
Genome privacy: challenges, technical approaches to mitigate 
risk, and ethical considerations in the United States

Shuang Wang1,a, Xiaoqian Jiang1,a, Siddharth Singh1, Rebecca Marmor1, Luca Bonomi1, 
Dov Fox2, Michelle Dow1, and Lucila Ohno-Machado1

1Department of Biomedical Informatics, University of California San Diego, La Jolla, California

2School of Law, University of San Diego, San Diego, California

Abstract

Accessing and integrating human genomic data with phenotypes is important for biomedical 

research. Making genomic data accessible for research purposes, however, must be handled 

carefully to avoid leakage of sensitive individual information to unauthorized parties and improper 

use of data. In this article, we focus on data sharing within the scope of data accessibility for 

research. Current common practices to gain biomedical data access are strictly rule based, without 

a clear and quantitative measurement of the risk of privacy breaches. In addition, several types of 

studies require privacy-preserving linkage of genotype and phenotype information across different 

locations (e.g., genotypes stored in a sequencing facility and phenotypes stored in an electronic 

health record) to accelerate discoveries. The computer science community has developed a 

spectrum of techniques for data privacy and confidentiality protection, many of which have yet to 

be tested on real-world problems. In this article, we discuss clinical, technical, and ethical aspects 

of genome data privacy and confidentiality in the United States, as well as potential solutions for 

privacy-preserving genotype–phenotype linkage in biomedical research.
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Introduction

With the proliferation of genome sequencing technologies, human genomic data have been 

widely used in biomedical research studies. The availability of such data, together with the 

enhanced capacity to process them, is leading to advancements in biomedical science, 

informatics, and bioethics. One example is genome-wide association studies (GWASs) that 
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attempt to identify single-nucleotide variants or polymorphisms (SNPs) associated with a 

disease/phenotype of interest. Researchers can benefit from the convenient access to 

aggregate human DNA data, in particular the allele frequencies of thousands to millions of 

SNPs across human populations with certain diseases or medical conditions, but data privacy 

and confidentiality concerns need to be addressed. Data privacy and confidentiality are 

relevant, but there are differences that should be emphasized. Data confidentiality focuses on 

keeping the data secure and private from unauthorized access, ensuring the data fidelity in 

storage or during transferring. Data privacy is concerned with the appropriate use of data. 

That is, data should be used according to intended purposes without violating patient 

intentions. Data privacy is certainly tied to data confidentiality. In general, strong data 

privacy is not possible without having an appropriate data confidentiality protection 

program. But data confidentiality practices may not always guarantee data privacy. For 

example, data privacy may be compromised if an authorized user of a “de-identified” data 

set attempts to re-identify patients or infer information that could compromise patient 

privacy.

Open-access mechanisms (e.g., as in the 1000 Genomes Project1 and the Personal Genome 

Project, PGP2) and controlled-access mechanisms (e.g., as in the database of Genotypes and 

Phenotypes, dbGaP3) are widely used for genomic data sharing. Compared to controlled-

access genomic datasets (e.g., dbGaP), open-access datasets have been used in many more 

studies in a given year.4 Broad genomic data sharing through an open-access model can 

benefit the public in advancing scientific discovery; however, such models also create new 

re-identification risks, as demonstrated by recent studies.5,6 Although such re-identification 

risks may not be applicable to participants who are interested in sharing their genomic data 

and other information through public platforms (e.g., DNA.Land or Open Humans), we 

focus here on unauthorized re-identification. For example, a study conducted by Gymrek et 
al.5 reported that about 50 individuals could be re-identified (i.e., participants’ names) in the 

1000 Genomes Project by leveraging an online genealogy database. In response to this risk, 

the National Institutes of Health (NIH) removed the age information of participants in this 

project.4 The re-identification risk of the PGP was also reported by Sweeney et al.6 In an 

analysis by Homer et al.7 of the attribute disclosure risk using data from dbGaP, it was found 

that allele frequencies of an individual can be used to reliably determine his/her presence in 

a case group. As a result, in addition to widely discussed privacy risks (e.g., authorized re-

identification, forensic or other law enforcement re-identification8,9), participants of human 

genome studies (HGSs) may also be subject to attribute disclosure risk even from what are 

labeled “de-identified data.”10 In response to this threat, the NIH shifted to a controlled-

access model, which removes all aggregate data from open-access repositories to protect 

