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Running title: Natal philopatry in a coastal shark 24 

Abstract 25 

Sharks are a globally threatened group of marine fishes that often breed in their natal 26 

region of origin. There has even been speculation that female sharks return to their exact 27 

birthplace to breed (“natal philopatry”), which would have important conservation 28 

implications. Genetic profiling of lemon sharks (Negaprion brevirostris) from 20 29 

consecutive cohorts (1993-2012) at Bimini, Bahamas showed that certain females 30 

faithfully gave birth at this site for nearly two decades. At least six females born in the 31 

1993-1997 cohorts returned to give birth 14-17 years later, providing the first direct 32 

evidence of natal philopatry in the chondrichthyans. Long-term fidelity to specific 33 

nursery sites coupled with natal philopatry highlights the merits of emerging spatial and 34 

local conservation efforts for these threatened predators. 35 

Introduction 36 

Philopatry has been defined as the return of individuals to the locality or region 37 

where they were born to reproduce (Mayr 1963; Secor 2002). This phenomenon has been 38 

demonstrated in several marine vertebrates, including pinnipeds (Baker et al. 1995; 39 

Hoffman and Forcada 2012), bony fishes (Thorrold et al. 2001; Rooker et al. 2008) and 40 

sea turtles (Bowen & Karl 2006; Lohmann et al. 2013). When common to both sexes, this 41 

behavior contributes to the development of closed populations where intrinsic 42 

reproduction and recruitment are more important determinants of population dynamics 43 

than immigration (Harden Jones 1968; Secor 2002). For this reason, philopatry is 44 

fundamental to the stock-unit concept in fisheries management and is an important 45 
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consideration in conservation planning for threatened and endangered species (Harden 46 

Jones 1968; Secor 2002). 47 

One important property of philopatry is its geographic specificity, which 48 

quantifies how closely individuals return to the site of their birth. This property helps 49 

determine the scale at which populations may become closed and therefore identifies the 50 

most appropriate scale of stock assessments and management actions. For example, 51 

rapidly maturing, anadromous salmonids often return to their exact birthplace (i.e., 52 

tributary) to reproduce, which we hereafter refer to as “natal philopatry” (Harden Jones 53 

1968).  In many late-maturing marine organisms, however, individuals usually return to 54 

their natal region of origin but not necessarily to their exact natal locality within this 55 

region. We hereafter refer to this as “regional philopatry.” Female sea turtles, which 56 

mature after a decade or more, are known from population genetic analyses to exhibit 57 

regional philopatry, but most of these studies lack the resolution necessary to determine 58 

whether they nest any closer than hundreds or even thousands of kilometers from the 59 

beach where they hatched (Bowen & Karl 2007; Lohmann et al. 2013, but see Lee et al. 60 

2007). There may be reduced geographic specificity in late-maturing species, compared 61 

to rapidly maturing ones, simply because of the long time elapsed between birth and first 62 

reproduction. One mechanism for homing animals that has been proposed is that they 63 

imprint on the geomagnetic field at their birthplace and use this information to relocate to 64 

this site when it comes time for them to reproduce (Lohmann et al. 2008). Since local 65 

characteristics of the geomagnetic field change over time, navigational error is expected 66 

to increase as time elapses between imprinting and the return migration (Lohmann et al. 67 

2008; Putman et al. 2013).  68 
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Sharks are typically late-maturing marine fishes in which regional philopatry by 69 

females has been inferred from population genetic data for several species (e.g., Keeney 70 

et al. 2005; Chapman et al. 2009a; Tillett et al. 2012). There has also been conjecture that 71 

finer-scale natal philopatry also occurs in this group (Hueter et al. 2004). Many coastal 72 

sharks conform to a life-history model proposed by Springer (1967) in which adults are 73 

segregated from juveniles for most of the year but females make seasonal migrations to 74 

discrete coastal nursery areas for parturition. Juveniles either remain in their natal nursery 75 

area for several years (in subtropical and tropical regions [e.g., Chapman et al. 2009b]) or 76 

return there on a regular basis after having seasonally migrated to avoid low water 77 

temperatures (in warm temperate regions [e.g., Reyier et al. 2008]), before moving into 78 

habitat used by subadults and adults. Maternally inherited mitochondrial DNA is 79 

commonly structured between nursery sites separated by at least 1,000 km in coastal 80 

sharks, providing evidence that females give birth in their natal region of origin (Keeney 81 

et al. 2005; Portnoy et al. 2010; Tillett et al. 2012). Recent observations that sibling 82 

blacktip reef sharks give birth in the same nursery areas in French Polynesia provide 83 

indirect evidence of natal philopatry (Mourier & Planes 2013). To date, however, there is 84 

no direct evidence that female sharks return to give birth in their exact natal nursery area. 85 

