being most pronounced at the 268 

lowest dose (10 nM) and disappearing at higher doses (100 and 1000 nM) (Figs. 2a and b). 269 

The same pattern as for the analytical quantification was observed by qPCR when using 270 

molecular markers for the SL biosynthesis pathway. The two genes studied were SlD27, 271 

encoding for a β-carotenoid isomerase which converts all-trans-β-carotene to 9-cis-β-carotene 272 

and SlCCD8, which encodes a carotenoid cleavage enzyme catalysing the production of 273 

carlactone, the precursor of all canonical SLs (Al-Babili & Bouwmeester, 2015; Waters et al., 274 

2017). The expression of both genes was induced about 3 times under Pi starvation, and was 275 

further promoted up to 8 and 6 times, respectively, by 10 nM of 2’-epi-GR24 (Figs. 2c and d). 276 

Orobanchol and solanacol levels also increased by 2’-epi-GR24 in plants grown under 277 

normal Pi conditions, somehow resembling those observed in Pi limitation. Here, the effect 278 

was also dose-dependent, but the highest levels were observed at higher concentrations of 2’-279 

epi-GR24 (Figs. 2a and b). A very similar pattern was found regarding the expression of 280 

SlD27 and SlCCD8. They were also induced under these conditions (Figs. 2c and d). The 281 

expression of these two SL biosynthesis genes was analysed in another important agricultural 282 
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crop as wheat. Interestingly, a similar trend was observed in the expression levels of the 283 

wheat TaD27 and TaCCD8 genes, being both induced by Pi deprivation and by 10 nM 2-epi-284 

GR24 under normal Pi conditions (Fig. S2). 285 

 286 

Short-term application of strigolactones enhance plant Pi starvation signalling 287 

 288 

The influence of SLs on P-related signalling was assessed by analysing the expression of key 289 

genes involved in plant P responses, such as the triad IPS1-miR399-PHO2, and the high-290 

affinity Pi transporter LePT2. LePT2 belongs to the PHT1 family, and its expression is 291 

strongly dependent on the plant Pi status (Franco-Zorrilla et al., 2007; Lin et al., 2008; Nagy 292 

et al., 2005; Pant et al., 2008). The expression of LePT2 was induced in the roots more than 2 293 

times under Pi limitation. Interestingly, its expression was further increased up to 5 times 294 

when 10 nM 2’-epi-GR24 was applied, while higher concentrations had no effect in its 295 

expression under this Pi limiting conditions (Fig. 3a). The application of 2’-epi-GR24 under 296 

normal Pi conditions induced an increase in the expression of LePT2, reaching at all SL 297 

concentrations similar expression levels to those observed for Pi starvation (Fig. 3a). A very 298 

similar expression profile was observed for the genes of triad IPS1-miR399-PHO2. Transcript 299 

levels of LeTPSI1, the tomato homolog to IPS1 (Liu et al., 1997), and SlmiR399 were 300 

promoted by Pi deprivation, and this induction potentiated by SL addition (Figs. 3b and c). 301 

Moreover, under normal Pi conditions gene expression was enhanced by all 2’-epi-GR24 302 

treatments (Figs. 3b and c). A different behaviour was detected for the other key gene in Pi 303 

response. Transcript levels of PHO2 were almost 2 times down-regulated by Pi starvation, 304 

levels that were recovered upon application of 2’-epi-GR24 (Fig. 3d). Nevertheless, the 305 

application of 10 nM 2’-epi-GR24 under normal Pi conditions repressed the expression of 306 

PHO2 1.5 times (Fig. 3d), resembling the effect of Pi starvation. 307 
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The expression pattern of IPS1, miR399 and PHO2 and of a high-affinity Pi transporter 308 