HGS participants against re-identification.11

Today, HGSs are most frequently shared in a controlled-access manner (e.g., as in dbGaP3) 

that prevents broad dissemination of data. There has been intensive debate about such a 

controlled-access model, as the approval process may prevent researchers from timely 

gaining data access. As discussed by Zhou et al.,12 “some researchers pointed out that the 

NIH may have overreacted, as the attack power achievable over at least some data-sets can 

be very limited. On the other hand, such agreement-based protection has been found to be 

insufficient, as confidential user information can still be derived from other public sources.” 
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As an example, a previous study13 showed that test statistics, such as P values, in GWASs 

could disclose a significant amount of personal information, such as identifying individuals 

or inferring portions of their genomic data.

The biomedical community recognizes that, for large-scale genomics projects, absolute 

privacy and data protection cannot be ensured in practice and should not be promised to 

participants.14,15 But rapid dissemination of research findings and related data are critical for 

scientific and technological progress in HGSs and biomedicine. Therefore, attempts have 

been made to share genomic data (i.e., allele frequencies of genomic variants) in a way that 

the privacy risk and the benefit of timely sharing of the data can be balanced. An example is 

Geno2MP, a web-based tool that allows the query of rare variants from sequencing data 

linked to one or multiple Mendelian phenotypes defined by human phenotype ontology 

(HPO) terms.16 As another example, the Cancer Genome Atlas refrains from releasing non-

validated somatic mutations inferred from cancer sequencing data,17 but the actual privacy 

risk in these data has never been systematically evaluated and thus likely varies from one 

individual to another. Such efforts, however, are mostly ad hoc, lacking rigorous theoretical 

foundations for setting the boundary where the balance should be struck. Figure 1 

summarizes the existing problems related to genome privacy in biomedical research.

Another important privacy challenge comes from the requirement of private data exchange 

in cross-institutional studies. For example, data from the same individual may be partitioned 

among several sites, such as healthcare providers, sequencing facilities, insurance 

companies, and research institutions. There are incentives to study them jointly. For 

example, the genomic data of a particular group hosted in a sequencing facility can be 

significantly enriched by linking such data to electronic health records (EHRs),18 allowing 

comprehensive and simultaneous capture of multiple exposures, health status, interventions, 

and outcomes. In this case, record linkage is an essential first step to combine data in cross-

institutional studies.19 For example, Bozkurt et al.20 demonstrated that linking a 

pharmaceutical database to a biobank database can help in the discovery of interactions 

between thiazide diuretics and genetic variation for type 2 diabetes. In such cross-

institutional studies, data privacy and confidentiality concerns are prominent problems, as 

the study may require patient-level data exchange for record linkage. The exposure of 

protected health information (PHI) can put individuals’ sensitive information at risk.

Despite several recent record linkage efforts, there are many challenges in ensuring accuracy 

and privacy in record linkage. For example, false positives may result from the incorrect 

linkage of information of two different individuals in vertically partitioned datasets, which 

can result in estimation errors in research studies. Vertically partitioned datasets are those in 

which part of the information related to an individual is stored in one dataset, and another 

part is stored in a separate dataset. Existing record linkage methods can be categorized into 

deterministic21 and probabilistic22 approaches. If there are explicit identifiers (e.g., name, 

social security number) among different datasets, deterministic record linkage methods are 

often adopted. Probabilistic linkage methods are more complex, as they need to assign 

different weights for different discriminative linkage variables to compute an overall score 

that indicates how likely a record pair may come from the same individual. Furthermore, 

owing to privacy and security concerns, institutions and individuals may be hesitant to share 
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sensitive personal health information outside the health system. Hence, robust privacy-

preserving record linkage tools are needed before this rich environment is ripe for research 

use.

