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Summary
Restricted mean lifetime is often of direct interest in epidemiologic studies involving censored
survival times. Differences in this quantity can be used as a basis for comparing several groups.
For example, transplant surgeons, nephrologists and of course patients are interested in comparing
post-transplant lifetimes among various types of kidney transplants in order to assist in clinical
decision-making. As the factor of interest is not randomized, covariate adjustment is needed in
order to account for imbalances in confounding factors. In this report, we use semiparametric
theory to develop an estimator for differences in restricted mean lifetimes while accounting for
confounding factors. The proposed method involves building working models for the time-to-
event and coarsening mechanism (i.e., group assignment and censoring). We show that the
proposed estimator possesses the double robust property; i.e., when either the time-to-event or
coarsening process is modeled correctly, the estimator is consistent and asymptotically normal.
Simulation studies are conducted to assess its finite-sample performance and the method is applied
to national kidney transplant data.
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1. Introduction
It is often of interest in biomedical studies to compare groups of subjects with respect to
their survival time. In almost all cases, the study’s observation period may conclude before
all subjects have experienced the event of interest, resulting in censored data. In
observational studies, lack of randomization requires that the groups of interest be compared
in a manner which accounts for the possibility that the group-specific adjustment covariate
distributions may be different. Proportional hazards regression (Cox, 1972) has become the
dominant method of survival analysis in settings where covariate adjustment is needed. In
the application of the Cox model, groups may be contrasted through the hazard ratio,
provided that the group-specific hazard functions are proportional. If proportionality fails,
the ‘overall’ hazard ratios estimated by a Cox model with time-constant group effects will
have an awkward interpretation, as identified by Struthers and Kalbfleisch (1986).
Moreover, investigators are often more interested in contrasts among mean survival times
than ratios of hazards. Since the baseline hazard is handled non-parametrically, restricted
mean lifetime is often estimated when Cox regression is employed, and several methods
have been proposed for this purpose (e.g., Karrison, 1987; Zucker, 1998; Chen and Tsiatis,
2001).
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If one wished to compare group-specific restricted mean survival time, two general
approaches could be employed. In the first, differences in restricted mean lifetime are
estimated via directly modeling the relationship of survival time with covariates, then
explicitly averaging across the fitted values from such models for each treatment (Karrison,
1987; Zucker, 1998; Chen and Tsiatis, 2001). Zhang and Schaubel (2011) developed
methods for comparison of group-specific restricted mean lifetimes in the presence of
dependent censoring based on this general idea. A second possibility would be to use
Inverse Probability of Treatment Weighting (Hubbard, van der Laan, and Robins, 1999;
Wei, 2008) to essentially equalize the adjustment covariate distribution across groups; in this
case, the probability of receiving treatment conditional on covariates is modeled. Covariates
operate as confounding factors when they affect both survival time and treatment
assignment. The two aforementioned methods lead to valid inference, under appropriate
conditions regarding censoring, because each of them eliminates confounding by tackling
one of the two pathways. With respect to censoring, the first approach requires that survival
time and censoring time are independent conditional on treatment and baseline covariates;
whereas the second approach requires the more restrictive conditional independence
assumption given treatment only. Both assumptions can be relaxed if the relationship of
censoring and covariates is further modeled, as in Zhang and Schaubel (2011). If censoring
has been appropriately accounted for, either by exploiting its conditional independence or
through modeling, each of the first and second methods leads to consistent and
asymptotically normal estimators of treatment-specific restricted mean lifetimes (and, hence,
between-treatment differences therein) under correct specification of the regression models
for survival time or treatment assignment probability, respectively.

Restricted mean lifetime is a very meaningful quantity in the solid organ transplant setting.
For example, a kidney transplant is typically not going to last the remainder of the transplant
recipient’s life, particularly if the deceased organ donor was older than the recipient. This
makes restricted mean lifetime a more useful quantity than mean survival time itself.
Consider a study of simultaneous kidney-pancreas (SPK) transplant recipients. Pancreas
transplantation is risky and controversial, and its merits are not universally accepted by
nephrologists. A useful way to evaluate the benefit receiving a pancreas (in addition to a
kidney) is to compare outcomes between SPK and kidney-alone (KA) recipients. Since the
majority of SPK recipients are Type I diabetics, it makes sense to restrict attention to this
subgroup of patients. Typically for SPK patients, the pancreas is transplanted along with the
kidney in an attempt to, in a sense, ‘cure’ the diabetes. However, the surgery is considerably
more complicated, meaning that survival may actually end up being lower for SPK than KA
patients, despite the potential benefits of successful pancreas transplantation. As described in
the preceding paragraph, one could compare SPK and KA transplantation with respect to
average restricted mean lifetime by either modeling post-transplant survival times, or by
modeling the probability that a pancreas is received. Since it is possible for at least one of
the two models to be incorrect, it would be preferable to use a method that requires the
correctness of only one model.

