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Abstract
Interview findings suggest perceived proximity to mapped hazards influences risk beliefs when
people view environmental hazard maps. For dot maps, four attributes of mapped hazards
influenced beliefs: hazard value, proximity, prevalence, and dot patterns. In order to quantify the
collective influence of these attributes for viewers' perceived or actual map locations, we present a
model to estimate proximity-based hazard or risk (PBH) and share study results that indicate how
modeled PBH and map attributes influenced risk beliefs. The randomized survey study among 447
university students assessed risk beliefs for 24 dot maps that systematically varied by the four
attributes. Maps depicted water test results for a fictitious hazardous substance in private
residential wells and included a designated “you live here” location. Of the nine variables that
assessed risk beliefs, the numerical susceptibility variable was most consistently and strongly
related to map attributes and PBH. Hazard value, location in or out of a clustered dot pattern, and
distance had the largest effects on susceptibility. Sometimes, hazard value interacted with other
attributes, e.g. distance had stronger effects on susceptibility for larger than smaller hazard values.
For all combined maps, PBH explained about the same amount of variance in susceptibility as did
attributes. Modeled PBH may have utility for studying the influence of proximity to mapped
hazards on risk beliefs, protective behavior, and other dependent variables. Further work is needed
to examine these influences for more realistic maps and representative study samples.
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I. Introduction
The use of maps to communicate environmental risk to the public is rapidly expanding.
These maps depict contaminant values, potential exposures, hazards, estimated health risks,
and other categories of environmental risk.(1) Risk and hazard are often used generically,
imprecisely, and interchangeably. Risk is the probability an adverse event will occur,(2) and
hazard is an act or phenomenon that has the potential to cause harm to humans or what they
value.(3) We use both terms in keeping with the literature that informed this study. Risk is
used as a generic term that embodies all categories of environmental risk and hazard unless
specified to mean only probability. Maps used in this study depicted an environmental
health hazard, but we believe results are general and pertain to multiple types of mapped
hazard and risk.

Maps illustrate the geographic distribution of risk, a key advantage over other formats of
risk information. Viewers can see how the location of their home or community is
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configurationally related to mapped information. Severtson and Vatovec(4) (hereafter SV)
used cognitive interviews to assess public understanding of dot and choropleth maps1

depicting water test results for a drinking water hazard in private residential wells.
Participants' beliefs about risks associated with the hazard (risk beliefs) were strongly
influenced by participants' perceived map locations relative to the distribution and
magnitude of mapped hazard. Dot maps illustrated site locations of well water test results.
The distribution and magnitude of mapped test results relative to participants' perceived map
locations are described by four attributes: the hazard values symbolized on the map, viewers'
distances to hazard, and the prevalence and spatial patterns of hazards. These attributes
embody the visual representation of proximity to mapped hazard. In SV, each of these
attributes influenced risk beliefs,(4) but the nature of interview data did not allow these
effects to be quantified.

Quantifying these effects would be facilitated by a model designed to estimate proximity-
based hazard or risk for map locations relative to the spatial distribution of mapped hazards.
Here and throughout the paper, the term “proximity-based hazard” is used to mean the
combined effect of the four attributes mentioned above including, but not limited to,
nearness. The model would provide an index of risk or hazard magnitude for a point location
on the map relative to surrounding hazards, accounting for the identified attributes of hazard
values, distance, prevalence, and spatial patterns. Although others have explored the
influence of “on the ground” proximity to natural and manmade hazards on risk beliefs,(5-8)

protective behavior,(8, 9) and social behavior,(10, 11) we know of no attempts to model
proximity-based hazard for maps. In this paper, we develop such a model and then quantify
the effects of the four attributes and modeled proximity-based hazard on selected risk
beliefs. We begin with a brief summary of hazard proximity, visual cognition, how the four
attributes relate to cognition, the method used to model proximity-based hazard, and
evidence supporting the selection of dependent risk belief variables.