In this paper, we focus on genomic data privacy from clinical, technical, and ethical 

perspectives, as well as technologies that facilitate privacy-preserving genomic data sharing 

and integration with phenotypes through privacy-preserving record linkage.

Genome privacy and privacy-preserving record linkage in clinical 

environments

With the Health Information Technology for Economic and Clinical Health (HITECH) Act, 

the U.S. government mandated the implementation of EHRs to improve quality of care, and 

by 2013, 59% of hospitals had adopted EHRs.23 This has opened doors for creating large-

scale, accurately phenotyped electronic cohorts of individuals with specific conditions, such 

as inflammatory bowel disease24 and rheumatoid arthritis,25 by combining structured and 

narrative data from these EHRs with natural language processing tools. At the same time, 

the decreasing costs and rapid sequencing techniques have enabled large-scale HGSs. To 

promote meaningful discovery research through a combination of EHRs and genomic data, 

consortia such as the Electronic Medical Records and Genomics (eMERGE) Network, 

funded by the National Human Genome Research Institute, have emerged with the intention 

of studying new methods and tools to use better EHR data in genomic research.26 The 

eMERGE Network includes geographically different groups, where each group has its own 

biorepository. Phenotypic data within EHRs can be linked to each group’s genomic data 

derived from its biorepository, and these data can be aggregated from different institutions, 

by which a large number of phenotypes for both case and control patients can be collected in 

an efficient manner for discovering genotype–phenotype associations. While this is a very 

promising approach with tremendous potential for advancing science and clinical care, it is 

still not widespread across a large number of institutions and a large number of health 

conditions, as inadequate genome privacy preservation can quickly result in a loss of public 

trust.

Technical solutions for privacy-protecting disclosure of data or results from 

genome studies

Existing technical solutions

In this section, we focus on the technical solutions for genome privacy and categorize the 

discussion into three parts as (1) privacy-preserving aggregate statistics/data disclosure, (2) 

data outsourcing in an untrusted cloud,27 and (3) privacy-preserving cross-institutional 

collaboration. There are several studies that have focused on the protection of genome 

research outcomes28–31 and genomic data dissemination32 using differential privacy (DP),33 

which aims to protect the privacy of an individual from being breached, when the individual 

has opted in or out of a study. The protect strength is controlled by a privacy budget, where a 

smaller budget provides a stronger protection, and vice versa. Perturbation-based methods 

are widely used to achieve differential privacy, where the perturbation noise is calibrated on 
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the basis of the privacy budget and sensitivity (i.e., the maximum degree of value change for 

a function of interest, given the absence/presence of an individual). The Laplace 

mechanism33 and the Exponential mechanism34 are two commonly used methods to achieve 

DP. More specifically, the Laplace mechanism calculates the DP outputs by adding noise, 

which consists of randomly sampled values from the Laplace distribution. In contrast, the 

Exponential mechanism generates DP outputs by drawing random samples based on a user-

defined utility function. For the technical details of DP, the reader is referred to other 

published articles.33,34 The Laplace mechanism was employed to add noise to the chi-

squared statistics to protect the release of most signification SNPs identified in GWASs.28 

Both the Laplace and Exponential mechanisms were used in order to protect the 

dissemination of medical and genomic data.32,35 Differential privacy-based methods provide 

strong and provable protection on genomic data privacy. However, these perturbation-based 

protection methods often introduce too much noise and render some results untrustworthy 

for practical genomic applications.

In contrast, many studies have been conducted to safeguard genomic data analysis tasks in 

secure outsourcing36 using Homomorphic Encryption (HME),37 which allows users to 

directly perform certain arithmetic operations over encrypted data. There are different 

versions of HME:38 (1) partial HME only supports computations that can be expressed as 

either addition or multiplication operations over ciphertext;39 (2) full HME supports an 

unlimited number of addition and multiplication operations, but often has formidable 

computation costs;40 and (3) quasi HME is specified by a certain number of accumulated 

multiplication operations41 and is most flexible and efficient for a specific task. Studies that 

use HME mainly focus on building secure primitives using the combination of HME 

addition and multiplication operations to achieve accurate and efficient computation of 

certain genome analysis tasks (e.g., chi-squared statistics computation,42,43 Hamming and 

edit distance comparison,44,45 regression model learning and evolution36).