This is not surprising given the logistical difficulties associated with tracking late-86 

maturing, mobile marine animals from their birthplace to where they reproduce.  87 

Studies of lemon sharks (Negaprion brevirostris) in the largest nursery area 88 

(North Bimini) in the Bimini islands, Bahamas (Fig. 1) have offered clues that natal 89 

philopatry may occur in sharks. Lemon sharks are large apex predators that mature at 90 

total lengths (TL) of 230-240 cm, reached at age 12 or greater (Brown & Gruber 1988). 91 
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Telemetry studies show that lemon sharks < 90 cm TL are strongly site attached to their 92 

natal nursery area and remain in < 1 m depth, typically within 300 m of shore (Morrissey 93 

& Gruber 1993). In Bimini they do not even move between disjunct patches of nursery 94 

habitat occurring in North and South Bimini (Fig. 1), let alone venture away from these 95 

islands (Gruber et al. 2001). Once individuals exceed a size of ~ 90 cm TL (age 3 or more 96 

years) they are less constrained to their inshore natal nursery habitat but remain in the 97 

lagoon and coastal areas of Bimini, gradually dispersing from the islands as they grow 98 

(Chapman et al. 2009b). Most (> 90%) subadult individuals approaching maturity that are 99 

captured at Bimini are born elsewhere, indicating movement between Bahamian islands, 100 

or further afield, occurs during this stage (Chapman et al. 2009b). Adult lemon sharks 101 

only occur in Bimini in the spring (April-June), with individuals being recaptured or 102 

tracked as far as 1,000 km from the site of tagging (Fig. 1; Kohler et al. 1998; Feldheim 103 

et al. 2001; Supporting Information). Despite their mobility and the range of appropriate 104 

nursery habitat available within 200 km of Bimini (Andros, Berry Islands; see Supporting 105 

Information), adult females of uncertain natal origin repeatedly return to Bimini to give 106 

birth, typically on a two-year reproductive cycle (Feldheim et al. 2002a, 2004). Juvenile 107 

lemon sharks that are experimentally displaced several kilometers away from Bimini 108 

rapidly navigate back to the exact part of the island where they were caught (Edrén & 109 

Gruber 2005), suggesting that they have an innate ability to home to this site.  110 

Here we analyze genetic profiles of individual lemon sharks sampled from 20 111 

consecutive cohorts (1993-2012) in Bimini to look for the first direct evidence of natal 112 

philopatry in sharks. We use both physical captures and genetic reconstructions of adult 113 

female sharks to examine natal philopatry at this site. We also provide new insights into 114 



 6 

the temporal and spatial fidelity of females that repeatedly give birth within the nursery at 115 

Bimini.  116 

Methods 117 

Sampling and genotyping of sharks 118 

Newborn and juvenile (< 90 cm TL) lemon sharks were intensively sampled in 119 

the North Bimini nursery area annually from 1995 to 2012. Our analysis extends back to 120 

the 1993 cohort, however, because we caught one and two-year old sharks in the 1995 121 

sampling effort. Sampling occurred in June using 180 meter long, two meter deep 122 

monofilament gillnets deployed perpendicular from shore. The South Bimini nursery was 123 

also sampled opportunistically between 1996 and 2012. All captured sharks were 124 

measured to the nearest 0.1 cm for pre-caudal length (PCL), fork length (FL), and TL, 125 

sexed, tagged with a passive integrated transponder (PIT, Destron Fearing, South St. 126 

Paul, MN, USA) tag and had a small piece of fin removed and stored in 20% DMSO for 127 

genetic analysis. Individuals were released alive after a brief holding period (< 7 days). 128 

We assume that any individual captured in the nursery that is < 90 cm was born locally 129 

based on tagging and telemetry data collected at Bimini showing no emigration occurs 130 

prior to this size (Morrissey & Gruber 1993; Gruber et al. 2001; Chapman et al. 2009b). 131 

