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ABSTRACT 

A micromechanical characterization of biomaterials for bone tissue engineering is 
essential to understand the quality of the newly regenerated bone, enabling the 
improvement of tissue regeneration strategies. A combination of micro-computed 
tomography (microCT) in conjunction with in situ mechanical testing and digital 
volume correlation (DVC) has become a powerful technique to investigate the 
internal deformation of bone structure at a range of dimensional scales. However, in 
order to obtain accurate three-dimensional (3D) strain measurement at tissue level, 
high-resolution images must be acquired, and displacement/strain measurement 
uncertainties evaluated. The aim of this study was to optimize imaging parameters, 
image post-processing and DVC settings to enhance computation based on ‘zero-
strain’ repeated high-resolution synchrotron microCT (SR-microCT) scans of 
trabecular bone and bone-biomaterial systems. Low exposures to SR X-ray radiation 
were required to minimize irradiation-induced tissue damage, resulting in the need of 
advanced 3D filters on the reconstructed images to reduce DVC-measured strain 
errors. Furthermore, the computation of strain values only in the mineralised material 
(i.e. bone, biomaterial) allowed the exclusion of large artifacts localised in the bone 
marrow. This study demonstrated the suitability of a local DVC approach based on 
SR-microCT images to investigate the micromechanics of trabecular bone and bone-
biomaterial composites at tissue level with a standard deviation of the errors ~100 
microstrain after a thorough optimization of DVC computation. 
 
Keywords: digital volume correlation, synchrotron, microCT, bone, bone-biomaterial, 
displacement/strain uncertainties  
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INTRODUCTION 

Novel osteoregenerative biomaterials for bone tissue engineering are constantly 
under development with the aim of favouring optimal bone integration in the defect 
site up to complete bone formation (Wang & Yeung 2017; Tozzi et al., 2016; Stevens 
2008). Synthetic bone grafts substitutes, such as commercial StronBone 
(Sriranganathan et al., 2016), have shown excellent regenerative properties 
(Dorozhkin, 2013; García-Gareta et al., 2015; Wang & Yeung, 2017). However, to 
date, the ability of such biomaterials in producing bone that is comparable to the 
native tissue they are meant to replace is poorly understood and may, therefore, be 
insufficient to support load-bearing regions. Micromechanical characterization of 
bone-biomaterial systems has been extremely beneficial to better understand the 
overall structure response of such composites (Tozzi et al., 2012, 2014, 2016; 
Danesi et al., 2016). Particularly, a significant understanding of the internal 
microdamage at the bone-biomaterial interface, which could promote further damage 
to the bone structure, remains partially unexplored (Tozzi et al., 2016; Danesi et al., 
2016). This is due to the intrinsic limitations of most experimental techniques, like 
strain gauges or digital image correlation, limited to two-dimensional surface 
measurement, while the internal volume response could not be interrogated 
(Palanca et al., 2015; Grassi & Isaksson, 2015).  

The recent advances in high-resolution micro-computed tomography (microCT) 
combined with in situ mechanical testing (Buffiere et al., 2010; Nazarian & Müller, 
2004), has allowed Digital Volume Correlation (DVC) to become a powerful and 
unique technique to investigate three-dimensional (3D) full-field displacement and 
strain in bone based on 3D images acquired at different deformation states (Bay et 
al., 1999; Grassi & Isaksson, 2015; Roberts et al., 2014). DVC has been extensively 
used to investigate trabecular bone (Gillard et al., 2014; Liu & Morgan, 2007), 
cortical bone (Christen et al., 2012), whole bones (Tozzi et al., 2016; Hussein et al., 
2012;), biomaterials (Madi et al., 2013a), and bone-biomaterial systems (Danesi et 
al., 2016; Tozzi et al., 2012) under different loading conditions. However, in order to 
expand the applications of DVC to the study of clinically-relevant issues such as the 
integration of biomaterials after bone grafting procedures, it is important to 
understand the error associated with the DVC measurement and optimising the 
imaging and DVC settings to minimise these errors. In this perspective, strain 
uncertainties of any specific DVC approach are usually quantified on repeated scans 
(i.e. in a known deformation field such as ‘zero-strain’) to account for the intrinsic 
noise of the input images (Dall’Ara et al., 2017; Dall’Ara et al., 2014). This repeated 
scan methodology has been already adopted to quantify strain errors associated with 
bone-biomaterial interfaces (i.e. bone-cement) (Tozzi et al., 2017; Palanca et al., 
2016). Specifically, Tozzi et al. (2017) focused on images obtained in laboratory 
microCT systems with a voxel size of 39 µm. The random errors for the strain 
components were found to be all around or lower than 200 µε, for a sub-volume size 
of 48 voxels, providing measurements approximately every 2 mm. In this sense, the 
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DVC measurement spatial resolution were able to include more bone structural units 
(BSUs, i.e., trabecula), and enabled the classification of regions at high or low 
localised strain. However, measurement within BSUs remained unexplored. To 
overcome the limitation of laboratory microCT systems, where a strong compromise 
between strain precision and measurement spatial resolution must be accepted 
(Palanca et al., 2015; Dall’Ara et al., 2014), synchrotron-based microCT (SR-
microCT) has proven to provide strain uncertainties below 200 µε for correlations 
performed with a measurement spatial resolution below 100 µm for both cortical and 
trabecular bone (Palanca et al., 2017). In fact, the use of DVC based on SR-microCT 
high resolution images (~2 µm voxel size), allowed reliable strain measurements 
within the BSUs (Dall’Ara et al., 2017; Palanca et al., 2017). However, the 
performance of DVC based on SR-microCT images on composite biological 
structures such as bone-biomaterial systems remained unclear. Recently, Dall’Ara et 
al. (2017) provided an overview of the strain errors associated to several bone 
structures acquired with different microCT techniques, at different dimensional 
levels. In that study, the precision of DVC applied to SR-microCT images of bone 
and bone-biomaterial systems was analysed for the first time, reporting values below 
150 µε for a measurement spatial resolution close to 150 µm, allowing strain 
measurement at tissue level. Despite those results were promising to evaluate full-
field strain in bone-biomaterial systems, only the precision in terms of displacement 
and strain was analysed. In addition, the optimisation on imaging settings, post-
processing and DVC features was not reported. 

The reliability of DVC based on high-resolution SR-microCT images of trabecular 
bone and bone-biomaterial systems will provide accurate 3D strain measurement at 
tissue level. Therefore, a better understanding of the micromechanical behaviour of 
bone-biomaterials interfaces can be achieved through optimisation of the DVC 
computation. In this perspective, the main aim of this study was to investigate the 
effect of image post-processing and DVC settings on the displacement- and strain-
measured uncertainties at tissue level, using a local DVC approach based on ‘zero-
strain’ repeated SR-microCT scans, in trabecular bone and bone-biomaterial 
systems.  