In this article, we propose a method which adjusts for confounding factors by modeling
covariate effects on each of survival time, treatment assignment and censoring. The method
is developed from the perspective where the treatment assignment and censoring are viewed
as a coarsening (generalization of missing data) process, and will be explained in Section 3.
The benefit of modeling both the death hazard and coarsening process is that valid inference
on causal parameters is obtained when either one of two processes are modeled correctly;
i.e., either the model for survival time is correct, or the models for both treatment
assignment and censoring are correct. Such a property has been termed double-robustness by
several previous authors who developed analogous methods in other contexts; e.g.,
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Scharfstein, Rotnitzky, and Robins (1999); Robins, Rotnitzky and van der Laan (2000); van
der Laan and Robins (2003), Lunceford and Davidian (2004) and Bang and Robins (2005).

The remainder of the article is organized as follows. In Section 2, we set up the requisite
notation and state the required assumptions. We describe the proposed double-robust
method in Section 3. Asymptotic results are provided in Section 4, with their applicability to
finite samples assessed through simulation in Section 5. The proposed method is then
applied in Section 6 to compare simultaneous kidney-pancreas and kidney-alone transplants
using data from the Scientific Registry of Transplant Recipients. The article concludes with
some remarks in Section 7.

2. Notation and Assumptions
In this section we set up the requisite notation. Let A denote the treatment group, which is
not randomized, and for simplicity of presentation we assume there are only two treatment
groups to be compared (A = 0, 1); extension to situations with more than two groups can be
accomplished, as we discuss later. We let T denote survival time, which is subject to right
censoring, C. We assume that T and C are independent given A and baseline covariates Z,
denoted by T⫫C|(A, Z), where ⫫ denotes “independent of”. We let U = min(T, C) and Δ =
I(T ≤ C). Since A is not randomized, imbalances in baseline covariates may exist between
the two groups. Elements of the Z vector which affect both A assignment and T are referred
to as confounders and require adjustment in order for comparisons between the A = 1 and A
= 0 groups to be valid. In a study with n subjects, the observed data may be summarized by
{Ai, Ui, Δi, Zi}, assumed to be independent and identically distributed across subjects i = 1,
…, n.

Treatment groups are to be compared in terms of restricted mean lifetime up to time L,
min(T, L). In particular, interest focuses on the comparison of average survival time up to
time L under two specific scenarios: (i) the treatment is applied to the entire population, in
which case Ai = 1 for all i = 1, …, n (ii) the treatment is applied to no member of the
population, such that Ai = 0 for i = 1, …, n. The causal parameter of interest may be defined
in terms of potential outcomes; as studied, for example, by Rubin (1974, 1978) in the
general causal inference setting and by Chen and Tsiatis (2001) in the context of censored
data. Let Tj (j=0,1) denote the potential (or counterfactual) lifetime of a randomly selected
subject from the population under study if, possibly contrary to fact, s/he received treatment
A = j. Therefore, there is a two-dimensional potential outcome (T0, T1) corresponding to
each subject. The treatment-specific difference in restricted mean lifetime is defined as δ =

E{min(T1, L)} − E{min(T0, L)}; which is equal to , where Sj(t) represents
the survival function of T j. We set μj = E{min(Tj, L)}. Since μj represents a population

mean, a natural estimator would be , with an estimator for δ defined
accordingly. However, such estimators cannot be implemented in practice because potential

outcomes  and  can never be simultaneously observed for subject i, even if there were
no censoring. That is, for a subject who actually receives Ai = j, the observed lifetime Ti is

equal to her/his potential lifetime , with  then being missing. Since subjects who
receive A = j are not a random sample of the population, the sample average of restricted
lifetimes across subjects who actually receive A = j does not consistently estimate μj and,
consequently, differences in such sample averages do not consistently estimate the causal

parameter of interest, δ. Specifically,  and

, where Aij = I(Ai = j), j = 0,1 and
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, do not consistently estimate μj or δ, respectively, in the presence of
confounders.