For privacy-preserving collaboration, garbled circuit46,47 and secret sharing48,49 schemes 

have been applied to enhance genome privacy protection in a federated computational 

environment. A garbled circuit (also known as Yao’s protocol50) can transform any function 

into a secure circuit representation for secure computation between two parties in a “semi-

honest” model, in which each party follows the protocol exactly but may be curious about 

the other party’s data. Secret sharing51 is another approach based on an encrypted Boolean 

circuit that can support secure computation over more than two parties in a semi-honest 

model, where encrypted data are securely distributed among all participating parties. All 

parties can collaborate to securely evaluate a Boolean circuit for a certain task. Unlike many 

existing studies52–56 that protect individual-level data, these techniques based on secure 

multiparty computation can also protect the exchange of intermediary information during the 

entire computation process. Although it is appealing to apply a cryptographic method for 

secure outsourcing and privacy-preserving collaboration, only limited genome 

computations47,48,57 have been supported to date. Further investigation of these types of 

privacy-protection technologies is still necessary.
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Community efforts for genome privacy

As a first step toward systematic protection of clinical genomic data and to enable their 

convenient and privacy-preserving dissemination, we organized the Critical Assessment of 

Data Privacy and Protection (CADPP) challenges at the iDASH National Center for 

Biomedical Computing Privacy Workshop to solicit community help to better understand 

and mitigate privacy risks in genomic data dissemination58 and privacy-preserving 

analysis.59 The competition was attended by leading data privacy groups, together with 

biomedical, genetics, and bioethical experts, and was reported by GenomeWeb60 and Nature 

News.61 We evaluated the utility based on the probabilities that the highly significant SNPs 

can be preserved after adding noise.58 For example, the 84.8% true significant top 10 SNPs 

can be preserved on a small dataset with 5000 SNPs based on differential privacy protection. 

We also evaluated the privacy risk of releasing a DP genomic dataset on the basis of the 

likelihood ratio (LR) test.62 Sankararaman et al.62 showed that the LR test is one of the 

strongest re-identification tests and that it can provide the upper bound of the re-

identification power with the independent SNP assumption. The experimental results 

showed that the best DP-based protection algorithm over a small dataset of 311 SNPs can 

achieve a re-identification power as low as 0.01, which indicates the ratio of re-identifiable 

participants in a case group at the statistical power of 0.95 in GWASs. The outcome of the 

competition revealed practical challenges in protecting high-dimensional genomic data, even 

when the data were aggregated from a large number of individuals (e.g., allele frequencies): 

once the number of SNPs to be protected exceeds a few hundred, it becomes difficult to 

share allele data directly without exposing the identities of some individuals or destroying 

the utility of the data through added noise. Computational and communication overheads are 

still significant for cryptographic technologies used in genome privacy protection. On a 

positive note, we found that privacy-preserving techniques work well when the results of a 

whole GWAS (instead of raw allele frequencies) are shared: even when holding results to a 

high privacy standard (i.e., using differential privacy33), most utility can still be conserved if 

a small number (e.g., 5 to 10) of highly significant SNPs are made public. In addition, by 

introducing approximations in the edit distance computation based on the characteristics of 

the human genome, cryptographic technologies can be efficiently optimized to handle large-

scale, privacy-preserving human genomic data analyses.

Recent advances in algorithm development allow computation of multivariate models over 

vertically partitioned datasets and may be particularly helpful when genome data are hosted 

in one institution and EHRs are hosted in another for study participants.43 Computing over 

vertically partitioned data decreases the need for moving data around and thus helps protect 

individual records, but this type of distributed computation can only be achieved if records 

are linked across vertical partitions. Record linkage is also needed in cases where 

researchers want to enrich existing study data (e.g., dbGaP records) with longitudinal 

outcomes prospectively collected from EHRs.