METHODS 

Specimen preparation 

Cylindrical bone defects (8mm diameter by 14 mm depth) were surgically created in 
the femur condyles of an adult sheep (Coathup et al., 2016) and four different 
biomaterials (Actifuse, ApaPore, StronBone, StronBone-P) were implanted under 
Ethics approval granted by the Royal Veterinary College and in compliance with the 
United Kingdom Home Office regulations (Animal Scientific Procedure Act [1986]). 
Six weeks after implantation both left and right condyles were harvested and 
cylindrical samples (4 mm diameter by 18 mm length) were cored from the condyles 
in proximal-distal direction by drilling with a coring tool. The ends of the cores were 
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trimmed plane and parallel, and end-constraint was achieved by embedding the 
ends of the samples in poly-methyl-methacrylate (PMMA) endcaps. Approximately, 5 
mm of the core was embedded into each endcap to achieve a 2:1 aspect ratio and 
reduce experimental artifacts (Keaveny et al., 1993).  In total, four bone-biomaterial 
systems (n=1 p/biomaterial) from the bone defect areas and two trabecular bone 
controls (n=1 p/condyle) were analysed. Samples were kept frozen at -20° and 
thawed for around 2 h in saline solution at room temperature before image 
acquisition. 

SR-microCT 

SR-microCT imaging was performed at the Diamond-Manchester Imaging 
Branchline I13-2 of Diamond Light Source (DLS), UK, using a filtered (1.3 mm 
pyrolytic graphite, 3.2 mm aluminium and 60µm steel) partially-coherent 
polychromatic ‘pink’ beam (5-35 keV) of parallel geometry with an undulator gap of 5 
mm. Sample alignment in the beam was under low dose conditions (undulator gap of 
10 mm). Projections were recorded by a sCMOS (2560 x 2160 pixels) pco.edge 5.5 
(PCO AG, Germany) detector, which was coupled to a 500 µm-thick CdWO4 and a 
visual light microscope. A 1.25X objective lens was used to achieve a total 
magnification of 2.5X, resulting in an effective voxel size of 2.6 µm and a field of view 
of 6.7 x 5.6 mm. For each dataset, 1801 projection images were collected over 180 
degrees of continuous rotation (‘fly scan’). The final projection was not used for 
reconstruction, but was compared to the first image to check for experimental 
problems including sample deformation and bulk movements (Atwood et al., 2015). 
The exposure time was set to 64 ms per projection in order to minimize SR 
irradiation-induced damage during image acquisition (Peña-Fernández et al., 2018) 
(Fig. 1).  The propagation distance (sample to detector) was increased in ~100 mm 
increments until sufficient in-line phase contrast was gained to visualise the 
microstructure. The final propagation distance used was 150 mm. The projection 
images were flat and dark corrected prior to reconstruction. For each dataset, 40 flat 
and dark images were collected. Reconstruction was performed at DLS using the in-
house software, DAWN (Basham et al., 2015; Titarenko et al., 2010), incorporating 
ring artifact suppression. Specimens were imaged within a loading stage (CT5000, 
Deben Ltd, UK) equipped with an environmental chamber and were kept immersed 
in saline solution during the entire experiment. A small preload (5 N) was applied 
only to ensure good end contact prior to imaging and minimise motion artifacts 
during the scan. Each specimen was scanned twice under the same configuration 
(‘zero-strain’ repeated scan) without any repositioning. 

Image post-processing 

Each 3D image dataset consisted of 2160 images (2256 x 2076 pixels) with 32-bit 
graylevels. Images were converted to 8-bit grayscale (0 – 255 counts). The repeated 
scans for each specimen were first rigidly registered using Fiji software (Schindelin 
et al., 2012). Registration was performed minimising the Euclidean difference 
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between the reference and the target image, followed by a resampling using a cubic 
spline interpolation (Meijering et al., 2001). After registration, a volume of interest 
(VOI) was cropped for each tomogram, consisting of a parallelepiped with side 
lengths of 1000 voxels (2.6 µm3). The VOI was set in the centre of the volume for the 
controls and manually selected for the bone-biomaterial specimens in order to 
include the interface. Noise in the images was reduced by applying a 3D filter. To 
compare the DVC algorithm performance on the filtered images, two different filters 
were used (Fig. 2): a median filter (radius = 2 pixels) and a non-local means (NLM) 
filter (Buades et al., 2011; Darbon et al., 2008), where the variance (sigma) of the 
noise was automatically estimated for each dataset (Immerkær 1996). 

Additionally, the original SR-microCT images were also masked by setting to zero 
the grayscale intensity of non-bone/biomaterial voxels. A binary image (value one for 
bone-biomaterial voxels and zero elsewhere) was first created form the non-local 
mean denoised images using an iterative approach. Due to the low exposure used 
during image acquisition to minimise irradiation-induced damage in the tissue, the 
quality of the images was considerably low (Fig. 1); therefore, a global thresholding 
can be insufficient for segmenting the mineralised tissue and biomaterial from the 
soft (i.e. bone marrow) and watery material, due to variations in signal intensity and 
noise within the same material. The method employed in this study firstly used a 
global threshold based on Huang’s method (Huang & Wang, 1955), followed by an 
iterative approach. The latter consisted on applying three different operations to the 
binary images as follows: 1) the connected regions in the 3D volume were identified 
by applying a purifying cycle using BoneJ (Doube et al., 2010), which locates all 
particles in the 3D volume and removes all of them but the largest foreground (bone-
biomaterial) and background (bone marrow) particles (Odgaard & Gundersen, 1993); 
2) a closing cycle, which performs a dilation operation followed by erosion, was 
applied in order to fill in small holes; 3) an opening cycle, consisting on an erosion 
operation followed by dilation, was used to remove isolated pixels. The quality of the 
binary images was checked by visual inspection after each iteration. The iterative 
process was concluded when no improvements were observed. In this study 6 
iterations were selected (Fig. 3). Masked images, with the original greyscale value in 
the mineralised tissue and biomaterial, and zero elsewhere, were obtained 
multiplying the filtered to the final binary image. For each VOI, the solid volume 
fraction (SV/TV) was obtained to assess possible correlations with DVC 
measurements. 