Valid inference is possible when all confounders are captured in the data; i.e., there are no
unmeasured confounders. Formally, this assumption can be stated as (T1, T0)⫫A|Z, which
can be interpreted as the assignment of A being random, conditional on Z. Under this
assumption, P(T > t|A = j, Z) = P(Tj > t|A = j, Z) = P(Tj > t|Z), which we denote by Sj(t|Z),
where the first equality is because T = Tj if A = j and the second equality is due to the no
unmeasured confounders assumption. As Sj(t) = EZ{Sj(t|Z)}, it is straightforward that

, where the expectation EZ is taken with respect to the marginal
distribution of Z. This assumption allows us to represent the causal parameter, defined in
terms of potential outcomes (T1, T0), as a function of observed variates. Generally, the no-
unmeasured-confounders assumption is essential to carrying out valid inference pertaining
to the counterfactual variates using only the observed data.

3. Proposed Method
We propose a method based on semiparametric theory, for which the estimators are valid
under the frequently employed assumption that T⫫C|(A, Z). The resulting estimator
possesses the so-called double robustness property. Before introducing the proposed
method, we explain its motivation and its relationship to existing methods.

3.1 Motivation and connection to existing methods
First, let us assume that, contrary to fact, treatment A = j was applied to the entire
population. Suppose in addition, for the time being, that survival and censoring times were
independent given treatment; i.e., T⫫C|A. Under such assumptions, a natural estimator for

μj would then be , where

is the Nelson-Aalen estimator for Λj(t), the marginal cumulative hazard function of T j, with
Ni(t) = I(Ui ≤ t, Δi = 1) and Yi(t) = I(Ui ≥ t) denoting the death counting process and at-risk

process, respectively. The estimator  or, equivalently,  can be viewed as the
solution to the following estimating equation,

which is an unbiased estimating equation in the setting where all subjects receive treatment
A = j. In reality, not everyone in the population receives treatment j and, when confounders
exist, treatment-specific Nelson-Aalen estimators do not consistently estimate Λj(t) for j =0,
1.

It is well established that, under the no-unmeasured-confounders assumption specified
previously, Inverse Probability of Treatment Weighted (IPTW) estimating equations lead to
consistent estimators (Robins et. al., 1994; Lunceford and Davidian, 2004; Tsiatis, 2006).
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IPTW estimating equations are developed from the perspective of missing data problems;
i.e., the treatment indicator Aij may be viewed as a missingness indicator for the

counterfactual outcome  (Aij = 1 if  is observed and Aij = 0 if  is missing). Tsiatis
(2006; Chapter 7) discusses how to construct Inverse Probability Weighted (IPW) estimating
equations for general cases. Specifically, for estimating dΛj(t), assuming again that T ⫫C|A,
the IPTW estimating equation is given by

(1)

where wij(θ̂) = Aij/pij(θ̂) and pij(θ̂) estimates P(Aij = 1|Zi), modeled through a parametric
model (e.g., logistic regression) with parameter θ. Solving this equation leads to the inverse
probability of treatment weighted estimator proposed by Wei (2008),

(2)

Under the assumption that T⫫C|A, if the assumed model for P(Aij = 1|Zi) is correct, then

 is consistent for Λj(t). If not, then (2) fails to be consistent for Λj(t), even if treatment
assignment is modeled correctly.

In most observational studies, the assumption that T⫫C|A is too restrictive. A more realistic
assumption would be that T⫫C|(A, Z), which is the setting we consider in developing the
proposed estimator.