In many cases identifying the natal nursery is further strengthened when a group of 132 

littermates are captured in the same nursery and/or when individuals or at least one of 133 

their known littermates has an open umbilicus at first capture. The umbilicus closes 134 

within ~ 30 days of birth in lemon sharks (S. Gruber unpublished data) and is therefore 135 

diagnostic of a young-of-the-year shark. This feature was noted for all sharks captured 136 

from 1997 onward (Feldheim et al. 2002a, 2004; DiBattista et al. 2009). All sampled 137 
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sharks were genotyped at 11 polymorphic microsatellite markers (Feldheim et al. 2002a, 138 

2002b, 2004; DiBattista et al. 2008, 2009) followed by sibship and parental genotype 139 

reconstruction employing the program COLONY version 1.2 (Wang 2004). In order to 140 

reduce genotyping errors, a subset of all samples was rescored by an independent analyst. 141 

Individuals that were homozygotes or had weak bands were re-amplified up to three 142 

times (see DiBattista et al. 2008 for more information on details of quality control for this 143 

dataset). 144 

Documenting natal philopatry 145 

Newborn and juvenile females that were sampled during 1995-1998 could reach 146 

the age at first maturity in the later years of the study and were considered our pool of 147 

potential returnees. We attempted to detect natal philopatry at Bimini using one of two 148 

methods: the direct capture of gravid females entering the Bimini nursery for parturition 149 

or detecting the offspring of returnees sampled in the 2008-2012 cohorts. Near term 150 

females were targeted from mid-April to mid-May when they arrive at Bimini to give 151 

birth. Targeted capture of adults is extremely labor-intensive and was only conducted in 152 

2008. Adult lemon sharks approaching or leaving the shallow (<1.5 m) nursery area were 153 

spotted by boat-based observers and captured by placing a dip-net in front of it to incite it 154 

to bite. A tail rope was then applied, allowing the individual to be held straight alongside 155 

the vessel for measurement of length (we report TL to the nearest 0.5 cm), fitted with a 156 

National Marine Fisheries Service (NMFS) M-type dart tag (Kohler et al. 1998), and 157 

tagged with a PIT tag unless they already had one, which would indicate a recapture. All 158 

individuals were genotyped at eleven microsatellite loci as described previously 159 

(Feldheim et al. 2002a, 2002b, 2004; DiBattista et al. 2008, 2009). Genetic tagging was 160 
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also used to determine if sharks had previously been captured and had shed their PIT 161 

and/or NMFS tags (Feldheim et al. 2002b). The probability of two individuals having an 162 

identical genotype at all 11 loci is estimated to be 1.11 x 10-15 (Feldheim et al. 2002b).  163 

COLONY-reconstructed maternal genotypes generated from juveniles captured 164 

between 2008-2012 were used to determine whether any females born in the early years 165 

of our study (1995-1998) came back to Bimini to give birth. Females giving birth at 166 

Bimini often return for parturition every two years (Feldheim et al. 2002a, 2004). As 167 

such, we have several maternal (N=89) and paternal (N=352) genotypes that we 168 

previously reconstructed from our 1993-2007 cohorts. We included these genotypes as 169 

candidate parents in our COLONY runs. We then ran two separate runs of COLONY for 170 

each of the 2008-2012 cohorts. In the first run for each cohort, we used these previously 171 

reconstructed adult genotypes for the male and female genotype input. Newly 172 

reconstructed parental genotypes obtained from the 2008-2012 COLONY results were 173 

compared to all female sharks born at Bimini between 1993-1998 (N=249). Any matches 174 

were considered to be the same individual. COLONY does not fully reconstruct 175 

genotypes for adults when there is either monogamy or when there are few offspring 176 

sampled from each litter (Wang 2004). Therefore, for the second COLONY run, we also 177 

included all female sharks born at Bimini between 1993-1998 in the candidate female 178 

file. For every run, we used the default parameters in COLONY, with female polygamy 179 

and male monogamy (as is generally the case at Bimini (Feldheim et al. 2002a, 2004)). 180 

Allelic dropout was set at 0, and error rate was set at 0.005. The probability that a parent 181 

was in the pool of candidates was set at 0.005 and 0.2 for the first run and 0.005 and 0.1 182 
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for the second run for males and females respectively. The probability was lower for the 183 

second run to account for the additional candidate females from the 1993-1998 cohorts.  184 

Long-term fidelity to specific parturition sites 185 

 Using COLONY, we continued to reconstruct parental genotypes from the 2008-186 

2012 cohorts to extend our understanding of how long individual females may exhibit 187 

philopatry to certain nursery areas. We also determined whether females used the same 188 

discrete patches of nursery habitat that are separated by ~ 5.5 km (North versus South 189 