Technical solutions for record linkage

In this section, we discuss existing technical solutions for record linkage. More specifically, 

we cover deterministic and probabilistic methods as well as privacy-protection techniques to 
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mitigate loss of privacy risks in record linkage. Figure 2 depicts examples of record-linkage 

systems for vertically partitioned data split into a hospital and an external biobank (where 

DNA sequencing data are available).

Deterministic record linkage

Deterministic methods determine whether record pairs represent a linkage based on a fixed 

criterion (i.e., matching rule) involving a set of specific identifiers/variables, which can 

contain either original individual identifiers63,64 (e.g., full name, birthday, full address) or 

partial information on the original individual identifiers65,66 (e.g., first four letters of 

surname, birth year, partial address). For example, record pairs can be matched by 

comparing the name, date of birth, gender, and zip code. The matching result can be 

assessed by two different methods depending on the type of comparison between the records 

variable values. Existing deterministic methods can be categorized into exact matching63–66 

and approximate matching.21 In exact matching, a record pair is considered a match if and 

only if all the linkage-variable values are exactly the same across the records. On the other 

hand, in approximate matching,21 linkage variables are compared in a less strict way, which 

takes into consideration the similarity between the variable values. For example, in matching 

values referring to names, string similarity measures are typically employed to measure the 

closeness between the names. As a result, records with minor dissimilarity in their string 

values (e.g., typos, abbreviated names) can be still identified as matching records. Therefore, 

in the presence of data heterogeneity, approximate record-linkage solutions are preferred 

over the exact-matching approaches.

Probabilistic record linkage

In contrast to deterministic solutions, probabilistic methods employ a statistical approach to 

determine whether record pairs represent a match. In probabilistic linkage methods, a wider 

range of linkage variables is taken into consideration and algorithms assign different weights 

to different linkage variables on the basis of their discriminatory power (i.e., frequency, 

uniqueness of data) and the possible presence of errors.22 The main purpose of variable 

weights is to statistically model the ability of each individual variable to correctly identify a 

match or a non-match. For each pair of records, a weighted composite score is computed, 

representing the probability of the two given records belonging to the same entity. 

Specifically, a decision is made by comparing the composite score against two threshold 

values, which serve as cutoff lines to determine the matching and non-matching pairs, and 

those that may represent possible matching records but require manual revision (i.e., human 

intervention). While the computation of best thresholds is an open question, depending on 

the final application the appropriate values can be determined in different ways (e.g., by 

minimizing the error probability of making an incorrect decision, based on previous 

experiments67 or manual inspection).68 Owing to the use of statistical and data analysis 

methods that compute and aggregate the variable weights, probabilistic record-linkage 

approaches yield higher utility when compared to deterministic methods and tend to be more 

robust to noise and missing values.
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Privacy-preserving record linkage

Record linkage usually requires the exchange of sensitive individual identifiers as linkage 

variables, which raises significant privacy concerns. Consequently, many efforts have been 

made to protect the exchanged sensitive information in individual record linkage.69–72 

Among existing solutions, secure transformation (e.g., one-way hashing),72,73 hybrid 

solutions,74,75 and cryptography-based solutions76 have been developed.

Secure transformation methods link records based on transformed information of the 

original data (e.g., names, address), from which sensitive information cannot be easily 

recovered. The typical scenario requires a trusted third party. First, all data owners apply the 

same secure transformation scheme to generate a new representation of their private data. 

Second, the transformed information is sent to the third party to perform comparison. Many 

studies have been conducted to improve privacy protection in the transformation phase (e.g., 

one-way hashing,77 attribute generalization,75 n-grams,70 embedding,71 cryptography78). 