3.2 Coarsened data
The IPTW estimating equation was developed from the perspective of missing data
problems. Thus far, the missingness we have considered pertains to subject i having missing
experience with respect to the group to which the subject does not belong. Let us now
consider a broader view of missingnes, in particular, the more general concept of coarsening
(Heitjan and Rubin, 1991; Gill, van der Laan and Robins, 1997; Tsiatis, 2006). In the case of
missing data, some components of the full data are not observed for some subjects. More
generally, in the case of coarsened data, one observes a many-to-one function of the full data
for some of the subjects in the sample and different many-to-one functions may be observed
for different subjects. Specific to our setting, the full data that one would like to observe are
coarsened due to treatment assignment and censoring. In the context of estimating μj, the

full data that one would like to observe is ( , Zi), i = 1, …, n. When Aij = 0,  is
completely missing and, for subject i, one observes Zi, which is a many-to-one function of

the full data. When Aij = 1 and , the many-to-one function that one observes is

{ , Zi}. The coarsening mechanism in our case is of a special form, known as
monotone coarsening (Tsiatis, 2006; Chapter 8), which generalizes the notion of monotone
missingness. The observed data for subject i is in the most coarsened form when Aij = 0, less

coarsened when Aij = 1 and , and even less coarsened when Aij = 1 and ,

t1 < t2, and not coarsened at all when Aij = 1 and . In summary, coarsening prevents
one from observing the full data that one would like to observe and in our setting, the full

data, , i = 1, …, n, are subject to coarsening at time t = 0, due to treatment assignment, and
at any time t > 0 thereafter, due to censoring.
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Using the IPW principle, one can inverse weight an unbiased estimating function based on
full data by the probability of observing the complete case (not being coarsened), i.e., the
probability of assigning to treatment j and not being censored by t. The IPW estimating
equation for dΛj(t) based on the observed data is

(3)

where κi(t) = I(Ci ≥ Ti or Ci ≥ t),

, with  denoting the
cumulative conditional hazard function of C at t given (Zi, Ai = j). Note that we utilize κi(t)
defined above, as opposed to I(Ci ≥ Ti), since the more explicit formulation is useful in the
asymptotic derivations given in the Web Appendix. The key difference between (3) and (1)
is that (3) is weighted by the estimated inverse of the probability of remaining uncensored,

. In (1), such additional weighting is unnecessary under the assumption that T⫫C|A.

3.3 Proposed double-robust method
The IPW estimating equation can be augmented in such a way that the resulting estimator is
double robust (Scharfstein, Rotnitzky, and Robins, 1999; Tsiatis, 2006). In the case of
monotone coarsening, a double robust estimating equation can be written in closed form, as
discussed in detail in Tsiatis (2006, Chapter 10). Using similar principles, we construct a
double robust estimator for dΛj(t) by augmenting (3) as follows,

(4)

where the augmentation term is defined as

with  and . The resulting estimator
for dΛj(t) is double robust in the sense that it will be consistent if either the models
corresponding to the weight (product of the inverse of probabilities of treatment assignment

and censoring) or the model corresponding to  are correctly
specified. Solving this equation leads to the following estimator for Λj(t),

where we specify
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In practice, the expectations need to be replaced by their empirical counterparts. The fact

that  and  are functions of Ti suggests modeling Ti as a function of the factors
which potentially affect it, namely Ai and Zi.

In the next subsection, we describe in detail the proposed method and why it exhibits the
double robust property.

3.4 Assumed models and proposed estimator
In our proposed method, we build working models for (i) survival time T given A and Z, (ii)
treatment A given covariates Z, and (iii) censoring C given A and Z. Specifically, for each
treatment A = 0, 1, we assume a proportional hazards model (Cox, 1972, 1975),

(5)

where λ(t|Ai = j, Zi) is the conditional hazard function given Zi and [Ai = j] and λ0j(t) is an
unspecified treatment-specific baseline hazard function. Estimators for βj and

 can be obtained by the maximum partial likelihood (PL) estimator, β̂j,
and the Breslow (1972) estimator, Λ̂0j(t), respectively. Defining the counting process by
Nij(t) = AijI(Ui ≤ t, Δi = 1) and the at-risk process by Yij(t) = AijI(Ui ≥ t), β̂j is the solution to
the estimating equation

where τ satisfies P(U ≥ τ) > 0 and, in practice, can be set to the maximum observation time;
while the Breslow estimator for Λ0j is defined as

Finally, estimators for  can be obtained by Λ̂ij(t) = exp(β̂jZi)Λ̂0j(t). If
model (5) is correct, then β̂j and Λ̂0j consistently estimate βj and Λ0j, respectively.
Otherwise, β̂j and Λ̂0j will not converge to their respective targets but, under suitable
regularity conditions (listed in the Web Appendix) will converge in probability to well-

defined limits (Struthers and Kalbfleisch, 1986; Lin and Wei, 1989) which we denote by 

and , respectively. For notational convenience, we also define .