(TaPht2) was also analysed in wheat. As for tomato, transcript levels of TaPht2, taemiR399 309 

and TaIPS1 were clearly induced by Pi starvation and by 10 nM 2’-epi-GR24 application 310 

under normal Pi conditions (Fig. S3). In the case of TaPHO2, Pi starvation did not induce any 311 

significant change. However, 2’-epi-GR24 increased its transcript levels only under Pi 312 

limiting conditions (Fig. S3d).   313 

 314 

SL-deficient plants are less sensitive to Pi starvation 315 

 316 

We previously generated and characterized knock-down lines for the SL biosynthesis gene 317 

SlCCD8 in tomato (Kohlen et al., 2012). One of these transgenic lines - SlCCD8-RNAi L04 - 318 

presented a 92% reduction on SLs levels. Here, we analysed the response of this SL-deficient 319 

line to Pi starvation by checking the expression of Pi marker genes. Basal expression of the Pi 320 

transporter LePT2 was about 2-fold lower in the SlCCD8-RNAi line compared to the 321 

corresponding wild-type under normal Pi conditions. An increase in LePT2 transcript levels 322 

was observed under Pi limitation both in the wild-type and the transgenic line. However, the 323 

final value reached in SlCCD8-RNAi was lower because of their reduced basal levels (Fig. 324 

4a). The same behaviour was observed for SlmiR399 and LeTPSI1, showing an induction by 325 

Pi starvation both in the wild-type and the transgenic line (Figs. 4b and c). As for LePT2, 326 

basal transcriptional levels of these genes were also lower in SlCCD8-RNAi, therefore 327 

reaching lower final values. In the case of SlPHO2, under normal Pi conditions the basal 328 

levels in the SlCCD8-RNAi were higher than in the wild-type, in contrast to the pattern  329 

observed for SlmiR399 and LeTPSI1 (Fig. 4d). On the other hand, an induction for SlPHO2 330 

was detected in the wild-type in Pi starvation compared to normal Pi conditions, while in 331 

SlCCD8-RNAi a slight reduction was observed (Fig. 4d). Thus, Pi starvation had opposite 332 
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effects in the wild-type and in the SL-deficient line in the expression of SlPHO2, supporting 333 

the regulatory role of SLs in Pi responses.  334 

 335 

Low doses of 2-epi-GR24 impact metabolic profiles in the roots, resembling those of Pi 336 

starvation 337 

 338 

The previous data evidence a parallelism between the plant response to Pi starvation and to 339 

low doses of SLs (2’-epi-GR24). In addition, altered basal levels of Pi marker genes and 340 

response to Pi limitation were observed in the SL-deficient line SlCCD8-RNAi. To investigate 341 

a potential direct relationship between SLs and Pi signalling, the reprogramming of tomato 342 

root metabolism associated to responses to Pi starvation and exogenous application of 2’-epi-343 

GR24 were compared. Since major effects at transcriptional and SL levels were observed at 344 

low doses of 2’-epi-GR24 (10 nM), root metabolic profiles upon application of this 345 

concentration of 2’-epi-GR24 under normal and limited Pi conditions were analysed. 346 

Untargeted metabolomics analyses of extracts via HPLC coupled with a quadrupole time-of-347 

flight mass spectrometer were performed. Following the chromatographic analyses, a 348 

bioinformatics processing of the detected signals was performed using the MarVis Suit 2.0 349 

software tool for clustering and visualization of the metabolic markers (Kaever et al., 2015). 350 

Clustering and functional pathway (KEGG Solanum lycopersicum pathway Database) 351 

analyses were further performed to obtain potential biological information of the metabolic 352 

reprogramming. 353 

Metabolic analysis yielded a total of 1180 signals, 298 in ESI- mode (Table S3) and 882 354 

in ESI+ mode (Table S4). A combined principal component analysis (PCA) (P < 0.05) of the 355 

signals obtained from the ESI+ and ESI- modes showed that the principal source of variation 356 

resulted from Pi starvation [Control -P (C-P) and GR24-treated -P (GR-P)]. Plant samples 357 
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subjected to one week of Pi deprivation grouped together in the PCA, and clearly separated 358 

from those of plants grown under normal Pi conditions [Control +P (CP)], explaining 2.6% of 359 

the variation (component 2) (Fig. 5a). Under Pi starvation, exogenous application of 2’-epi-360 