Digital volume correlation 

DVC was performed on the reconstructed tomograms using DaVis 8.4 software 
(LaVision Ltd., Goettingen, Germany). DaVis is a cross-correlation method operating 
on the intensity values (graylevel) of 3D images. In essence, the measurement 
volume is divided into smaller sub-volumes and the contrast pattern within the sub-
volumes is then tracked from reference to deformed state, independently (local 
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approach (Madi et al., 2013b)) as a discrete function of the graylevels. The matching 
between the sub-volumes is achieved via a direct cross-correlation (DC) function 
(Cheminet et al., 2014). It is called “direct” because it directly sums the products of 
voxel gray values of the initial and deformed volumes to form the 3D correlation map. 
The normalised correlation coefficient 𝐶𝑛𝑜𝑟𝑚 for two volumes 𝐴 and 𝐵 with shifts 
𝑑𝑥, 𝑑𝑦, 𝑑𝑧 and a window of 𝑁 𝑥 𝑁 𝑥 𝑁 voxels at point (𝑥0, 𝑦0, 𝑧0) is computed 
according to: 

𝐶𝑛𝑜𝑟𝑚(𝑑𝑥, 𝑑𝑦, 𝑑𝑧) =  ∑
(𝐴𝑖,𝑗,𝑘 − 〈𝐴〉)(𝐵𝑖+𝑑𝑥,𝑗+𝑑𝑦,𝑘+𝑑𝑧 − 〈𝐵𝑑𝑥,𝑑𝑦,𝑑𝑧〉)

√|𝐴′|2 ∙ |𝐵′𝑑𝑥,𝑑𝑦,𝑑𝑧|2(𝑖,𝑗,𝑘)

 

With 

〈𝐴〉 =  ∑
𝐴𝑖,𝑗,𝑘

𝑁3
(𝑖,𝑗,𝑘)

 

〈𝐵𝑑𝑥,𝑑𝑦,𝑑𝑧〉 = ∑
𝐵𝑖+𝑑𝑥,𝑗+𝑑𝑦,𝑘+𝑑𝑧

𝑁3
(𝑖,𝑗,𝑘)

  

|𝐴′|2 =  ∑ [𝐴𝑖,𝑗,𝑘 − 〈𝐴〉]2

(𝑖,𝑗,𝑘)

 

|𝐵′𝑑𝑥,𝑑𝑦,𝑑𝑧|2 =  ∑ [𝐵𝑖+𝑑𝑥,𝑗+𝑑𝑦,𝑘+𝑑𝑧 − 〈𝐵𝑑𝑥,𝑑𝑦,𝑑𝑧〉]2

(𝑖,𝑗,𝑘)

 

Where all summations run from (𝑖, 𝑗, 𝑘) = (𝑥0, 𝑦0, 𝑧0) to (𝑖, 𝑗, 𝑘) = (𝑥0 + 𝑁 − 1, 𝑦0 +
𝑁 − 1, 𝑧0 + 𝑁 − 1). 𝐴𝑖,𝑗,𝑘 is the gray value (intensity) of the voxel (𝑖, 𝑗, 𝑘) in the 
reference volume 𝐴, and consequently 𝐵𝑖+𝑑𝑥,𝑗+𝑑𝑦,𝑘+𝑑𝑧 is the intensity of the voxel at 
the shifted position (𝑖 + 𝑑𝑥, 𝑗 + 𝑑𝑦, 𝑘 + 𝑑𝑧) in the deformed volume 𝐵. 

The resulting displacement estimate is obtained by maximising the normalised 
correlation function for each sub-volume, where sub-pixel accuracy is achieved by 
fitting a Gaussian curve to the correlation peak (Scarano, 2013). DaVis adopts a 
multi-pass scheme that uses the displacement gradient from the previous pass to 
deform the sub-volume on the subsequent pass until the highest possible correlation 
is achieved (Madi et al., 2013a). Tri-linear interpolation is used to calculate 
displacements of voxels located between nodes. The final displacement is therefore 
a 3D full-field average displacement of the pattern within that sub-volume between 
reference and deformed volume. From the field of resultant displacement vectors at 
the centre of each sub-volume, the field of strain components is computed using a 
centered finite difference (CFD) scheme (Germaneau et al., 2007a, 2007b). 
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Influence of sub-volume size 

The DVC technique relies on the internal graylevel texture of the material that can be 
recognised in the 3D images to correlate a reference sub-volume to a deformed one. 
The features included within each sub-volume, and therefore the sub-volume size 
affects DVC uncertainties (Liu & Morgan, 2007; Roberts et al., 2014). A small sub-
volume size is typically susceptible to noise effects, whereas large sub-volumes may 
result in an insufficient spatial resolution (Dall’Ara et al., 2014). Therefore, the goal is 
always to choose a sub-volume small enough to capture the essential features of 
deformation, and still large enough to give accurate results. In order to evaluate the 
influence of sub-volume size on the DVC displacement/strain uncertainties, seven 
sub-volume sizes ranging from 16 to 112 voxels, in steps of 16 voxels were 
investigated. Two passes were performed for each sub-volume size, using the first 
pass as a predictor for the final computation and therefore, improving the correlation. 
Moreover, a multi-pass scheme with variable sub-volume sizes was tested. The 
multi-pass scheme used sub-volumes of 112, 96, 80, 64 and 48 voxels, with 0% 
overlap between the sub-volumes. 

Influence of masking 

DVC was applied to the raw and masked images to investigate the influence of 
including the bone marrow regions, usually associated to large strain artefacts due to 
the lack of a clear pattern distribution, in the correlation algorithm. Two different 
approaches were considered for DVC computation in the mask images: treating the 
non-mineralised areas as a black ‘zero-count’ region (mask image) and creating a 
threshold-based algorithm mask using DaVis tools (DaVis-mask image). The 
difference between both approaches lies on the inclusion of regions outside the 
bone-biomaterial when correlating the 3D images. Whereas the use of masked 
images allows DVC algorithm to correlate the entire 3D image (bone-biomaterial and 
black regions), DaVis-mask allows calculating vectors only in mineralised (bone-
biomaterial) areas within the 3D image. Additionally, the minimal fraction of valid 
pixel (mfvp) can be controlled when using the masking tools in DaVis. This 
parameter specifies the number of voxels that need to be contained within a sub-
volume for the computed vector to be valid; the higher this value the less close 
calculated vectors are to the mask edges, resulting in a significant loss of data. It 
should be highlighted that the resulting vectors are computed in the centre of each 
sub-volume and not at the centre of mass of the non-zero voxels. To account only for 
the uncertainties within the mineralised material (bone-biomaterial) and allow a 
better comparison between the three different options, the sub-volumes containing 
all voxels outside the bone-biomaterial areas were ignored for the raw and masked 
images, and the uncertainties were computed considering only the remaining sub-
volumes. The resulting displacement/strain fields were weighted according to the 
SV/TV for each sub-volume. The number of voxels inside the masked areas. 
Additionally, for the raw and masked images, sub-volumes with a correlation 
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coefficient below 0.6 were removed, to avoid large strain artifacts due to poor 
correlation. The latter could not be applied to the DaVis-masked images, as the 
correlation coefficient was considerably low. 