We also assume that treatment assignment is governed by the following logistic model,
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(6)

where Xi is a vector made up of (possibly transformed) elements of Zi and an intercept.
Inference on model (6) can be made through maximum likelihood, with the maximum
likelihood estimator for θ, θ̂, solving the estimating equation,

(7)

where expit(u) = exp(u)/{1 + exp(u)}. If model (6) is correct, then θ̂ consistently estimates
the true parameter, θ. Otherwise, under suitable regularity conditions (listed in the Web
Appendix), θ̂ converges to a limit, denoted θ*, which need not equal θ. We define pij(θ) =
expit{(−1)j+1θTXi}, which equals the probability of receiving treatment A = j when the
assumed model is correct.

With respect to censoring, for each treatment A = 0, 1, we assume a proportional hazards
model,

(8)

where λC(t|Ai = j, Zi) is the conditional hazard function of Ci given Zi and [Ai = j],  is

an unspecified treatment-specific baseline hazard function of Ci, and  is a vector made up
of elements of Zi with a superscript C indicating that the vector may be different from that in

model (5). As described previously, estimators for αj and  can be obtained
by the maximum PL estimator and the Breslow estimator, respectively, denoted by α̂j and

. Estimators for  can be obtained by . Similarly, if model

(8) is correct, α̂j and  consistently estimate αj and , respectively; otherwise,

under suitable regularity conditions (see Web Appendix), convergence is instead to limits 

and . We define .

The proposed estimator for Λj(t) is given by

(9)

where . Consequently, one can estimate Sj(t) by Ŝj(t) = e−Λ̂j(t)

and μj by . Finally, the proposed estimator for δ is given by δ̂ = μ̂1 − μ̂0. The
proposed estimators for μj and δ are consistent and asymptotically normal when (i) the
working model (5) is correct or (ii) the working models (6) and (8) are both correct.

The proposed estimator for Λj(t) in (9) differs from the IPTW estimator of Wei (2008), from
(2), in two ways. First, the weight in (2) is the inverse of the probability of treatment
assignment, while the weight in (9) is also comprised of the inverse probability remaining
uncensored. Second, there are additional terms in the numerator,
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, and denominator,

, which we refer to as augmentation terms. From this
perspective, the proposed estimator may be viewed as an augmented IPW estimator (Tsiatis,
2006).

When the models for treatment assignment and censoring are both correctly specified, wij(θ̂)

converges in probability wij(θ) ≡ Aij/pij(θ), and  converges to . Then, using an
iterated conditional expectation argument by first conditioning on Zi or (Ai = j, Zi), the
augmentation term in the denominator converges in probability to 0 since

where  is a martingale increment when the model for C is
correctly specified. Similarly, iterating conditional expectations, the augmentation term from
the numerator also converges in probability to zero under the same conditions. Therefore,
even if the assumed hazard function model for T is incorrect, when the assumed models for
treatment probability and censoring are correct, we would expect that the proposed estimator
converges to the same limit as the IPW estimator, the consistency of which can be
understood intuitively. Under the same conditions, the proposed estimator for Λj(t) is
consistent; hence the consistency of Sj(t) and δ.

The consistency of the proposed estimator when the model for survival time is correct but
the model for treatment probability or censoring is possibly incorrect is less obvious. The
proposed estimator can be rewritten as

(10)

which can be shown to be consistent for Λj(t) if λij(t) is modeled correctly by (5). To see

this, note the first term of the denominator, , converges to Sj(u), while the

first term of the numerator, , converges to −dSj(u). In addition, it can
be shown that the second term in the numerator and the second term in the denominator of
(10) converge in probability to 0 if model (5) is correct (details presented in Web
Appendix). These results collectively imply that Λ̂j(t) would then converge in probability to
Λj(t). Therefore, even if the model for treatment probability or censoring is incorrect, our
proposed estimator for δ is consistent, as long as the model for survival time is correct.