GR24 did not induce significant changes in the plant (GR-P vs C-P), showing a priority effect 361 

of Pi starvation in the plant metabolome. However, under normal Pi conditions, 2’-epi-GR24 362 

application [GR24-treated +P (GRP) vs Control +P (CP)] induced plant metabolic responses, 363 

revealing some SL-derived metabolic responses leading to profiles closer to those observed in 364 

plants grown under Pi limitation (Fig. 5a). Hierarchical cluster analysis of the different groups 365 

confirmed the observations of the PCA analysis, supporting that the main source of variability 366 

is the plant Pi status. Remarkably, the heatmap analysis showed that rather than inducing, Pi 367 

starvation repressed the biosynthesis of most secondary metabolites detected (Fig. 5b). The 368 

Kruskal-Wallis test revealed 408 significant (P < 0.05) features, of which 166 showed 369 

differential signals when comparing control plants (CP) with 2-epi-GR24 treated plants (GRP 370 

and GR-P) (Fig. 5c). Out of the 166 features, 40 signals were increased by 2-epi-GR24 (Fig. 371 

5d). 372 

The major impact took place at the primary metabolism, including signals associated to 373 

carboxylic acids, fatty acids and purine metabolism, but also at the secondary metabolism, 374 

mainly associated to phenylpropanoids (Fig. 6), changes already reported to be associated to 375 

Pi starvation responses (Pant et al., 2015; Ziegler et al., 2016). Among the identified 376 

compounds, we found the carboxylic acids malic and citric acids, whose levels were increased 377 

by Pi starvation and by 2-epi-GR24 in normal Pi conditions. The same pattern was observed 378 

for the fatty acids decanoic and azelaic acids, allantoic acid (purine metabolism), 3’’-379 

Hydroxy-geranylhydroquinone (ubiquinone and other terpenoid-quinone biosynthesis), 380 

isophenoxazine (tryptophan metabolism), and the flavonoid luteolin, all of them induced by Pi 381 

starvation, but also by 2-epi-GR24 under normal Pi conditions. Among the compounds that 382 
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showed reduced accumulation under Pi starvation, several also showed a reduction with the 383 

application of 2-epi-GR24 under normal Pi conditions, as is the case of some fatty acids, 384 

especially compounds associated to the linoleic and alpha-linolenic acids metabolism, 385 

including 9-Oxooctadeca-10, 12-Oxo-9(z)-dodecenoic acid and 9,10-Epoxyoctadecatrienoic 386 

acid (Fig. 6).    387 

 388 

DISCUSION 389 

 390 

P is one of the less-abundant macronutrients in soils, which negatively impacts plant growth 391 

and development, and therefore agricultural production. In intensive agriculture, the abuse of 392 

P-fertilizers originates considerable costs and environmental damage, as soil and groundwater 393 

contamination. Therefore, understanding how plants sense, signal and respond to low Pi 394 

availability is essential to optimize the use of these fertilizers, alleviating agricultural costs 395 

and the excessive consumption of this non-renewable resource.  396 

SLs are key modulators of plant responses to Pi limitation in the soil, significantly 397 

altering plant physiology and development to optimize Pi uptake and use (reviewed in Waters 398 

et al., 2017). Indeed, their biosynthesis is highly promoted under Pi limiting conditions 399 

(López-Ráez et al., 2008; Yoneyama et al., 2012). They have the capacity of inhibiting bud 400 

outgrowth under Pi shortage in order to reduce shoot biomass and minimize Pi demand. 401 

Actually, SL-deficient plants show a typical dwarf and bushy phenotype in different species, 402 

which is restored upon exogenous application of racGR24 (Gomez-Roldan et al., 2008; 403 