Evaluation of DVC uncertainties 

To quantify the level of uncertainties of the DVC measurements, which is associated 
to imaging conditions, image post-processing and sub-volume size, different scalar 
indicators were computed for each pair of ‘zero-strain’ repeated scans. Ideally, also 
the displacements could be considered null; however, in the real experiment the 
actual displacements were affected by the inevitable unknown micro-movements of 
the different parts of the image acquisition setup. Therefore, the systematic error for 
the displacements could not be quantified and only the random errors, computed as 
the variability of the displacement within each specimen, was computed (Palanca et 
al., 2015). 

As the test was based on a ‘zero-strain’ condition, any non-zero values of strain were 
considered as error. Systematic and random errors for each specimen were 
calculated as the average and standard deviation for each of the strain components. 
Additionally, the mean absolute error (MAER) and standard deviation of the error 
(SDER) were obtained as: 

𝑀𝐴𝐸𝑅 =  
1
𝑛

∑ (
1
6 ∑|𝜀𝑐,𝑘|

6

𝑐=1

)
𝑛

𝑘=1

 

𝑆𝐷𝐸𝑅 = √1
𝑛

∑ (
1
6 ∑|𝜀𝑐,𝑘|

6

𝑐=1

− 𝑀𝐴𝐸𝑅)
2𝑛

𝑘=1

  

 
Where 𝜀 represents the strain; 𝑐 represent the six independent strain components, 𝑘 
represents the measurement point; and 𝑛 is the total number of measurement points. 
MAER and SDER correspond to the indicators formerly known as “accuracy” and 
“precision” (Liu & Morgan, 2007). Additionally, the correlated volume (CV) was 
assessed as the volume where correlation was successful. The correlated solid 
volume (CV/SV) was then computed dividing the CV by the SV/TV. 

RESULTS 

Influence of filtering the images. 

The influence of filtering the images was only assessed on the raw images prior to 
masking procedures and data screening. The use of a median or a NLM filter 
reduced the noise in the images considerably (Fig. 2) and had a clear impact on the 
final mean value of the Cnorm, ranging from 0.41 for the raw images to 0.89 (Table 1) 
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in the trabecular bone specimens, and from 0.37 to 0.84 in the bone-biomaterial 
systems, for the raw and NLMD denoised images, respectively, using a multi-pass 
scheme with a final sub-volume size of 48 voxels. However, the improvement of the 
correlation coefficient was not related to a clear decrease of the measured DVC 
errors. Whereas filtering the images slightly reduced the displacement random errors 
in bone-biomaterial systems (from 0.35 µm for the raw images to 0.29 µm for the 
median filtered images and 0.25 µm for the NLM filtered images), it slightly increased 
those values for the trabecular bone specimens (from 0.21 µm for the raw images to 
0.22 µm for the median filtered images and 0.23 µm for the NLM filtered images). On 
the other hand, the use of a NLM filter was found to improve to a small extent the 
strain uncertainties, whereas the median filter produced slightly higher strain errors, 
for both trabecular bone specimens and bone-biomaterial systems, when compared 
to the use of raw images. The same tendencies were observed for the different sub-
volumes analysed. 

Table 1. Mean value of the normalized correlation coefficient (Cnorm), random errors 
affecting the displacement components, MAER and SDER on the strain 
measurements for the multi-pass scheme (final sub-volume size of 48 voxels) in 
trabecular bone samples and bone-biomaterial systems analysed with the different 
filters used (raw images, median filter and NLM filter). Median values are calculated 
accounting for the total number of specimens in each type. 

 Filter Cnorm Displacement random errors 
(µm) Strain uncertainties (µε) 

   x y Z MAER SDER 

Trabecular 
bone 

None 0.41 0.21 0.19 0.14 387 294 

Median 0.87 0.22 0.20 0.17 380 273 

NLM 0.89 0.23 0.21 0.15 376 257 
Bone-
Biomaterial 
systems 

None 0.37 0.35 0.22 0.14 300 215 

Median 0.73 0.29 0.22 0.15 307 215 

NLM 0.84 0.11 0.25 0.14 289 175 

 

Influence of varying the minimal fraction of valid pixels (mfvp). 

The mfvp used for DVC computation applied to the DaVis-mask images had an 
indirect effect on the CV/SV; however, did not modified the Cnorm, displacement 
random errors or MAER and SDER (Table 2). The CV/SV increased from 55.8% to 
86.8% for the trabecular bone specimens and from 83.0% to 93.9% for the bone-
biomaterial systems, for a mfvp of 50% and 30%, respectively. A visual 
representation is shown in Fig. 4. The number of successfully correlated sub-
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volumes (colour shaded) increased (higher CV/SV) when decreasing the mfvp. 
However, the Cnorm remained constant and the slightly changes were found in the 
displacement random errors and MAER and SDER (0.07 µm, 69 µε, and 66 µε, 
respectively). 

Table 2. Correlated solid volume (CV/SV), mean normalized correlation coefficient 
(Cnorm), random errors affecting the displacement components, MAER and SDER of 
the strain measurements for the multi-pass pass scheme (final sub-volume size of 48 
voxels) using DaVis-mask images in trabecular bone samples and bone-biomaterial 
systems varying the minimal fraction of valid pixel (mfvp) for the computation. 
Median values are calculated accounting for the total number of specimens in each 
type. 

 mfvp 
(%) 

CV/SV 
(%) Cnorm Displacement 

random errors (µm) 
Strain 

uncertainties (µε) 

    x y z MAER SDER 

Trabecular 
bone 

50 55.8 0.41 0.42 0.50 0.34 1373 736 

40 74.8 0.42 0.41 0.48 0.29 1308 692 

30 86.8 0.42 0.43 0.44 0.27 1304 670 

Bone-
Biomaterial 

systems  

50 83.0 0.56 0.21 0.27 0.16 438 337 

40 90.6 0.56 0.23 0.28 0.16 468 395 

30 93.9 0.56 0.25 0.28 0.16 491 384 

 