Arguments in the above two paragraphs heuristically explain why the proposed method is
expected to possess the so-called double-robustness property; detailed theoretical properties
of the proposed method are presented in the next section.
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4. Asymptotic Properties
In this section, we list the large sample properties of the proposed estimators. To begin, it is
convenient to introduce the following notation:

for d = 0, 1, 2, where for a column vector a, a⊗2 = aaT, a⊗1 = a, and a⊗0 = 1. In addition,
parallel to the notation defined above, we define a set of notation, with either superscript or
subscript C, that will be used in proofs related to censoring C; specifically,

, ΩCj(α) are defined similarly as above except that Zi, β,

λij(t), Nij(t), Λ0j are replaced by , α,  accordingly.

We assume a set of regularity conditions, listed in the Web Appendix, in the proof of
consistency and asymptotic normality of the proposed estimators. Before introducing the
main theorem, we list some pertinent results from the existing literature. Under the assumed

regularity conditions, Lin and Wei (1989) show that β̂j converges in probability to , and

that β̂j is asymptotically normal with , where

We can then show (see Web Appendix) that Λ̂ij(t) converges in probability to  and that

plus a term that converges in probability to zero, where .

Similar results hold for α̂j and  in the model for censoring. In addition, θ̂, converges in
probability to θ* and θ̂ is asymptotically normal with

; see Zeng and Chen (2009). When

model (5) is correct,  and  are equal to their respective true underlying target values,
βj and Λij(t). Similarly, θ* = θ when model (6) is correct.

The asymptotic properties of the proposed estimators for μj and δ are summarized by the
following theorem.
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Theorem 1
Under conditions (a) – (h) listed in the Web Appendix, as n → ∞, if the working model
specified in (5) or the working models in (6) and (8) are correct, then μ̂j converges in

probability to μj and  is asymptotically normal with mean zero and variance

, where ,

and , with

, Gij(u) and

 defined in the Web Appendix. In addition, under the same conditions, δ̂

converges in probability to δ and  is asymptotically normal with mean zero and
variance E(φi1 − φi0)2.

The above theorem is stated without explicitly assuming which working model is correctly
specified; i.e., model for the survival time, or for the coarsening mechanism. When one or
all of the working models are correct, some of the terms in ϕij(t) and, correspondingly, in φij
are identically zero, depending on which model is correct. For example, using iterated
conditional expectation arguments, we may show that if the model (5) is correct, then

 is equal to zero, and if the models for coarsening mechanism (6) and (8) are

true, then  and  are identically zero. In the implementation of
the proposed method, one models both survival time and coarsening mechanism, hoping that
at least one of the modeling procedures is correct and therefore considerably increasing the
chance of valid inference for the true causal parameters. As one does not know which
working model is correct, to estimate variance of the proposed estimators, all terms in ϕij(t)
must be computed, even though some components are actually zero. Due its complexity, a
direct plug-in estimator of the asymptotic variance is rather involved and would accumulate
a substantial amount of estimation error. Therefore, we suggest estimating the variance of
the proposed estimator by bootstrapping instead. In our simulations, we used a standard
nonparametric bootstrap, where one draws bootstrap samples from (Ai, Ui, Δi, Zi), i = 1, …,
n with equal probability and with replacement. An alternative is the weighted bootstrap of
Kosorok, Lee, and Fine (2004), which we do not evaluate in this report. SAS code for
implementing the proposed methods is available at http://www-personal.umich.edu/
~mzhangst/.

5. Simulation Studies
We carried out simulation studies to evaluate the finite sample properties of the proposed
method. All reported results are based on 1000 Monte Carlo data sets, each with a sample
size of n = 600 or n = 300. Variances of all estimators are estimated by a bootstrap
procedure which used 50 bootstrap replicates.
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For each Monte Carlo data set, we generated data as follows. First, we generated a baseline
covariate vector, Z = {Z1, Z2, Z3}T as multivariate normal with mean zero, unit variance,
corr(Z1, Z3) = 0.2 and all other pairwise correlations equal to 0. To be consistent with the
assumed regularity conditions, we truncated each component of Z at −4 and 4. The treatment
indicator, A, was then generated as Bernoulli with parameter expit(−0.5Z1 − 0.5Z2). In order
for the elements of Z to serve as confounders, each should also be predictive of the survival
time. As such, we generated T from an exponential distribution with parameter
exp(−2.5−1.5Z1 − Z2 − 0.7Z3) for treatment A = 0 and exp(−3 − Z1 − 0.9Z2 − Z3) for A = 1.
Finally, censoring time C was generated as exponential with parameter exp(−5+Z1 +1.2Z2)
for treatment A = 0 and exp(−4.5 − 0.2Z1 − 0.7Z2) for A = 1, which lead to approximately
28% censoring.