1.1 Hazard Proximity
On the ground, hazard proximity is measured in different ways including residence in a
hazard area (defined by hazard magnitude or as a buffer zone surrounding a point
source),(7-9, 11) perceived residence in a hazard area,(8, 9) linear distance (route or Euclidean
distance),(5, 6) and adjusted distance using a distance decay function.(10) Some of these
measures combine distance and hazard magnitude,(7, 10, 11) others use only distance.(5-7)

Proximity to hazard or residence in a hazard area is usually related to stronger risk
beliefs,(5-7) but sometimes related to weaker beliefs perhaps because familiar hazards are
perceived as less dangerous or because polluting industries provide economic benefits.(12) In
addition, perceived or actual residence in hurricane risk areas illustrated on maps showed no
correlations with actual or intended evacuation behavior.(8, 9)

1.2. Visual Cognition
When people view an image, such as a map, cognition is influenced by a combination of
top-down and bottom-up processes. Deliberate top-down information processing is directed
by the viewer, for example to answer a question. Pre-conscious bottom-up processing occurs
because our visual system is neurologically linked with cognitive centers in the brain
resulting in an inherent ability to see and understand without apparent cognitive effort.(13)

For example, seeing two points on a line conveys the magnitude of their relationship. Some
work has identified “pre-attentive” features that support accurate bottom up-processing. For
example, Cleveland and McGill(14) proposed ten pre-attentive features and ranked these by

1Dot maps depict the distribution of a phenomenon using small symbols. Choropleth maps depict statistical information across areal
enumeration units such as a county.(48)
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accuracy of comprehension into six categories: (1) positions along a common scale, (2)
positions along nonaligned scales, (3) length, direction, angle, (4) area, (5) volume,
curvature, and (6) shading, color saturation.

Visual cognition is also shaped by attention. A user-defined goal results in selective top-
down attention to some visual features over others.(13) Bottom-up attention is driven by
visual salience, defined as “the distinct subjective perceptual quality which makes some
items in the world stand out from their neighbors and immediately grab our attention”.(15) A
variety of characteristics, such as color, position, texture, or motion, can make a visual
stimulus stand out in a visual scene of multiple stimuli.(15)

Symbols support cognition by representing a thing or idea.(16) Color can symbolize meaning
by concretely representing real-world meaning, e.g. blue to depict water on a map, or
through culturally derived meaning, e.g. red to convey warning. Widely used color
conventions that symbolically communicate risk include “stoplight” colors of green for safe,
yellow for caution, and red for danger or warning.(17) Symbols increase comprehension
because the meaning is readily accessible from long-term memory.

1.3. Map Attributes and Visual Cognition
1.3.1. Hazard Value—Brewer recommends color schemes for conveying statistical
information on maps.(18) A diverging scheme typically consists of two colors with
increasingly darker gradations (a pre-attentive feature) above and below a meaningful
midpoint to depict incremental increase and decrease. A spectral scheme uses different
colors for different values without regard to lightness gradations. SV dot maps(4) employed
a modified spectral diverging risk color scheme(18) that uses risk colors with lightness
gradations to symbolize the safety meaning and magnitude of water test results above and
below the drinking water standard. Participants readily interpreted the meaning of blue and
green (smaller values) as safe, yellow (values just below the standard) as caution, and red
and dark red (values exceeding standard) as unsafe or warning. Some interviewees described
red and yellow dots as “attention getting”, suggesting visual salience. SV participants had
more interest in riskier red or yellow dots compared to safer blue and green dots, perhaps
due to a top-down desire to understand the location and distribution of elevated risk. Thus,
the readily understood meaning of symbolic risk colors, top-down attention to larger riskier
hazards, and bottom-up attention to visually salient colors appeared to explain the influence
of hazard values on risk beliefs.(4)

1.3.2. Distance to Hazard—Personal relevance can focus attention through top-down
processes. Personal relevance led SV participants to focus on hazards near the perceived
location of their residence; “Where I live so my eyes go right there.”(4) Proximity influenced
location-based risk beliefs; “I would say I have a problem with rhynium in a very proximal
area to where I live because two of the three wells did exceed and the one that didn't is on
the border of exceeding [the standard]”.(4) The distance between two map points is a
measure of length - the third most consistently understood pre-attentive feature.(14)

Perceived and actual length are closely aligned(19) suggesting “effortless” bottom-up
processing to see and understand proximity without cognitive effort. Thus, proximity to
hazards appears to influence risk beliefs via top-down attention to personally relevant
proximal information and bottom-up processing of length.