Influence of masking 

The comparison of masking the images to remove possible artifacts (i.e. bubbles 
(Fig. 2)) in the marrow/saline solution is presented in Table 3 for the multi-pass 
scheme with a final sub-volume of 48 voxels. The CV/TV was similar for the three 
approaches analysed, despite the data was filtered (only sub-volumes with 
correlation coefficient above 0.6 were considered) for the raw and masked images. 
The use of DaVis-mask notably decreased the correlation coefficient compared to 
the use of raw or mask images (from 0.98 to 0.42 in trabecular bone and 0.91 to 0.56 
in bone-biomaterial systems). At the same time, the measured uncertainties in terms 
of strain and displacements were larger. Both mask and raw images showed 
successful results in terms of correlation coefficient, being slightly higher in the mask 
case. Furthermore, the MAER and SDER were lower using the masked images. The 
MAER ranged from 239 µε to 212 µε for the trabecular bone and from 225 µε to 195 
µε for the bone-biomaterial systems in raw and mask images, respectively. Similarly, 
SDER ranged from 171 µε to 101 µε for trabecular bone and from 107 µε to 102 µε 
for the bone-biomaterial systems. 
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Table 3. Correlated solid volume (CV/SV), normalized correlation coefficient (Cnorm), 
random errors affecting the displacement components, MAER and SDER of the 
strain measurements for the multi-pass pass scheme (final sub-volume size of 48 
voxels) using raw, mask and DaVis-mask images in trabecular bone samples and 
bone-biomaterial systems. Median values are calculated accounting for the total 
number of specimens in each type. 

 Image CV/SV 
(%) Cnorm  Displacement 

random errors (µm)  Accuracy and 
precision (µε) 

     x Y z  MAER SDER 

Trabecular 
bone 

Raw 92.8 0.89  0.20 0.18 0.13  239 171 

Mask 86.8 0.98  0.15 0.22 0.14  212 101 

DaVis-mask 95.5 0.42  0.43 0.44 0.27  1304 670 

Bone-
Biomaterial 

systems  

Raw 94.5 0.79  0.10 0.20 0.15  225 107 
Mask 90.9 0.91   0.08 0.22 0.12   195 102 

DaVis-mask 90.0 0.56  0.25 0.28 0.16  491 384 

 

Random errors for the displacement 

The random errors affecting each component of the displacement ranged between 
0.42 µm and 0.12 µm for the raw images, from 0.54 µm to 0.14 µm for the mask 
images, and from 0.61 µm to 0.13 µε for the DaVis-mask images in the trabecular 
bone specimens. Similarly, they ranged between 0.40 µm and 0.08 µm for the raw 
images, from 0.44 µm to 0.11 µm for the mask images, and from 0.49 µm to 0.08 µε 
for the DaVis-mask images in the bone-biomaterial systems. Random errors were 
typically larger for smaller sub-volume sizes (Table 3). The multi-pass scheme (final 
sub-volume size of 48 voxels) notably improved the performance in both types of 
specimens for both raw and mask options, when compared to the results obtained 
with sub-volumes of 48 voxels, obtaining values comparable to the case when a sub-
volume size of 112 voxels was used. Multi-pass in in DaVis-mask images produced 
and improvement compared to the single-pass scheme (48 voxels), but less relevant 
when compared to the raw and mask images.  
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Table 4. Random errors of the displacements (µm) for the trabecular bone 
specimens and bone-biomaterial system varying the sub-volume size (voxels) for the 
raw, mask and DaVis-mask images. Median values are calculated accounting for the 
total number of specimens in each type. 

 Sub-
volume  Raw  Mask  DaVis-mask 

   x y z  x y z  x y z 
Trabecular 
bone 

16  0.35 0.42 0.29  0.38 0.54 0.35  0.61 0.61 0.26 

32  0.32 0.35 0.26  0.35 0.52 0.36  0.54 0.55 0.26 

48  0.31 0.30 0.23  0.32 0.41 0.29  0.50 0.51 0.25 

64  0.26 0.31 0.20  0.28 0.36 0.26  0.53 0.52 0.36 

80  0.25 0.29 0.15  0.24 0.29 0.25  0.40 0.47 0.35 

96  0.24 0.32 0.13  0.23 0.30 0.22  0.40 0.35 0.30 

112  0.20 0.20 0.12  0.21 0.25 0.19  0.21 0.28 0.13 

48 (mp)  0.20 0.18 0.13  0.15 0.22 0.14  0.43 0.44 0.27 
Bone-
biomaterial 
systems 

16  0.18 0.40 0.16  0.20 0.44 0.16  0.29 0.49 0.17 

32  0.13 0.33 0.15  0.15 0.38 0.15  0.29 0.43 0.15 

48  0.12 0.28 0.13  0.12 0.36 0.14  0.24 0.37 0.14 

64  0.11 0.24 0.13  0.10 0.32 0.13  0.15 0.30 0.12 

80  0.09 0.23 0.12  0.09 0.29 0.11  0.11 0.23 0.10 

96  0.08 0.21 0.12  0.08 0.23 0.12  0.10 0.20 0.09 

112  0.08 0.19 0.13  0.08 0.22 0.12  0.09 0.18 0.08 

48 (mp)  0.10 0.20 0.15  0.08 0.22 0.12  0.25 0.28 0.16 

 

MAER and SDER 

To facilitate comparison with publish literature, the scalar values MAER and SDER 
(Palanca et al., 2016) were computed in order to provide a single strain value 
associated to each specimen. As expected from the results reported in previous 
studies (Dall’Ara et al., 2017), the measured DVC uncertainties had decreasing 
tends with respect to the sub-volume size for both types of specimens (Fig. 5). In 
particular, the median values for MAER and SDER for the bone-biomaterial samples 
ranged between 671 µε to 167 µε and 766 µε to 42 µε for the raw images, between 
695 µε to 154 µε and 679 µε to 44 µε for the mask images, and between 1525 µε to 
208 µε and 1354 µε to 71 µε for the DaVis-mask images, respectively; using sub-
volumes sizes ranging from 16 to 112 voxels. The errors for bone-biomaterial 
systems were lower than those obtained for the trabecular bone specimens. The 
median values of MAER and SDER for the bone-biomaterial samples ranged 
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between 671 µε to 167 µε and 766 µε to 42 µε for the raw images, between 695 µε to 
154 µε and 679 µε to 44 µε for the mask images, and between 1525 µε to 208 µε 
and 1354 µε to 71 µε for the DaVis-mask images, respectively; for the same sub-
volumes. As for the displacement random errors, the use of DaVis-mask 
considerably enlarged the measured strain uncertainties. The multi-pass scheme 
(final sub-volume size of 48 voxels) notably improved the performance in both types 
of specimens when compared to the results obtained with sub-volumes of 48 voxels 
for both MAER and SDER.   