Umehara et al., 2008). In the aerial part, they also promote internode elongation, secondary 404 

growth of the stem and early leaf senescence to facilitate Pi reallocation, and inhibit 405 

adventitious rooting. In the roots, where they are mainly produced and accumulated, SLs 406 

repress the growth of the primary root, while stimulate the outgrowth of lateral roots, root hair 407 
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number and elongation (Kapulnik et al., 2011; Ruyter-Spira et al., 2011). All these 408 

morphological modifications are well documented to be associated to plant responses to Pi 409 

starvation, and they are oriented to increase the root surface area to facilitate Pi uptake in the 410 

soil (Lynch, 2011; Raghothama, 2000). More recently, it has been reported that exogenous 411 

racGR24 application promoted anthocyanin accumulation and the activation of acid 412 

phosphatases, typical early Pi starvation responses in plants (Ito et al., 2015). However, how 413 

they modulate plant Pi responses and whether they are involved in P signalling is not clear. 414 

We show here that a 1h-pulse of the active SL analogue 2’-epi-GR24 was able to further 415 

promote the biosynthesis of endogenous SLs, already induced by Pi limitation, both in tomato 416 

and wheat (Fig. 2), supporting a positive feedback loop in SL biosynthesis. Interestingly, 2’-417 

epi-GR24 application increased SL levels also under optimal Pi conditions, where SL levels 418 

are usually low and even undetectable (López-Ráez et al., 2008; Yoneyama et al., 2012), 419 

suggesting that SLs could act as signals triggering plant responses to Pi deficiency. In 420 

agreement with their potential regulatory role in P signalling, the positive effect of GR24 was 421 

mainly observed at low doses (10 nM) in plants grown under Pi starvation, with higher basal 422 

levels of endogenous SLs, while the main effect under optimal Pi conditions (with low 423 

endogenous SL levels) was detected at higher doses of GR24 (100 and 1000 mM). Other 424 

dose-dependent effects for SL action have been previously reported. We previously showed 425 

that racGR24 application under normal Pi conditions supressed lateral root formation, while it 426 

was promoted at Pi limitation. Therefore, it was proposed that endogenous SLs are important 427 

for the final output in lateral root development (Ruyter-Spira et al., 2011). Similarly, De 428 

Cuyper and co-workers showed that in the interaction Sinorhizobium meliloti-Medicago 429 

truncatula racGR24 treatment differentially affected nodulation, depending on its 430 

concentration. The authors showed that low doses were able to promote the number of 431 

nodules, whereas high doses reduced it (De Cuyper et al., 2015). Therefore, it seems that the 432 
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net effect of SLs depends on the P nutritional conditions and on their optimum endogenous 433 

levels, as described for most plant hormones. 434 

 As mentioned, plant P responses are finely regulated by PHR1 and the triad IPS1-435 

miR399-PHO2 (Fig. 1) (Franco-Zorrilla et al., 2007; Ham et al., 2018; Puga et al., 2017). We 436 

have recently proposed that higher basal levels of SLs in a commercial wheat cultivar would 437 

act as a priming signal to boost plant responses to Pi starvation, regulating the expression 438 

levels of the three genes of the triad IPS1, miR399 and PHO2 (Campos et al., 2019). The 439 

fine-tuning modulation of PHO2 activity would reduce shoot Pi loading and favour the 440 

development of the root system, thus improving Pi acquisition efficiency and use (Campos et 441 

al., 2019). Here, we show that the short-term application of 2’-epi-GR24 also affected the 442 

expression of IPS1-miR399-PHO2 and that of the high affinity transporter LePT2 genes, both 443 

in tomato and wheat. Low doses of GR24 boosted the expression of these genes, already 444 

promoted by Pi starvation, both in tomato and wheat. Also in the case of PHO2, which 445 

expression was reduced under Pi limitation, it was promoted by 2’-epi-GR24. This fact could 446 

be explained as an effect of timing and/or endogenous concentration of SLs. Indeed, a time-447 

dependent increase of PHO2 transcripts has been shown in wheat, which would coincide with 448 

a progressive increase in SL levels (Campos et al., 2019). 2’-epi-GR24 also induced the 449 

expression of these Pi marker genes even at optimal Pi conditions, partially mimicking the 450 

effect observed in Pi starvation. A promoter effect of racGR24 in the expression of the high 451 

affinity Pi transporter Pht1;7 under Pi deprivation has also been observed in Arabidopsis 452 