Bimini, Fig. 1) as opposed to using them randomly upon reaching the Bimini islands. It is 190 

important to highlight that the females analyzed to answer these questions are too old for 191 

us to know whether or not they are also exhibiting natal philopatry. 192 

Results 193 

The potential pool of philopatric individuals was composed of all females 194 

captured and tagged from the 1993-1998 Bimini cohorts. We know from recapture 195 

information that 128 of them survived to at least age two, but only a small number of 196 

these are likely to have survived to maturity (see Supplementary Information). Directly 197 

recapturing these returnees provided the strongest evidence of natal philopatry. Two large 198 

(> 240 cm TL) females were captured in the North Bimini nursery area during the 2008 199 

parturition season (Table 1).  Neither of these had previously been detected as parents at 200 

Bimini. The first was confirmed to be gravid at the time of capture through an ultrasound 201 

examination. It lacked a readable PIT tag, but its multilocus microsatellite genotype 202 

matched an individual sampled by us in the first year of the study, 1995, when it was 80.0 203 

cm TL (PIT tag number 222D503E69; estimated age 2 years). The COLONY-derived 204 

pedigree for 1995 revealed that this shark had six littermates in the Bimini nursery at the 205 
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time, bolstering evidence that Bimini is its natal site. Subsequent parentage analysis in 206 

COLONY for the 2008 Bimini cohort detected one sampled offspring of this female. This 207 

neonate (TL=55.5 cm) was captured in June 2008, less than 4 km from where its mother 208 

had been captured about 13 years earlier. The second large female caught in 2008 carried 209 

a readable PIT tag (4142485114), which had been applied in 1997 at Bimini when the 210 

female was a newborn (65.2 cm TL, open umbilicus). This individual was recaptured in 211 

the Bimini nursery in 1998 (age 1, 75.7 cm TL) and 1999 (age 2, 90.3 cm TL). We did 212 

not, however, sample any of its offspring in 2008. As such, the female may have still 213 

been immature or only newly mature when captured or all of its 2008 offspring died prior 214 

to being sampled. This female did give birth to four newborns in 2012 based on 215 

COLONY results.  216 

Four more likely cases of natal philopatry were discovered during examination of 217 

the reconstructed parental genotypes from COLONY based on the 2009-2012 cohorts 218 

(Table 1). The reconstructed genotypes of two individuals were independently matched to 219 

the genotypes of individuals from the 1993-1998 Bimini cohorts, which is highly unlikely 220 

to occur by chance. In 2009, one reconstructed maternal genotype was independently 221 

matched to the composite genotype of an individual that was sampled in 1995 (PIT tag 222 

number 2236163951) that was 71.0 cm TL at the time of capture and likely two years old. 223 

The COLONY-derived pedigree for 1995 revealed one littermate of this individual in 224 

Bimini, further reinforcing that Bimini was its natal site. Four of its offspring were 225 

captured in the 2009 sampling event while an additional individual belonging to this litter 226 

was caught in 2010 as a one-year-old. An additional maternal genotype reconstructed 227 

from seven offspring in the 2012 pedigree independently matched the genotype of an 228 
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individual captured in 1997 (2242401964). This female was 70.9 cm TL at time of 229 

capture and pedigree analysis indicated it had three full siblings, all of which were born 230 

in 1995.  231 

The two remaining cases were inferred when these individuals were included as 232 

candidate parents in COLONY. One individual (224238692D) was initially caught at 233 

Bimini in 1997 as a newborn (65.7 cm TL with an open umbilicus). It gave birth to four 234 

offspring in 2011, three caught as newborns in 2011 and one caught as a one-year-old in 235 

2012. Another female (4142342365), captured in 1997 as a newborn (62.5 cm TL with an 236 

open umbilicus), gave birth to three offspring in 2012. 237 

Consideration of the 2012 cohort provides preliminary insight into how important 238 

natal philopatry is among females using Bimini for parturition. Fifteen females produced 239 

this cohort, nine of which had previously used Bimini for parturition and are therefore too 240 

old to have been born in the 1993-1997 cohorts. It remains unknown if any of them were 241 

born at Bimini. Of 6 “new” (i.e., previously undocumented) females giving birth in North 242 