1.3.3. Prevalence of Hazard—In SV, the prevalence of test results was conveyed by the
number of colored dots on the map. Prevalence varied by area and concern was stronger for
areas where many dots were red.(4) A display of many similar symbols can decrease visual
salience by distributing rather than focusing attention,(20) and lead to longer search times.(21)
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These tendencies were evident in participants' description of the dot map as “busy” and
needing time to process information.(4) Comments indicated attention was directed to areas
with many dots and supported by theory-based claims that people notice extremes in
magnitude.(13)

1.3.4. Dot Patterns—Gestalt Laws of Perceptual Organization describe how perceptual
attributes of proximity, similarity, and continuity integrate features into a coherent entity.
Proximity conveys relatedness.(22) In SV, clusters of dots drew attention. Lines of continuity
among dots were sometimes noticed and interpreted as a trend. The impact of dot patterns
on risk beliefs was less clear compared to the other attributes, although a cluster with many
high risk dots generated substantial concern.(4) Results suggested location in or out of a
hazard line or cluster impacts risk beliefs. Cluster density (tight - loose) may also influence
beliefs.

1.4. Proximity-based Hazard Model (PBH)
In order to capture the joint and interacting effects of the factors described above, we
developed a simple model of proximity-based hazard (PBH) that includes the number and
strength of surrounding risks, their distance from a participant's location, and their spatial
arrangement. This model assesses the risk associated with any map location based on the
totality of mapped risks in the area. The model represents risk as a continuous field driven
by risk measurements taken at discrete points in space. Given the location and numerical
values of those mapped measurements, the model assigns a PBH value to every intervening
location. Input for the specific category of risk (hazard, contaminant value, etc.) will
determine the nature of the output. The most straightforward interpretation is to consider
PBH as a hazard model, where both input and output variables are some measure of hazard
intensity. However, if input values are probabilistic risk values, model output will be the
same. Furthermore, assuming risk is monotonically related to hazard value, hazard measures
can be translated into probabilistic risk inputs, thus the model can deliver an index of risk
when driven by hazard measurements. The results section will provide some justification for
this assumption and will show that linear scaling between PBH and risk is reasonably
successful. Anticipating that, we use both “risk” and “hazard” in describing the model. Our
model is based on five basic assumptions discussed below using the fictitious well
contaminant (rhynium) depicted on study maps. However, the model is general and applies
to other forms of hazard (e.g., air pollution point measurements, landslide potential) and
risk. The five assumptions, illustrated in Figure 1, are as follows:

1. Hazard is directly proportional to the magnitude of the surrounding hazards. Thus a
doubling of rhynium values in all surrounding wells would double the hazard at
some interior location. Similarly, everything else being equal, a well with twice the
rhynium of other wells would be twice as important as each of those other wells
(Figure 1a, 1b).

2. The hazard at any location cannot exceed the largest mapped hazard value. For
example, a person living in the middle of a group of wells whose largest rhynium
concentration is 10 parts per billion (ppb) would not experience a threat greater
than that. This assumption is obviously not valid for hazards whose effects are
additive, such as windmill noise.

3. The importance of a hazard decreases with increasing distance (Figure 1c). In
addition, we assume the decline is rapid for nearby hazards and falls off more
slowly with increasing distance.

4. Although all mapped hazards contribute to risk, we assume tightly clustered hazard
measurements contain redundant information about the risk in the cluster area. That
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is, measurements very close to one another do not identify separate independent
hazards. Equivalently, we assume there is positive spatial autocorrelation in the risk
field. Thus hazards that are very close to one another individually contribute less to
the total risk than isolated hazards (Figure 1d). Each hazard contributes to the total,
but the total influence of clustered hazards is less than the sum of the clustered
values.

5. Nearer hazards partially obscure the risk of hazards located in their shadow (Figure
1e). That is, we assume an intervening hazard takes precedence over a hazard
located farther away in the same direction from the participant's location. Note that
this is different than the distance penalty (Assumption 3). It imparts a further
penalty in addition to that of increasing distance alone.