(Prerostova et al., 2018). Conversely, a down-regulation of Pi transporters from the Pht1 453 

family in the SL-deficient mutant max1-1 was shown (Ito et al., 2015). Altogether, the results 454 

point to an involvement of SLs in regulating early P signalling in plants (Figure 7). In 455 

agreement with this idea, the SL-deficient line SlCCD8-RNAi showed altered levels of these 456 

key Pi response regulatory elements, being also less sensitive to Pi starvation. A similar effect 457 
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was observed in Arabidopsis, where the SL-deficient max1-1 and the SL-signalling max2-1 458 

mutants were less sensitive to Pi limitation, producing less root hairs and anthocyanins under 459 

stress. This mutant showed reduced transcript levels of IPS1, whereas those of PHO2 were 460 

up-regulated (Ito et al., 2015). We report here the same pattern for tomato. Interestingly, the 461 

application of racGR24 partially rescued the phenotype in the SL-deficient mutant, but not in 462 

the SL-signalling mutant (Ito et al., 2015; Kapulnik et al., 2011). Thus, our results support an 463 

important role of SLs in the plant response to P levels. Further research is required to decipher 464 

how plants perceive Pi stress and how the relationship SL-P signalling is regulated.  465 

In addition to promoting SL biosynthesis and increasing the gene expression of P 466 

signalling marker genes under low and optimal Pi conditions, low doses of 2’-epi-GR24 467 

altered root metabolic profiles in plants grown under optimal Pi conditions, partially 468 

resembling those observed under Pi starvation (Fig. 5a). Among the identified compounds, an 469 

increase in malate and citrate was observed under both Pi starvation and 2’-epi-GR24 470 

application. An accumulation and exudation into the rhizosphere of these carboxylic acids is 471 

generally observed in plants exposed to Pi shortage (Pant et al., 2015). It is suggested that 472 

they can improve Pi availability by mobilizing different P forms from the soil through the 473 

chelation of metal ions such as Fe, Al or Ca. Moreover, a key role for malate in the 474 

characteristic changes triggered by Pi starvation in root system architecture has been recently 475 

described (Mora-Macías et al., 2017). Another important metabolite associated to plant 476 

responses to Pi availability which levels were accumulated by Pi starvation and 2’-epi-GR24 477 

under optimal Pi conditions was allantoic acid. The accumulation of nitrogen rich compounds, 478 

including the ureides allantoin and its degradation product allantoate, is related to increased 479 

nucleotide degradation and the consequent Pi mobilization under this stress condition, and the 480 

crosstalk between P and nitrogen metabolism (Medici et al., 2019; Pant et al., 2015). Overall, 481 
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the accumulation of these compounds would help the plant to cope with low Pi availability by 482 

optimizing P use and internal mobilization.  483 

Another metabolite specifically accumulated under Pi limitation and 2’-epi-GR24 484 

application was the saturated dicarboxylic acid azelaic acid. This compound has been 485 

associated to priming of plant immunity (systemic acquired resistance, SAR), conferring local 486 

and systemic resistance against bacterial pathogens by inducing the production of SA (Jung et 487 

al., 2009). Increased levels of SA in roots subjected to Pi starvation have been shown 488 

(Prerostova et al., 2018) (López-Ráez et al., unpublished data), whereas a reduced 489 

accumulation of this hormone was observed in the tomato SL-deficient SlCCD8-RNAi line L9 490 

