Skip to main content

Advertisement

Log in

Establishment and therapeutic use of human embryonic stem cell lines

  • Feature: Regenerative Medicine
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cell lines, which are derived from the inner cell mass of blastocysts, proliferate indefinitely in vitro, retaining their potency to differentiate into various cell types derived from all of the three embryonic germ layers: the ectoderm, mesoderm and endoderm. Establishment of human ES cell lines in 1 998 has indicated the great potential of ES cells for applications in medical research and other purposes such as cell transplantation therapy. Careful assessment of safety and effectiveness using proper animal models is required before such therapies can be attempted on human patients. Monkey ES cell lines provide valuable models for such research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawasaki H, Mizuseki K, Nishikawa S et al. Neuron 2000; 28: 31–40.

    Article  CAS  PubMed  Google Scholar 

  2. Yuasa S, Itabashi Y, Koshimizu U et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 2005; 23: 607–11.

    Article  CAS  PubMed  Google Scholar 

  3. Hoffman LM, Crapenter MK. Characterization and culture of human embryonic stem cells. Nature Biotechnol 2005; 23: 699–708.

    Article  CAS  Google Scholar 

  4. Thomson JA, Kalishman J, Golos TG et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 1995; 92: 7844–8.

    Article  CAS  PubMed  Google Scholar 

  5. Thomson JA, Kalishmanm J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix Jacchus) blastocysts. Biol Reprod 1996; 55: 254–9.

    Article  CAS  PubMed  Google Scholar 

  6. Thomson JA, Marshall VS. Primate embryonic stem cells. Curr Top Dev Biol 1998; 38: 133–65.

    Article  CAS  PubMed  Google Scholar 

  7. Suemori H, Tada T, Torii R et al. Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dynamics 2001; 222: 273–9.

    Article  CAS  Google Scholar 

  8. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–7.

    Article  CAS  PubMed  Google Scholar 

  9. Isolation and culture of blastocyst-derived stem cell lines. In: Nagy A, Gertsenstein M, Vinterstein K, Behringer R, eds. Manipulating the Mouse Embryo, 3rd edn. New York: Cold Spring Harbor Laboratory Press, 2002; 359–97.

    Google Scholar 

  10. Amit M, Carpenter MK, Inokuma S et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tsuyoshi Fujioka, Kentaro Yasuchika, Yukio Nakamura, Norio Nakatsuji, Hirofumi Suemori. A simple and efficient cryopreservation method for primate embryonic stem cells. Int J Dev Biol 2004; 48: 1149–54.

    Article  Google Scholar 

  12. Asano T, Hnazono Y, Ueda Y et al. Highly efficient gene transfer into primate embryonic stem cells with asimian lentivirus vector. Mol Ther 2002; 6: 162–8.

    Article  CAS  PubMed  Google Scholar 

  13. Masataka Furuya, Kentaro Yasuchika, Yasunori Yoshimura, Norio Nakatsuji, Hirofumi Suemori. Electroporation of cynomolgus monkey embryonic stem cells. Genesis 2003; 37: 180–7.

    Article  Google Scholar 

  14. Chung S, Sonntag KC, Andersson T et al. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 2002; 16: 1829–38.

    Article  PubMed  Google Scholar 

  15. Kim JH, Auerbach JM, Rodriguez-Gomez et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418: 50–6.

    Article  CAS  PubMed  Google Scholar 

  16. Blyszczuk P, Czyz J, Kania G et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003; 100: 998–1003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Suemori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suemori, H. Establishment and therapeutic use of human embryonic stem cell lines. Hum Cell 19, 65–70 (2006). https://doi.org/10.1111/j.1749-0774.2006.00011.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1749-0774.2006.00011.x

Key words

Navigation