It is natural to formulate this as a problem in spatial weighting. That is, given a set of risk or
hazard values Hi defined at n locations (xi, yi),i = 1,2,…n we construct a set of weights Wi
that are used to assign a hazard intensity value to any (x, y) location:

(1)

Obviously, because the weights (W) vary with location, PBH also varies from place to place
in response to the surrounding hazards. Even with a fixed set of hazards, the pattern of
hazards “seen” from various locations is different, thus the hazard proximity is variable over
space. Notice that because PBH is proportional to hazard value, Equation (1) incorporates
the first assumption explicitly. The remaining four assumptions are accommodated by using
modified Shepard(23, 24) weights for the Wi. Shepard weighting is widely employed as a
method of spatial interpolation for mapping both social and physical phenomena(25) and is
available in commercial mapping software such as Surfer(26) and ArcMap.(27) Additionally,
it has wide application as a grid interpolator in computational fluid dynamics.(28, 29)

Some applications of Shepard's method include only distance, whereas we include the
effects of both distance and spatial pattern. Considering distance first, we assume that the
importance of an individual hazard decreases with the square of distance to the participant's
location:

We know of no theory in the hazard or risk literature behind the choice of the distance
exponent and there are an infinite number of values consistent with assumption 3. Inverse
square weighting is common, and has the advantage of yielding a smooth (analytic) function
for PBH.

Assumptions 4 and 5 are combined into a single value ti = t(x, y, xi, yi)that accounts for both
clustering and shadowing. Every hazard (i) has its own weight which is determined from its
relationship to every other hazard. Consider, for example, two locations (xi, yi) and (xj, yj).
Let αij be the angle between points i, j and (x, y) as seen in Figure 1d. The adjustment for
clustering and shadowing between i and j is proportional to 1 − cos(αij). Note that this factor
ranges from zero for perfectly collinear points (α = 0) to a maximum of 2 for αij = 180°
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(maximum angular separation). The aggregate cluster/shadow factor for point i is found by
summing over all other points, each of which is weighted by the inverse of distance

The combined distance and cluster/shadow weights are given by

With this implementation PBH is a continuous surface whose value never exceeds that of
any individual Hi. Other forms of Shepard weights allow extrapolation above and below
known values, but our model excludes that possibility by assumption 2. We see that Wi is
infinite for di=0, thus PBH at a hazard location will equal the value of that hazard. For
example, a map location with a hazard value of 40 ppb would have a PBH estimate of 40
ppb regardless of surrounding values. With these characteristics we believe PBH is a
reasonable starting point for a hazard proximity model.

It is important to note that PBH assesses hazard or risk at map locations based on the visual
representation of hazards. Mapped hazard values are used in the PBH model rather than
actual hazard data. Furthermore, the PBH model does not account for complex factors that
influence spatial variation in the distribution of various types of risk. For example, the
transport of groundwater contaminants can be affected by non-uniformity and/or anisotropy
in hydraulic conductivity, and a simple model like ours makes no attempt to capture such
effects. Since viewers will vary widely in their knowledge and beliefs about these factors
and most will lack accurate knowledge about hazard transport, a vision-based PBH model
may function well for assessing public responses to risk maps. This approach is supported
by studies that found images have a greater impact on comprehension when prior knowledge
is lacking.(30)

1.5. Risk Beliefs
Of interest is an assessment of how PBH is related to people's beliefs about mapped risk.
People prefer to derive and apply global rather than specific meaning from information.(31)

In a number of behavioral theories, global risk beliefs (sometimes referred to as perceived
risk) are considered to be a function of specific beliefs that include perceived susceptibility
to a risk and the severity of associated consequences.(32) However, global beliefs are more
predictive of behavior.(33) These tendencies were reflected in the global terms used by SV
study participants', such as a concern or a problem. Susceptibility was sometimes implied,
e.g. the quote in section 1.3.2 and several used susceptibility terms of chance or
likelihood.(4) Although not evident in participants' comments, perceived severity of
associated consequences may have identified the contaminant (described as a carcinogen) as
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an important health threat. In addition, the warning meaning of red may prompt stronger
beliefs of severe health consequences. Maps allow the viewer to identify location-based risk,
and in SV, perceived proximity to mapped hazards influenced risk beliefs.(4) While it is
logical that nearness to large hazard values would increase beliefs of susceptibility,
interviewees mostly used global risk terms. This begs the question of whether dot maps have
a stronger influence on susceptibility or on global beliefs.