(Torres-Vera et al., 2014). Interestingly, this SL-deficient line was more susceptible to the 491 

fungal pathogen Botrytis cinerea. Similarly, Arabidopsis SL-deficient plants were 492 

hypersensitive to the actinomycete Rhodococcus fascians, whereas the application of 493 

racGR24 to wild-type plants induced resistance against this pathogen (Stes et al., 2015). A 494 

connection between Pi starvation and SAR through the stimulation of SA by the Pi transporter 495 

PHT4;1 was made in Arabidopsis (Wang et al., 2011), where the authors proposed a critical 496 

role of this Pi transporter in regulating innate immunity in Arabidopsis. Parallelism between 497 

Pi starvation and 2’-epi-GR24 application was also found in the reduction of compounds 498 

associated to the linoleic and alpha-linolenic acids metabolism was observed (Fig. 6). These 499 

pathways are related with the biosynthesis of essential fatty acids and oxylipins metabolism, 500 

which includes the biosynthesis of JA and derivatives. The reduction of these intermediate 501 

compounds could indicate an increase of the final products of these pathways such as JA, 502 

among others. Indeed, a promotion of JA content by Pi starvation has been reported (Khan et 503 

al., 2016; Prerostova et al., 2018). Interestingly, Khan and co-workers showed that the 504 

accumulation of JA in Pi-starved plants was mediated by PHR1, and that it was associated 505 

with resistance to insect herbivores (Khan et al., 2016). As for SA, reduced levels of JA were 506 
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observed in the SL-deficient SlCCD8-RNAi line L9 (Torres-Vera et al., 2014), pointing to a 507 

role of SLs in defence responses. A cross-talk between Pi starvation and signalling pathways 508 

regulating plant responses to other environmental stresses, including biotic stresses, has been 509 

suggested, opening up a broad field of research. SLs, through its interaction with other 510 

phytohormones, might be regulating these plant stress responses in a dose- and likely tissue-511 

dependent manner.  512 

Summarizing, we provide experimental evidences supporting that SLs are early 513 

modulators of plant responses to low Pi availability, promoting the expression of key 514 

regulatory genes and that of high-affinity Pi transporters associated to this stress, and altering 515 

metabolic profiles to cope with Pi limitation (Figure 7). A short-term pulse of low doses of 516 

the SL analogue 2’-epi-GR24 at optimal Pi conditions was able to partially mimic the plant 517 

response to Pi starvation, supporting the role of SLs in Pi-related signalling. The results 518 

presented here could be extrapolated to crop varieties with higher endogenous SLs’ levels or 519 

with increased sensitivity to this plant hormone. This knowledge may help to develop new 520 

strategies to optimize plant Pi acquisition efficiency and use, thus reducing the excessive use 521 

of P fertilizers for a more sustainable agriculture.  522 
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 732 

FIGURE LEGENDS 733 

 734 

Figure 1. Schematic model of core elements involved in the regulation of P signalling in 735 

plants. Under Pi deficient conditions, the complex SPX-PHR1 is no longer stable. Once 736 

released, PHR1 promotes the expression of high-affinity Pi transporters from the PHT1 737 

family (e.g. LePT2 in tomato) in the roots, increasing Pi uptake. PHR1 also induces the 738 

expression of the microRNA miR399 (SlmiR399 in tomato), which negatively regulates 739 

PHO2 (SlPHO2 in tomato) activity, and of the non-protein coding gene IPS1 (TPSI1 in 740 

tomato). PHO2 down-regulation prevents the degradation of the Pi exporter PHO1, thus 741 

allowing Pi xylem loading and the subsequent Pi transport into the shoots. On the other hand, 742 

IPS1 can interact and block miR399 transcripts, preventing miR399-PHO2 binding and 743 

degradation of PHO2. Adapted from Puga et al. 2017 (Puga et al., 2017).  744 

 745 



27 

 