Bimini in 2012, three (50%) were born there (Table 1).  243 

Some females have been returning to Bimini to give birth to their young for the 244 

entire course of this study (1993-2012, Fig. 2). In addition, we found that females give 245 

birth at discrete locations within the Bimini nursery on a regular basis (Fig. 2). Females 246 

returning to Bimini either give birth at the North island (N=59, e.g. females 1-42 in Fig. 247 

2) or South island (N=6, e.g. females 43-48 in Fig. 2). There are no examples of a female 248 

using both islands for parturition; without exception, females were faithful to one nursery 249 

site or the other across multiple returns to Bimini. If we consider each philopatric event 250 

for every female in our study, there are 268 birthing events (246 at North Bimini and 22 251 
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at South Bimini) where the female in question exhibited fidelity to one island or the 252 

other.  253 

Discussion 254 

Here we provide the first direct evidence that some female sharks return to their 255 

natal nursery area to give birth (i.e., natal philopatry). Although there are only six cases 256 

documented here, we stress the challenges of directly observing this behavior in late-257 

maturing marine species. There is a great deal of additional nursery habitat on the Great 258 

Bahama Bank within ~ 200 km radius of Bimini for females to use. When coupled with 259 

how few of the females we tagged from 1993-1997 that are likely to have survived and 260 

the high proportion of the “new” females giving birth in 2012 that were born there (three 261 

of six), it is reasonable to hypothesize that this behavior may be common among adult 262 

female lemon sharks at Bimini. If this is indeed the case, natal philopatry will have 263 

important implications for long-term sustainability of local nursery areas. Continued 264 

sampling will enhance the probability of detecting additional returning females and 265 

document whether or not the ones we have detected now start returning on a regular 266 

cycle, as the older females of uncertain natal origin have been shown to do at this and an 267 

additional site (Fig. 2, Feldheim et al. 2002a, 2004; DiBattista et al. 2008). 268 

Previous population genetic studies of large coastal sharks have typically found 269 

structure in mitochondrial gene regions over distances of > 1,000 km (Dudgeon et al. 270 

2012) and a few have even found structure on finer scales (Tillett et al. 2012). Philopatry 271 

to the natal nursery or natal region is frequently discussed as a potential cause of this 272 

structure, but it is important to keep in mind the inherent limits of genetic markers for 273 

testing natal philopatry at any spatial scale. First, an absence of structure does not 274 
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eliminate the possibility that natal philopatry is common. A small amount of 275 

contemporary or historical straying can provide enough gene flow to preclude genetic 276 

differentiation, as can recent founding events or incomplete lineage sorting (Thorrold et 277 

al. 2001). Second, the presence of structure can be caused by processes other than natal 278 

philopatry, such as biological limitations on dispersal capability or geophysical barriers to 279 

gene flow. The advance of the present study is that it directly shows individuals returning 280 

to their natal nursery. Future studies on other sharks should employ methods that can 281 

together provide direct evidence of natal philopatry (tagging, telemetry or 282 

biogeochemical tracers) and couple them with locally focused population genetic studies 283 

to further elucidate the geographic specificity of natal philopatry and degree of local 284 

population structure in coastal sharks.  285 

The existence of decadal fidelity to nursery sites and natal philopatry by female 286 

sharks may lead to some level of population isolation on fine geographic scales. 287 

Assessment models that assume large, panmictic regional populations are unlikely to be 288 

accurate in forecasting stock status if the population is more structured, especially when 289 

the structure is due to behavior of the critically important adult females (Hueter et al. 290 

2004). Models that take the spatial distribution of fishing effort and population structure 291 

into account are more appropriate tools for predicting the population dynamics of these 292 

species. They could also often benefit from investments in local, spatially explicit 293 

conservation measures, such as time-area fishery closures around nursery areas while 294 

females are concentrated in these locations to give birth or the establishment of 295 

permanent shark fishery closures over large areas. Conversely, any negative ecological 296 

impact stemming from the depletion of these large predators (Heithaus et al. 2008) could 297 
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potentially materialize more rapidly and on a much more local geographic scale than 298 

resource managers might assume based on the mobility of sharks. Overall, it is becoming 299 

increasingly clear that these imperiled predators have a complex population structure, and 300 

some species can benefit from investments in local conservation measures nested within 301 

broader international efforts. 302 

Although it is well established that several marine taxa exhibit regional 303 

philopatry, much less is known natal philopatry, especially for late-maturing taxa such as 304 

sharks and sea turtles (Bowen & Karl 2007; Lohmann et al. 2012). It has been proposed 305 