Since maps illustrate the geographic distribution of risk information, viewers can compare
their location-based risk to the risk of others on the map, for example to compare their risk
to the risk of residents in their community or county. There is a persistent and pronounced
tendency for individuals to compare their risk to that of others and for social comparison to
influence risk beliefs and behavioral responses to risk information.(34) For example,
Weinstein found participants' beliefs that their radon test results were higher than “others in
the community” (p. 79) was a key predictor of stronger global risk beliefs among
participants living in a high radon hazard area.(35) Maps may facilitate what we call
locational social comparison that may influence risk beliefs. Locational social comparison
includes social2 and locational elements. The degree to which it includes social aspects of
comparison will vary based on viewers' knowledge about “others” on the map. For example,
older individuals may rate their risk as less than others if they believe many children reside
in their community and are more susceptible to the mapped hazard. People tend to rate their
risk as less than a generic comparison group.(34) This tendency may be reflected in measures
of locational social comparison. In summary, attributes of mapped hazard may influence
specific risk beliefs of susceptibility and severity, global risk beliefs of concern and a serious
problem, and locational social comparison of one's own risk to that of others on the map.

1.6 Numeracy
Numeracy, defined as the ability to understand basic probability and mathematical concepts,
influences people's comprehension of risk information.(36) Numeracy is also related to
spatial cognition.(37) Given the relationship between numeracy and spatial cognition,
numeracy may impact risk beliefs derived from dot maps because the distribution of dots
include both numerical and spatial properties.

1.7 Study Aims
Qualitative evidence indicates map attributes influence risk beliefs.(4) We propose the PBH
model to estimate the combined effects of these attributes. The four primary aims of this
study were to (1) select the single dependent risk belief variable most strongly and
consistently related to PBH and map attributes, (2) examine the influences of PBH and map
attributes on this risk belief, (3) compare the relative influences of PBH and map attributes
on the risk belief, and (4) examine how the risk belief is aligned with PBH values.

2. Methods
2.1. Maps

Study maps portrayed well water test results for a fictitious hazardous substance (rhynium)
as dots colored using a modified spectral diverging risk color scheme(18) as in SV maps(4)

(exemplar at http://research.son.wisc.edu/wellstudy/map1a.pdf). The legend depicted
rhynium test results over (red and dark red) and under (blue, green and yellow) rhynium's
maximum contaminant level (MCL) of 10 ppb. MCL is a synonym for drinking water
standard.3 Our maps depicted test results for a single township using only blue (less than 2

2A variety of factors explain the influence of social comparison on responses to health risks, please see Klein and Weinstein's
chapter(34) and other chapters from this volume.
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ppb) and dark red dots (more than 20 ppb). These were the smallest and largest ranges of
rhynium values depicted in the legend. An X, labeled with “You live here”, indicated
assigned residential location. Each 7.6 centimeter (cm) square map included a title, legend,
scale, north arrow, and inset showing the location of the six mile squared township within
Dane County.

2.2. Study Design and Map Variables
For this randomized trial (no control group), a full factorial 2 × 2 design was applied to
create 16 attribute-defined map subsets (attribute subsets) resulting in 24 study maps (see
Figure 2). For each attribute subset, dots in the lower half of the map varied by hazard value
and one other attribute resulting in 4 maps, e.g. fourth row maps in Figure 2 vary by hazard
value and distance.4 To minimize simplistic mathematical interpretations of manipulated
attributes, three blue dots were placed at the top of all maps to introduce controlled
complexity. Some maps belong to more than one subset.5 The 16 attribute subsets are
specified in Table II column headers using map labels from Figure 2, e.g. row 4 maps in
Figure 2 are 4a-d in Table II.

Independent variables for map attributes were categorically operationalized as: (1) three
hazard values defined by the collective hazard of manipulated dots (all blue dots, even mix
of blue and red, all red), (2) three distances from assigned residential location to the nearest
manipulated dot (far = 2.5 miles, 3 map cm; medium = 1.25 miles, 1.5 map cm; near = 0.5
miles, 0.6 map cm), (3) three prevalence values (1, 2, 8 dots), and dot patterns. Dot patterns
included clusters composed of 8 dots and patterns defined by the angle (narrow or wide) of
assigned location to two dots (Figure 2 rows 1 and 6). Wide angle maps (160° angle) could
be construed as location within a hazard line. Narrow angle maps (20° for medium distance
and 45° for near) could be construed as location outside of a two dot cluster (dots were 0.55
map cm apart for both). Attribute variables for eight dot clusters (Figure 2 rows 3 and 5)
included cluster location (medium distance outside or inside) and cluster density (loose,
tight). Loose dots varied by nearest neighbor distances of 0.9 to 1.3 cm and tight dots by 0.3
to 0.5 cm. The 24 study maps were organized into four blocks of six maps such that within
blocks there was a marked difference in manipulated dots from one map to the next (Figure
2).