Figure 2. Effect of Pi starvation and 2’-epi-GR24 exogenous application on strigolactone 746 

biosynthesis. Content of the SLs orobanchol (a) and solanacol (b) in tomato root extracts of 4-747 

week old plants from plants grown under normal (+P; light bars) or deficient (-P; dark bars) 748 

phosphate conditions, and treated or not with different concentrations of the synthetic SL 749 

analogue 2’-epi-GR24 [GR24].  Gene expression analysis (M value) of the SL biosynthesis 750 

genes SlD27 (c) and SlCCD8 (d) in roots of 4-week old tomato plants. M value (log2 ratio) is 751 

zero if there is no change; ‘+1’ or ‘-1’ indicate two-fold change induction or repression, 752 

respectively. Bars presents the means of five independent replicates (±SE). Bars with different 753 

letters mean significantly different (P < 0.05) according to the Duncan’s multiple range test. 754 

 755 

Figure 3. Expression analysis of genes associated to P signalling and homeostasis. Effect 2’-756 

epi-GR24 under normal (+P; grey bars) or deficient (-P; closed bars) phosphate conditions in 757 

the expression (M value) of the gene encoding the Pi transporter LePT2 (a), and the Pi 758 

signalling genes SlmiR399 (b), LeTPSI1 (c) and SlPHO2 (d) in tomato roots. Gene expression 759 

values were normalized using the housekeeping gene SlActin. Bars presents the means of five 760 

independent replicates (±SE). For statistics see legend in Fig. 2. 761 

 762 

Figure 4. Gene expression analysis of tomato genes associated to P signalling and 763 

homeostasis in the SL-deficient line SlCCD8-RNAi and its corresponding wild-type cv. 764 

Craigella (WT). Plants were grown in pots under normal (+P; grey bars) or deficient (-P; 765 

closed bars) phosphate conditions. The expression (M value) of the of the gene encoding the 766 

Pi transporter LePT2 (a), and the Pi signalling genes SlmiR399 (b), LeTPSI1 (c) and SlPHO2 767 

(d) was analysed. Expression values were normalized using the housekeeping gene SlActin. 768 

For statistics see legend in Fig. 2. 769 

 770 



28 

 

Figure 5. Overview of metabolite behaviour in roots of tomato plants grown under normal (P) 771 

or deficient (-P) Pi conditions and treated (GR) or not (C) with 10 nM 2’-epi-GR24, using 772 

principal component and heat map analyses. (a) Combined (ESI+ and ESI- modes) principal 773 

component analysis (PCA) (p < 0.05) of the signals obtained from a non-targeted analysis by 774 

HPLC-QTOF monitoring metabolic changes. (b) Heatmap of the metabolite profiling 775 

generated with MarVis Filter and Cluster packages by combining ESI+ and ESI- modes. Each 776 

colour band represents a single compound detected in CP, C-P, GRP and GR-P, whose 777 

accumulation is indicated by the colour scale ranging from high (red) to low (blue). The 778 

concentration of the metabolites was determined in all samples by normalizing the 779 

chromatographic pick area for each compound with the dry weight of the corresponding 780 

sample. (c) Non-parametric Kruskal-Wallis test to identify significant (P < 0.05) features 781 

among the total number of signals. Red dots are features with significant differences and 782 

green dots features without significant differences. The straight sets the threshold for the 783 

statistical differences (P < 0.05). (d) Heatmap analysis of the 40 significantly signals obtained 784 

from the Kruskal-Wallis test, whose levels were increased upon 2’-epi-GR24 treatment. Red 785 

box indicates compounds up-regulated by Pi limitation and 2’-epi-GR24. Each colour band 786 

represents a single compound detected in CP, C-P, GRP and GR-P, whose accumulation is 787 

indicated by the colour scale ranging from high (red) to low (blue). Data points represent six 788 

biological replicates injected randomly into the HPLC-QTOF MS. Values are relative to root 789 