For example, Kho et al.77 developed a hash-based privacy-protecting record-linkage system 

and evaluated it across six institutions in Chicago, covering more than 7 million records. To 

rank the matching similarity, the authors designed 17 seeded hash code combinations of 

individual identifiers (e.g., name, birthday).77 Although the underlying sensitive individual 

identifiers among different parties77 were concealed by the one-way hashing, there was still 

a risk of information disclosure. For instance, given the hash function, a curious user from 

institution A could hash a dictionary of names to check the existence of certain individuals 

from other institutions. To address these concerns, it is essential to include a trusted 

authority to perform hash comparison in one-way hashing–based linkage methods. However, 

a trusted authority may not always exist for ad hoc data analysis collaboration, which limits 

the usability of the one-way hashing–based linkage method.

N-grams (i.e., substrings of length n derived from the original individual’s identifiers) are 

used in another data transformation method for privacy-protecting linkage methods.79 

However, since, in the N-gram algorithm, substrings of original linkage variables may still 

leak partial information of individuals’ sensitive information, hybrid methods have been 

studied to combine both anonymization and transformation techniques. For example, a DP 

algorithm was developed to protect individual information by perturbing the frequencies of 

N-grams.71 Unfortunately, noise injected by the DP method may result in degraded linkage 

accuracy and therefore represent tradeoffs of privacy protection and linkage accuracy.

Adam et al.78 proposed a cryptography-based solution for privacy-preserving integration of 

healthcare data from different sources. The key idea of their approach is to use commutative 

encryption to encrypt all sensitive data by all of the data sources, using their own keys. By 

using commutative encryption algorithm, data from different sources can be encrypted 

sequentially with different keys from different parties, where the output ciphertext does not 

depend on the order of the encryption. Therefore, the encrypted value across different 

datasets will be identical if and only if their plaintexts are the same. Then, the proposed 

technique is able to compare encrypted data across different sources.
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Ethical and legal implications

The encryption of genomic data for storage and computation raises a number of important 

ethical and legal implications related to informed consent and privacy. Genomic studies 

typically seek to protect research subjects’ personal information by removing potentially 

identifying information apart from potentially including coded identifiers. Such de-identified 

information is exempt from privacy and other protections under the federal regulations that 

govern research on human subjects more generally.

Therefore, research subjects have limited legal protection for their de-identified genomic 

information. As we explain later, existing privacy laws and regulations exempt de-identified 

data obtained from research subjects, since personal identifiers are removed. However, it 

might still be possible to re-identify individuals through a range of methods, such as side-

channel leaks.80 These strategies use computerized network databases that cross-reference 

these data against sources such as voter registration databases and other records that can 

contain identifying information, such as a person’s gender, surname, ZIP code, and date of 

birth.6

Informed consent

The risk of re-identifiying patient health information presents problems for informed consent 

systems. Most federally funded human subjects research must abide by the informed consent 

requirements of the Common Rule.81 Research that uses data from which it is difficult—but 

not impossible—to determine the identity of individual subjects, however, is exempted from 

requirements to advise and consent subjects about relevant risks, including privacy risks. As 

long as personal identifiers have been removed from the genetic information provided by 

subjects, researchers need not advise or obtain consent from participants about any new 

privacy risks—however serious—about the risk of their information being re-identified.82

De-identified data that are stored in large-scale genomic biobanks are often obtained using 

cursory informed consent forms, sometimes referred to as broad consent.83 Research studies 

on those data tend to use broad consent forms as well.83 But consent is not meaningful 

unless it is obtained in a way that actually informs research subjects about the relevant risks 

of participation. When the risks are instead communicated in an excessively generic or 

ambiguous way, the process may leave subjects uninformed about the risks that are possible 

if they participate. An example of this kind of broad consent is when subjects are told that 

their data “may be used for a range of projects by researchers worldwide.”84 Such open-

ended communications are unlikely to inform research subjects85 and therefore unlikely to 

be considered legally valid. This superficial disclosure comes at the beginning of the 

research process and implicates the use of personal material and information for years 

thereafter, without indicating the specific lines of research to be conducted using the 