Random errors for each strain component 

Increasing the sub-volume size reduced the random error of each strain component 
for both types of specimens and the different mask-based options used. As found for 
the displacement random errors, MAER and SDER, the bone-biomaterial systems 
were less affected when compared to the trabecular bone specimens. Consistently 
with previous results, the use of DaVis-mask images produced higher random errors 
for all strain components. Furthermore, the use of masked images and multi-pass 
scheme reduced the uncertainties for both types of specimens when compared to 
raw images and single-pass schemes (Fig. 6). For a final sub-volume of 48 voxels 
using a single-pass scheme, bone-biomaterials systems were associated to median 
random errors of 194 - 483 µε, and 161 - 544 µε for raw and mask images, 
respectively. The use of a multi-pass scheme reduced the random errors to 171 - 
304 µε, and 112 - 338 µε for raw and mask images, respectively.  Similarly, for the 
trabecular bone specimens the random errors were found to be between 485 - 731 
µε for the raw images, and 562 - 839 µε for the mask images when using a single-
pass scheme and between 261 – 436 µε for raw images, and 205 – 426 µε for mask 
images in the multi-pass scheme. 

Spatial distribution of the errors 

Generally, larger errors were found for the trabecular bone specimens compared to 
the bone-biomaterial systems. In particular, the distribution of the apparent normal 
strain in the z-direction (chosen as a representative strain component for the 
obtained results) seemed to be more homogeneous in the bone-biomaterial systems 
when compared to the trabecular bone (Fig. 7). As the DVC analysis is based on 
‘zero-strain’ repeated scans, the strain distribution in Fig. 7 depicted the error 
distribution for the εzz strain component. In areas presenting bone-biomaterial, a 
reasonably uniform distribution of the strain was obtained. Conversely, for the 
trabecular bone sample and areas of trabecular bone in the bone-biomaterial, larger 
strain errors and a more heterogeneous strain distribution was observed. 

DISCUSSION 

The goal of this study was to evaluate the influence of imaging post-processing and 
DVC settings on the displacement and strain error distribution within trabecular bone 
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and bone-biomaterial systems, using a SR-microCT based local DVC approach. 
More specifically, this work aimed at optimising those settings in order to provide 
accurate 3D strain measurements, at tissue level, of bone-biomaterial interfaces for 
further micromechanical characterisation of such composites under applied load.   

The application of DVC based on high-resolution SR-microCT images of bone 
remains partially unexplored. In fact, to the author’s knowledge only two publications 
reported the used of DVC for 3D strain measurement on bone. Christen et al. 
(Christen et al., 2012) focused on crack propagation in murine femora, but the 
uncertainties of the measured strain were only assessed in virtually displaced 
images and not in repeated scans. Therefore, the real error induced by image noise 
was not taken into account, possibly leading to an underestimation of the errors 
(Dall’Ara et al., 2014). More recently, Palanca at al. (Palanca et al., 2017) showed 
that reliable strain measurements could be obtained at tissue-level using a global 
DVC approach for trabecular bone, cortical bone and murine tibia, but the 
performance of a local DVC approach and the study of bone-biomaterial interfaces 
was not explored. A comparison of two DVC algorithms (global and local 
approaches) in different bone typologies at different dimensional scales based on 
laboratory microCT and SR-microCT was conducted by Dall’Ara et al. (Dall’Ara et al., 
2017), including the precision of a local approach of bone-biomaterial systems also 
investigated in this study. However, only the precision of the DVC algorithm in terms 
of strain and displacements was reported, and the uncertainties were evaluated on 
the entire 3D images, producing slightly higher errors when compared to an 
evaluation exclusively within the mineralised tissue. In fact, the present study 
showed that when computing the strain values only in the tissue, the SDER for bone-
biomaterial systems was found to be ~100 µε whereas Dall’Ara reported ~150 µε, for 
the same multi-pass scheme with a final sub-volume of 48 voxels. Furthermore, a 
comparison of the influence of different imaging post-processes and DVC settings on 
the resulting measurement uncertainties was not detailed. 

Despite the high potential of using high-quality tomograms acquired with SR-
microCT on DVC applications of bone and bone-materials, concerns are still raising 
on the damage induced by SR X-ray radiation (Barth et al., 2010). In fact, when 
prolonged exposures times to SR X-ray radiation are required, the microstructural 
integrity of the bone tissue is compromised (Fig. 1), and microcracks appear clearly 
visible in the tissue after continuous irradiation. Therefore, this study used low 
exposures times (64 ms per projection, ~2 min scanning time) and kept the 
specimens immersed in saline solution during image acquisition, in order preserve 
the mechanical integrity of the analysed specimens (Peña-Fernández et al., 2018). 
These two factors negatively contributed to the quality of the acquired tomograms 
(Fig. 2), and further optimisation on the imaging and DVC settings was needed. 

In order to understand the effect of filtering the images prior to DVC computation, 
two different filters were applied and compared to the DVC results obtained with the 
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raw noisy tomograms (Table 1). For instance, this is the first time that the 
performance of DVC is compared for the same images with different denoised 
methods, even though these are common practice in image post-processing prior to 
DVC computation (Palanca et al., 2017). It was shown that the use of advanced 
filters (i.e. NLM filter), not only improved the correlation coefficient but also slightly 
reduced the uncertainties for both displacement and strain measurements in both 
types of specimens, suggesting that image denoising should be carefully considered 
and evaluated when low-quality tomograms are acquired. Furthermore, the use of 
robust filters is an essential step before image segmentation (Fig. 3) prior to 
masking.  

In this study an iterative approach for image segmentation was adopted, allowing the 
discrimination of mineralised tissue and biomaterial from soft/watery material. 
Despite segmenting images of bone acquired via microCT is commonly performed 
using global thresholds set manually, those introduce inter-observer variation 
(Waarsing et al., 2004). Local adaptive algorithms (Kaipala et al., 2017) can 
successfully segment images with strong edges (high contrast) and relatively uniform 
signal intensity. However, low-quality tomograms like those in the current study 
required a different segmentation approach. The iterative approach used in this 
study showed good visual agreement to the grayscale image (Fig. 3). However, the 
quality of the segmentation was only checked visually, resulting on an operator-
dependent approach; thus introducing inter-observer variation. Although stronger 
iterative thresholding algorithms (Wu et al., 2000) have proven to provide accurate 
results in terms of bone volume fraction, specific surface, and surface curvature 
(Slyfield et al., 2009), it was not within the scope of this paper to evaluate the 
morphology of the analysed specimen, but only the performance of DVC when 
artifacts presented in the non-bone are included. Therefore, a validation of the 
segmentation procedure herein applied was not conducted, and stronger methods 
were not tested. 