In addition to the proposed method, we evaluated three other methods. The first is the
method of Chen and Tsiatis (2001), where one builds treatment-specific Cox models for T
given Z. The second is the IPTW method of Wei (2008), wherein one instead builds a
regression model for A given Z. The third method is that of Hubbard et al (1999), which
involves building working models for each of T, A and C given Z and, like our method, is
double robust. The key difference between our proposed estimator and that of Hubbard et al
(1999) is that the latter involves estimating the survival function directly, in contrast with
our method which does so indirectly through the cumulative hazard. In a sense, our method
can be viewed as a double robust extension of the Nelson-Aalen method to account for non-
random treatment assignment and conditionally-independent censoring. The Hubbard et al
(1999) method corresponds to an extension of the survival function estimator obtained as a
sample average of the number of subjects at risk, weighted by the inverse probability of not
being censored.

We considered each of the four estimators in settings where the required assumptions hold,
and when they fail. Specifically, for the T|A, Z model used in the proposed, Chen and Tsiatis
(2001) and Hubbard et al (1999) methods, the correct model was fitted using covariates (Z1,
Z2, Z3), while the incorrect model was fitted using (Z1, Z3). For the A|Z model used in the
proposed, Wei (2008) and Hubbard et al (1999) methods, the correct model was fitted using
(Z1, Z2), while the incorrect model was fitted using Z1 only. For the C|A, Z model used in
the proposed and Hubbard et al (1999) methods, the correct model was fitted using (Z1, Z2),
while the incorrect model using Z2 only.

Results for estimating μ1 and δ based on data with a sample size of n = 600 are reported in
Table 1 and Table 2, respectively, with L set to 10 and 20. Additional results with n = 300
are reported in the Web Appendix. The proposed estimators appear to be approximately
unbiased for the true parameters under all scenarios in which either the survival time or the
coarsening mechanism are modeled correctly. Moreover, the 95% coverage probabilities
approximately achieve the nominal level. Such results are consistent with the purported
double-robust property of the proposed method. Estimators using the method of Hubbard et
al (1999) behave similarly to the proposed method. However, they appear to have larger bias
for estimating both μ0 and μ1, especially when sample size is small (see Web Appendix). In
contrast, the estimators of Chen and Tsiatis (2001) and Wei (2008) perform well when the
corresponding assumed model is correct, but with large biases observed if the assumed
model is incorrect.

6. Application
We applied the proposed method to compare restricted mean post-transplant lifetime
between simultaneous pancreas-kidney (SPK) and kidney-alone (KA) transplant recipients.
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We restricted the study population to Type-I diabetics since the majority of SPK patients are
in this category.

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR), a
nationwide solid organ transplant registry. The study population consisted of deceased-
donor kidney transplant recipients who were transplanted at age ≥18 during 2000–2008.
Only primary kidney transplant patients were eligible, with repeat transplants excluded. We
included 6,054 SPK and 7,513 KA transplants. Follow-up began at the date of transplant.
The event of interest was graft failure, defined as the minimum time of death or when repeat
kidney transplantation occurred. Patients were censored at loss to follow-up or at the end of
the observation period (December 31, 2008). Adjustment covariates included age at
transplant, gender, race, blood type, pre-transplant time on dialysis and donor age. All of the
adjustment covariates are significant at the level of 0.05 in the fitted model for treatment
assignment. In the fitted models for survival, age at transplant, blood type, time on dialysis
and donor age are predictive of survival for SPK transplant subjects, and age at transplant,
time on dialysis and donor age are predictive for KA transplant subjects. We set the
restriction time to L=5 years, reflecting the amount of available follow-up.