dry weight and normalized to the lowest amount. 790 

 791 

Figure 6. Box plots of identified and selected metabolites from the untargeted metabolomics 792 

analysis in tomato roots, showing similar accumulation patterns under Pi starvation and plants 793 

treated with 2’-epi-GR24 under normal Pi. + and - indicate presence or absence, respectively, 794 

of Pi and GR24. Compounds showing up-regulation by Pi limitation and 2’-epi-GR24: malic 795 
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acid, citric acid, decanoic acid, azelaic acid, allantoic acid, 3’’-Hydroxy-796 

genarylhydroquinone, isophenoxazine and luteolin.  Compounds showing down-regulation by 797 

Pi limitation and 2’-epi-GR24: 9-Oxooctadeca-10, 12-dienoic acid, 12-Oxo-9(z)-dodecenoic 798 

acid and 9,10-Epoxyoctadecatrienoic acid. Boxplot of the selected metabolomic features from 799 

the user’s uploaded data.  Black dots represent the concentration of the selected features from 800 

all samples. The notch indicates the 95% confidence interval around the median of each 801 

group. The mean concentration of each group is indicated with yellow diamond. Data no 802 

sharing a letter in common differ significantly according to the Fisher’s least significant 803 

difference test (P < 0.05). Six independent replicates were used. 804 

 805 

Figure 7. Proposed model for the regulation of plant responses to Pi starvation. Phosphorus 806 

deficiency induces SL biosynthesis, which would modulate the expression of the key Pi 807 

signalling and regulatory genes, and that of Pi transporters. The regulation of the Pi response 808 

modulators would promote plant responses, including changes in the metabolome, to cope to 809 

the stress.   810 

 811 

SUPPLEMENTAL MATERIAL 812 

 813 

Table S1. Mass pair (m/z) and compound-dependent parameters of the standards used for 814 

analytical quantification of SLs. *C.E.: Collision Energy 815 

 816 

Table S2. Primer sequences used in the real time qRT-PCR analyses. 817 

 818 

Table S3.  819 

Dataset containing metabolic profiles from tomato roots in negative (ESI-) mode. 820 
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 821 

Table S4.  822 

Dataset containing metabolic profiles from tomato roots in negative (ESI+) mode. 823 

 824 

Figure S1. General structure of natural strigolactones and the active synthetic strigolactone 825 

analogue 2’-epi-GR24. Chemical structure of the tomato strigolactones quantified in this 826 

work: orobanchol and solanacol. 827 

 828 

Figure S2. Effect of Pi starvation and 2’-epi-GR24 exogenous application on strigolactone 829 

biosynthesis in wheat. Gene expression analysis (M value) of the SL biosynthesis genes 830 

TaD27 (a) and TaCCD8 (b) in roots of 4-week old wheat plants grown under normal (+P; 831 

light bars) or deficient (-P; dark bars) Pi conditions, and treated or not with 10 nM 2’-epi-832 

GR24 [GR24]. M value (log2 ratio) is zero if there is no change; ‘+1’ or ‘-1’ indicate two-fold 833 

change induction or repression, respectively. Data presents the means of five independent 834 

replicates (±SE). Bars with different letters mean significantly different (P < 0.05) according 835 

to the Duncan’s multiple range test. 836 

 837 

Figure S3. Expression analysis of genes associated to P signalling and homeostasis in wheat. 838 

Effect of 10 nM 2’-epi-GR24 under normal (+P; grey bars) or deficient (-P; closed bars) 839 

phosphate conditions in the expression (M value) of the gene encoding the Pi transporter 840 

TaPht2 (a), and the P signalling genes taemiR399 (b), TaIPS1 (c) and TaPHO2 (d) in wheat 841 

roots. Gene expression values were normalized using the housekeeping gene TahnRNPQ. 842 

Data presents the means of five independent replicates (±SE). Bars with different letters mean 843 

significantly different (P < 0.05) according to the Duncan’s multiple range test. 844 