The effect of the masking operation on the trabecular bone and bone-biomaterial 
composites was evaluated for the first time on a local DVC approach. Previously 
results on a global DVC approach based on masked images showed lower error 
compared to the ones obtained by raw images (Palanca et al., 2017), in agreement 
with the results of this study (Table 2). The exclusion of non-mineralised areas, for 
which noise and artifacts (i.e. bubbles in saline solution) were probably dominant, 
was beneficial for DVC registration when the ‘background’ was treated as ‘zero’ 
intensity, enhancing the correlation coefficient and lowering the errors. However, the 
use of a threshold-based algorithmic mask (DaVis-mask), in which the ‘background’ 
region is excluded from DVC computation, provided higher errors and lower 
correlation values. That approach to masking may work for masking away regions 
outside the analysed specimen (i.e. to mask away regions of tooth structure in bone-
periodontal ligament and tooth fibrous joint (Jang et al., 2016)). However, when the 
masking is performed at tissue level in trabecular structure, DVC algorithm is not 
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able to provide a good correlation if the edges between trabeculae and marrow (high 
intensity gradient) are excluded from the computation and only gradients within the 
trabecula are considered. In this sense, even a variation on the mfvp (Table 2) was 
not able to substantially improve the results, as that parameters affects only to the 
number of voxels to be contained within a sub-volume for being included in the 
computation (Fig. 4). Despite that, the computed SDER using DaVis-mask was 
found to be ~400 for the bone-biomaterial systems and ~650 for trabecular bone 
using a multi-pass approach with a final sub-volume of 48 voxels. Those values are 
still tolerable for investigating the deformation of both types of specimens at tissue 
level. Considering that the use of DaVis-mask is the only approach that accounts for 
the displacement/strain field only in the tissue the results seem promising, and 
further development of this approach should be conducted. In fact, the application of 
DaVis-mask to high resolution images of trabecular bone at higher signal-to-noise 
ratio may improve the performance of the algorithm, as more features would be seen 
within the trabeculae. 

In line with previous studies (Dall’Ara et al., 2017; Palanca et al., 2017), the larger 
the sub-volume size, the lower the measurement uncertainties for both trabecular 
bone and bone-biomaterials (Fig. 5). Furthermore, it was reaffirmed (Palanca et al., 
2015) that the multi-pass approach available in DaVis provided lower errors when 
compared to the same final sub-volume using a single-pass (Fig. 6). For a sub-
volume size of 48 voxels or larger, equivalent to ~125 µm, the SDER was found 
close to 100 µε for both trabecular bone and bone-biomaterial composites, whereas 
random error for each strain component was close to or below 300 µε for the bone-
biomaterial systems and close to or below 400 µε for trabecular bone. These values 
are acceptable for the investigation of the deformation in the physiological range 
(1000-2000 µε (Yang et al., 2011)) at tissue level (Fratzl et al., 2004). Slightly higher 
errors were found for the trabecular bone compared to the results reported by 
Palanca et al. (Palanca et al., 2017). This was probably due to the differences in the 
effective pixel size (larger in this study) and the signal-to-noise ratio, lower in this 
work due to the low exposure times used to minimise the irradiation-induced damage 
in the tissue. Furthermore, the difference DVC approach (local vs global) may 
influence the measurement uncertainties based on the same datasets. In this sense, 
a comparison between global and local DVC approaches based on high-resolution 
SR-microCT images remains unexplored. However, the measurement uncertainties 
were lower compared to local DVC approach based on laboratory microCT systems 
(Dall’Ara et al., 2017). Better results were found for the bone-biomaterial systems 
compared to the trabecular bone, likely due to the much higher number of features 
present in such composites. Similar results were found in Tozzi et al. (2017), in 
which the presence of bone cement in vertebral bodies strongly modified the material 
texture, and therefore, positively influence the DVC analysis. In fact, the analysis of 
the spatial distribution of the errors (Fig. 7) confirmed that hypothesis: the areas with 
higher errors in the bone-biomaterials were correlated to native trabecular bone 
regions. 
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The current study has some limitations. Firstly, only two trabecular bone controls and 
four bone-biomaterial systems were analysed; thus, no statistical information can be 
extracted. The size of the bone defects and the short time allocated in the beamline 
made not possible to enlarge the sample size. Additionally, the strain errors were 
only calculated in a ‘zero-strain’ condition for repeated scans. Despite this approach 
allows to account for the intrinsic image noise, this analysis should be expanded in 
order to evaluate the error within strained specimens. Particularly, Dall’Ara et al. 
(2017) suggested to overcome this limitation by evaluating the precision of the DVC 
approach on repeated scans of the structure under load. Despite they found that the 
precision was similar for both loaded and unloaded structures, the accuracy could 
not be evaluated as the displacement field is unknown. On the other hand, Palanca 
et al. (2017) proposed to perform the analysis in synthetically deformed images after 
imposing an affine transformation on the unloaded repeated scans, thus not 
accounting for a realistic heterogeneous strain field. Future work must be done to 
account for more realistic loading scenarios. 

In conclusion, this study demonstrated the suitability of a local DVC approach based 
on SR-microCT images to investigate the micromechanics of trabecular bone and 
bone-biomaterial systems at tissue level. This was achieved after an optimisation of 
image post-processing and DVC settings. Image quality had to be reduced by 
decreasing the exposure time to SR X-ray radiation to minimise irradiation-induce 
tissue damage. The use of advanced 3D filters on the acquired dataset enhanced 
DVC computation and provided a better segmentation of bone and biomaterial. The 
computation of displacement and strain values only in the mineralised tissue and 
biomaterial allowed for the exclusion of artifacts, resulting in lower errors. This 
approach has proven to be valid to evaluate full-field strain in bone-biomaterial 
composites under load at the tissue level (~150 µm), with a standard deviation of the 
errors of ~100 µε. 
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FIGURE CAPTIONS 

Figure 1. SR-microCT two-dimensional (2D) cross-sections acquired at different 
exposure times in the same bone-biomaterial system (ApaPore). Increasing the 
exposure time per projection (from a to f) improved the quality of the images but 
induced damage in the tissue due to SR X-ray radiation. Red arrows indicate 
microcracks in the tissue. (a) texp = 32 ms. (b) texp = 64 ms. (c) texp = 128 ms. (d) texp 
= 256 ms. (e) texp = 512 ms. (f) texp = 1024 ms. (texp: exposure time per projection). 