In Figure 1, we plot average survival curves for SPK and KA transplant patients estimated
using the proposed double-robust method; for comparison, survival curves from Kaplan-
Meier method are also plotted. Using the proposed double-robust method, average survival
is initially greater for the KA group. However, survival is estimated to be equal by
approximately the t =2.5 year point, and is greater for SPK patients thereafter. If one
eyeballs the area under each of the survival curves, they appear to be approximately equal.
Note that the considerable non-proportionality of the SPK and KA hazard functions would
invalidate an analysis based on a proportional hazards model using an indicator for SPK.

To compare restricted mean lifetime, we applied (i) the proposed method, which utilizes
working Cox models for post-transplant survival and censoring and a logistic model for the
SPK probability (ii) the method of Wei (2008), which requires only a model for SPK
probability (iii) the Chen and Tsiatis (2001) method, which uses Cox models for post-
transplant survival. Variance for the proposed estimator is estimated by bootstrap using 100
bootstrap replicates. Results are listed in Table 3. Mean 5-year post-transplant lifetimes were
very similar for SPK and KA transplant recipients, with the difference being comfortably
non-significant for all three methods. For example, based on the proposed method, SPK live,
on average, for δ̂ = 0.012 years (i.e., 4.4 days) longer than KA recipients, out of first 5 post-
transplant years. In addition to being non-significant (p =0.69), this difference is not at all
important clinically. Both the SPK and KA groups live an average of 4.5 years out of the
first 5 post-transplant, which would be considered excellent. Based on our analysis, relative
to the receipt of a kidney alone, the additional transplantation of a pancreas (i.e., in addition
to a kidney) did not extend mean survival time among Type I diabetics; at least not based on
the first 5 post-transplant years.

Results are very similar across the three methods, implying that both the logistic and Cox
models appear to be correct. To be more specific, the Cox model assumed by the Chen and
Tsiatis (2001) method was not mis-specified to the extent that relaxing the assumption of its
correctness made any meaningful difference; similar statements apply to the logistic model.

7. Discussion
We propose a semiparametric double-robust estimator of the difference in treatment-specific
restricted mean survival time. The proposed method uses working models for the coarsening
mechanism (treatment assignment and censoring) and the death hazard, but is consistent if
either coarsening mechanism or death hazard are modeled correctly. Asymptotic properties
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of the proposed estimator are derived and shown through simulation to be applicable to
finite samples. The method is applied to national kidney transplant data.

In this report, we focused on the setting of two treatment groups. The proposed method can
be extended to settings with more than two groups. Suppose there are K treatment groups to
be compared and that Ai takes values from 1, …, K. We are interested in estimating μj for j
= 1, …, K, and comparisons between groups can be carried out by estimating their pairwise
differences. In considering the estimation of μj, recall that the proposed method is developed
from the point of view that the full data is possibly coarsened by treatment assignment and
censoring. For each treatment j = 1, …, K, the full data corresponding to estimating μj is
(T j, Zi), i = 1, …, n, which may be coarsened at time t = 0 if Aij = 0 and at time t > 0 if Aij =

1 and . Since this is a direct extension of the set-up described previously, Λj(t) and
μj can be estimated using the proposed methods, except that the regression model for Ai
needs to accommodate a response with > 2 categories (e.g., a generalized logit model), with
the estimation of P(Aij = 1|Zi) modified accordingly.

Through the proposed method (and existing methods), we demonstrate that Type-I diabetic
simultaneous pancreas-kidney (SPK) transplant recipients had almost identical 5-year
restricted mean lifetime to kidney-alone (KA) transplant recipients. This would appear to be
a fairly negative statement about the value of SPK among Type-I diabetic patients with end-
stage renal disease. Two considerations are important. First, since the data are observational,
there is always the potential for unmeasured covariates to induce bias. Such bias, in this
case, would strongly favor the KA group. For example, although both groups consisted of
Type I diabetics, there is the possibility that KA patients tended to have more a manageable
degree of diabetes such that pancreas transplantation was not indicated. Second, since
survival was greater for the SKP group from t=2.5 years onward, it is possible that greater
restricted mean lifetime could be observed in the SPK group if a data set implying a longer
restriction time (e.g., L=10 years) were used.

8. Supplementary Materials
A Web Appendix, referenced in Section 4, is available with this paper at the Biometrics
website on Wiley Online Library.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Average survival probability for simultaneous pancreas-kidney (SPK; Ai=1; dashed line)
and kidney-alone (KA; Ai=0; solid line) transplant recipients
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