that late-maturing species home back to their natal region to reproduce but either cannot, 306 

given changes in the geomagnetic field, or do not, given alternative nursery habitats in 307 

the region, navigate back to the exact location (Lohmann et al. 2008, 2013). Here, we 308 

provide extremely rare direct evidence of this type of geographically exact natal 309 

philopatry in a late-maturing marine species, suggesting that sharks are capable of doing 310 

so even when there is extensive alternative nursery habitat nearby. Coastal sharks, 311 

however, have important advantages over sea turtles when it comes to imprinting on and 312 

navigating back to their natal location. Sharks can spend from months to years in, or 313 

close proximity to, their natal area (Chapman et al. 2009b), and, in more migratory 314 

species, sometimes return to it as part of their seasonal migratory cycle (Hueter et al. 315 

2004). These traits may allow them to continually refine their ability to relocate the site 316 

even as the geomagnetic field and other parameters change over time (Lohmann et al. 317 

2008; Putman et al. 2013). In contrast, sea turtles immediately leave their natal beach for 318 

an extended oceanic phase and do not return until more than a decade has passed 319 

(Lohmann et al. 2013). Despite potential differences between taxa in geographic 320 
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specificity, our findings support the emerging paradigm that natal philopatry is 321 

widespread in mobile marine vertebrates (Cury 1994).  322 
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 444 

Figure legends 445 

Fig. 1. A synthesis of the movements of tagged or transmittered subadult or adult female 446 

lemon sharks in the southeastern United States and The Bahamas. Long distance 447 

recapture locations for lemon sharks that were fitted with external tags are shown as 448 

white triangles, with the tagging location shown as a black circle: 1= a subadult female 449 

tagged in Bimini in 2006 that was recaptured by a fishermen at Jupiter, FL in 2008 450 

(National Marine Fisheries Service), 2= recaptures of individuals tagged as juveniles and 451 

recaptured at much larger sizes, 3= Pop-off satellite tag deployment, six weeks after 452 

female gave birth in Bimini. The thick white lines, in both the main figure and the upper 453 

left inset, show minimum dispersal distance recorded for sharks fitted with internal 454 

acoustic transmitters that were detected in Vemco receiver arrays from 2008-2011 455 

(Supporting Information). Shark capture location (Jupiter, Florida) is shown by the black 456 

circle, the locations where detections were recorded are shown as white triangles. The 457 
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number of transmittered sharks recorded making these movements is provided, all of 458 

which were within 1 year of release. Inset (top right): Seasonal presence of adult female 459 

lemon sharks captured off Bimini (1993-2010). Capture effort was similar every month 460 

throughout the study. The blue area indicates the months when newborn sharks are also 461 

observed. Inset (bottom right): Map of Bimini, the red area highlights nursery habitats on 462 

both the North and South Islands. Red area highlighted in the main figure represents 463 

other nursery habitat available to lemon sharks within 200 km of Bimini. 464 
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Fig. 2. Philopatric behavior of genetically reconstructed adult female lemon sharks at 471 

Bimini, Bahamas from 1993 to 2012. A black box above a year indicates that the female 472 

gave birth at North Bimini while an open box above a year indicates the female gave 473 

birth at South Bimini. For simplicity, we only included females that gave birth at least 474 

three times (N=46), with the exception of two philopatric females that gave birth at the 475 

south nursery twice (females 47 and 48). 476 
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Table 1. Summary of females that exhibited natal philopatry to the Bimini nursery. ID 483 

represents the PIT tag number of each female. The individual with two PIT tag IDs was 484 

retagged with 45722E0A51 in 2008, as its original tag was not readable. Year of birth 485 

indicates the year females were born at Bimini. Year of parturition represents the year 486 

each female returned to the Bimini nursery to give birth to its own young. 487 

ID Method of Detecting 

Natal Philopatry 

Year of 

Birth 

Year of Parturition  

(# pups) 

222D503E69/ 

45722E0A51 

Direct capture followed 

by parentage assignment  

1993 2008 (1) 

    

4142485114 Direct capture (2008); 

Genotype reconstruction 

and parentage assignment 

(2012) 

1997 2012 (4) 

    

2236163951 Genotype reconstruction 

and parentage assignment 

1993 2009 (5) 

    

224238692D Parentage assignment 1997 2011 (4) 

    

2242401964 

 

Genotype reconstruction 

and parentage assignment 

1995 2012 (7) 

    

4142342365 Parentage assignment 1997 2012 (3) 
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