Figure 2. SR-microCT two-dimensional (2D) cross-sections in trabecular bone (a) 
and bone-biomaterial interface of Actifuse (b). The raw images (first column) 
present a reduced quality due to the low X-ray exposure used. Applying a median 
filter (second column) and a non-local means filter (third column) resulted in 
considerable noise reduction. 

Figure 3. Iterative approach for segmentation of SR-microCT images of bone-
biomaterial systems. (a) Non-local means denoised image showing unabsorbed 
biomaterial (light grey), bone tissue (medium grey) and non-mineralized material 
(dark grey). (b) Final mask image where non-mineralized voxels were set to zero 
(black) intensity value. (c) Initial segmentation based on Huang’s method. Binary 
images after two (d), four (e) and six (f) iterations. More bone-biomaterial and less 
marrow/watery material is included in the segmentation as the number of iterations 
increases.     

Figure 4. Normalized correlation coefficient (Cnorm) overlaid to the 2D SR-microCT 
tomograms showing the influence of varying the minimal fraction of valid pixel (mfvp) 
from 30% to 50% on the correlated volume for a trabecular bone specimen (a) and a 
bone-biomaterial interface (b). Areas with a high density of material (top area in b) 
present a higher correlation compared to areas of trabecular bone (bottom area in 
b). 

Figure 5. MAER (top) and SDER (bottom) for bone-biomaterial systems (left) and 
trabecular bone (right), for raw, mask and DaVis-mask images (blue, orange and 
green bars, respectively) as a function of the sub-volume size. Results for the multi-
pass (mp) scheme are also shown. Bars represent the median value, while error 
bars represent the standard deviation between the number of specimens of each 
type.  

Figure 6. Random errors of each strain component for bone-biomaterial systems 
(left) and trabecular bone (right), computed using raw (top) and mask (bottom) 
images for a final sub-volume size of 48 voxels using a single-pass (blue) and a 
multi-pass (yellow) scheme. Bars represent the median value, while error bars 
represent the standard deviation accounting for the total number of specimens in 
each type. 

Page 23 of 32 Journal of Microscopy



For Review Only

24 
 

Figure 7. Distribution of the z-direction strain (εzz) component for a cross-section of a 
trabecular bone (a) and a bone-biomaterial specimen(c) and for their VOIs 
(trabecular bone (b) and bone-biomaterial (d)), computed using a multi-pass scheme 
(48 voxel final sub-volume size) on the mask images. As the DVC was applied to 
‘zero-strain’ repeated scans, the reported strain represents the measured DVC 
uncertainties 
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LAY DESCRIPTION 

Understanding the quality of newly regenerated bone after implantation of novel biomaterials is 

essential to improve bone tissue engineering strategies and formulation of biomaterials. The 

relationship between microstructure and mechanics of bone has been previously addressed 

combining micro-computed tomography (microCT) with in situ mechanical testing. The addition of an 

image-based experimental technique such as digital volume correlation (DVC) allows to characterise 

the deformation of materials in a three-dimensional manner. However, in order to obtain accurate 

information at the micro-scale, high-resolution images, obtained for example by using synchrotron 

radiation microCT (SR-microCT), as well as optimisation of the DVC computation are needed. This 

study presents the effect of different imaging parameters, image post-processing and DVC settings 

for as accurate investigation of trabecular bone structure and bone-biomaterial interfaces. The results 

showed that when appropriate image post-processing and DVC settings are used DVC computation 

results in very low strain errors. This is of vital importance for a correct understanding of the 

deformation in bone-biomaterial systems and the ability of such biomaterials in producing new bone 

comparable with the native tissue they are meant to replace. 
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Figure 1. SR-microCT two-dimensional (2D) cross-sections acquired at different exposure times in the same 
bone-biomaterial system (ApaPore). Increasing the exposure time per projection (from a to f) improved the 

quality of the images but induced damage in the tissue due to SR X-ray radiation. Red arrows indicate 
microcracks in the tissue. (a) texp = 32 ms. (b) texp = 64 ms. (c) texp = 128 ms. (d) texp = 256 ms. (e) 

texp = 512 ms. (f) texp = 1024 ms. (texp: exposure time per projection).  
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Figure 2. SR-microCT two-dimensional (2D) cross-sections in trabecular bone (a) and bone-biomaterial 
interface of Actifuse (b). The raw images (first column) present a reduced quality due to the low X-ray 
exposure used. Applying a median filter (second column) and a non-local means filter (third column) 

resulted in considerable noise reduction.  
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Figure 3. Iterative approach for segmentation of SR-microCT images of bone-biomaterial systems. (a) Non-
local means denoised image showing unabsorbed biomaterial (light grey), bone tissue (medium grey) and 
non-mineralized material (dark grey). (b) Final mask image where non-mineralized voxels were set to zero 
(black) intensity value. (c) Initial segmentation based on Huang’s method. Binary images after two (d), four 

(e) and six (f) iterations. More bone-biomaterial and less marrow/watery material is included in the 
segmentation as the number of iterations increases.  
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Figure 4. Normalized correlation coefficient (Cnorm) overlaid to the 2D SR-microCT tomograms showing the 
influence of varying the minimal fraction of valid pixel (mfvp) from 30% to 50% on the correlated volume 

for a trabecular bone specimen (a) and a bone-biomaterial interface (b). Areas with a high density of 
material (top area in b) present a higher correlation compared to areas of trabecular bone (bottom area in 

b).  
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Figure 5. MAER (top) and SDER (bottom) for bone-biomaterial systems (left) and trabecular bone (right), for 
raw, mask and DaVis-mask images (blue, orange and green bars, respectively) as a function of the sub-

volume size. Results for the multi-pass (mp) scheme are also shown. Bars represent the median value, while 
error bars represent the standard deviation between the number of specimens of each type.  
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Figure 6. Random errors of each strain component for bone-biomaterial systems (left) and trabecular bone 
(right), computed using raw (top) and mask (bottom) images for a final sub-volume size of 48 voxels using 
a single-pass (blue) and a multi-pass (yellow) scheme. Bars represent the median value, while error bars 

represent the standard deviation accounting for the total number of specimens in each type.  
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Figure 7. Distribution of the z-direction strain (εzz) component for a cross-section of a trabecular bone (a) 
and a bone-biomaterial specimen(c) and for their VOIs (trabecular bone (b) and bone-biomaterial (d)), 

computed using a multi-pass scheme (48 voxel final sub-volume size) on the mask images. As the DVC was 
applied to ‘zero-strain’ repeated scans, the reported strain represents the measured DVC uncertainties  
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