subjects’ samples. New consent forms need not be secured for these unspecified studies over 

untold duration unless state laws require it.86

Study participants have the right to withdraw consent to the use of their data. Specifically, 

they can withdraw their previously given consent to use their data until the point at which 

those data have been analyzed or aggregated for publication.87 But data-sharing and de-
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identification procedures make it difficult for research subjects to withdraw their data once 

consent has been obtained.88 There is no immediate way to retract data or restore privacy in 

the event of a breach. Withdrawal is especially difficult in international studies, as broad 

sharing of samples and specific regulations may significantly complicate or disallow the 

process of tracing and removal of individually derived data.89

Privacy

Genomic data for which individual identifiers have been removed are unprotected under the 

major U.S. privacy law, namely, the Health Insurance Portability and Accountability Act 

(HIPAA).90 Research using these data is considered not to involve human subjects; 

therefore, informed consent does not need to be obtained and no special protection for the 

data is mandated, because HIPAA’s privacy protections do not apply to such de-identified 

data. The Genetic Information Nondiscrimination Act (GINA),91 while restricting the 

collection, use, and disclosure of personal data by certain entities, does not specifically 

regulate genomic data access. Instead, GINA bars large employers from discriminating 

against employees on the basis of their genetic test results or family histories. It also creates 

a legal basis for people to seek legal action against health insurance companies in case their 

genetic information is used to determine premiums or coverage.

Conclusion

Very limited legally protected interests in personally sensitive, imperfectly anonymous data 

makes cryptographically secure protocols for genomic data absolutely critical. These 

solutions seek to make data usable for important purposes of medical research and scientific 

understanding, while effectively preventing unauthorized operations. However, most 

cryptographic protocols are beset by common weaknesses, as they are applied to GWASs, 

such as scalability issues in handling real-world large-scale genomic data, flexibility 

concerns in dealing with complicated analysis tasks, reliance on semi-trusted entitles, and 

degradation of data utility due to noise injection methods. Cryptography solutions have yet 

to resolve privacy-preserving data sharing for genomic association. Human genomic data are 

becoming increasingly important to biomedical research but they cannot be easily shared 

owing to their sensitive nature. In this article, we discussed both technical and ethical 

accepts of genome privacy in the context of biomedical research. It is important to develop 

tools to help biomedical researchers share, evaluate, or choose the most useful genomic data 

for research in a privacy-protecting manner, without undermining the utility of the data. 

Because genomic data are often studied together with other information, we also covered 

record linkage, an essential step to make use of partitioned information across institutions. 

We summarized existing solutions for privacy-preserving record linkage in healthcare 

settings and identified several challenges, including, but not limited to, linkage accuracy and 

privacy concerns in exchanging sensitive linkage data.

The development of a well-balanced policy for genome and clinical data sharing requires 

joint efforts from technical, regulatory, and ethics communities, including experts in 

computer science, computer security, genetics, ethics, privacy law, and many other fields, to 
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enable efficient genomic data analysis and record linkage in biomedical research, while 

respecting the privacy of individuals.

We have limited our focus in this article to the United States, with its patchwork of legal 

regulations on data privacy. U.S. privacy protections are scattered across different laws, 

generally divided by data content, potential uses, and funding sources (e.g., Children's 

Online Privacy Protection Act (COPPA), GINA, HIPAA). Distinct challenges arise in the 

European Union (E.U.), which has an overarching legal framework (i.e., EU Data Protection 

Directive) for all types of data privacy.92 Article 8 of the Charter of Fundamental Rights of 

the European Union recognizes data protection as a separate fundamental right (even as 

there remains variation in how E.U. member states implement these rules).93 Important 

differences between the United States and the European Union, as well as other regions, 

warrant further investigation along this line.
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Figure 1. 
Some privacy considerations in disclosing genomes and clinical data. GINA, Genetic 

Information Nondiscrimination Act.
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Figure 2. 
Examples of patient record-linkage systems for vertically partitioned data between a hospital 

and a biobank.
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