2.3. Survey
Nine survey items (see appendix) were selected to assess risk beliefs: susceptibility (4 items,
2 with global belief terms), severity (1 item), global beliefs (2 items), and locational social
comparison to near or community-wide residents (2 items). To assess susceptibility, we used
“chance” rather than “likelihood” based on cognitive testing of survey items in SV(4)

(unpublished results). One susceptibility item used a numerical 11 point interval response (0
– 100% chance). Other items used 5-7 ordinal word-level responses. Numeracy was
measured with a slightly modified version of the subjective numeracy scale.6,(38)
Participants were instructed to rate their ability to use fractions and percentages (4 items)
and preferences for words or numbers (3 items) using 6-point ordinal scales with mean
numeracy computed from these responses. Demographic variables included age, gender, and

3The maximum contaminant level (MCL), commonly referred to as a drinking water standard, is the highest permissible level of
contaminant in drinking water deemed suitable for human consumption. MCLs are enforced for public water supplies(49) but not
private wells.(50)
4One attribute subset varied only by prevalence (1, 2, and 8 red dots - see maps 4.d, 6.b, and 3.c).
5For example, maps 6.a and 6.b fit with the map subset that varied by hazard amount and angle (maps 6.a-d) and the map subset that
varied by hazard amount and prevalence (maps 6.a-b and 3.c-d).
6Among measures of numeracy, the subjective numeracy scale was found to be less time consuming, rated as less stressful,(51) and
approached the predictability of an objective numeracy scale.(38)
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race/ethnicity. We controlled for participants' drinking water use (unfiltered, filtered,
bottled) and dominant residential experience (4 ordinal categories from rural – urban). Four
survey versions were produced, one for each block of six maps. Risk belief survey items
accompanied each map. The county map on the survey cover showed a distribution of dots
for all ranges of hazard values.

2.4. Sample and Procedure
About 1045 undergraduate students enrolled in three courses at a large Midwestern
university were verbally invited to participate in the study. Interested students picked up a
survey packet (shuffled versions) as they exited class resulting in random assignment of map
blocks. Students returned surveys two days later as they entered class or via mail in the
provided stamped return envelope. Two reminders (verbal and e-mail) and a $5 incentive
encouraged participation.

2.5. Analysis
ArcGIS 9.3(27) was used to create the maps and to calculate all well locations (constant and
manipulated) in a Universal Transverse Mercator coordinate system (UTM). PBH was
calculated using ArcGIS and Python computer programming language. Since points were
projected in UTM, the Pythagorean theorem was used to calculate distance between wells.

Initially, the metric for mapped hazard values was blue = 1 and dark red = 5, based on the
five class legend (1st and 5th class), thus computing an index of ordinal hazard. After the
initial analysis found the 11 point susceptibility item (% chance over MCL) had the
consistently strongest relationship with attributes and PBH, we changed the metric of
mapped hazard values to measure the probability of having a rhynium test result exceeding
the MCL (safety standard), thus computing an index of probabilistic risk. In the revised
metric, blue = 0 and dark red = 100 based on the assumption that exact location at a blue or
dark red dot would = 0% or 100% chance of having rhynium over the MCL. Scaling PBH to
match the dependent variable allowed us to examine the alignment between estimated PBH
and susceptibility. With only two hazard values, the different metrics produced nearly equal
PBH distributions (r = .999). This justified the post-hoc decision to scale the independent
variable to be aligned with the dependent variable.

We used PAWS Version 18(39) for statistical analyses. For aim 1, partial correlations
(controlling for gender, numeracy, drinking water use, and dominant residence) were used to
select a single dependent risk belief variable for subsequent analyses. Selection criteria were
overall strongest and most consistent correlations.

For aim 2, multiple stepwise regression models were used to examine the influence of PBH
and manipulated attributes on the risk belief variable controlling for numeracy, gender,
water use, and prior residence. Regressions were conducted for each attribute subset and
also for two sets of combined maps: (1) all combined maps and (2) all combined maps
minus the four maps with locations inside of clusters. Regressions for combined maps
examined the influence of hazard value, distance, and prevalence. To conduct a full factorial
combined map analyses, inside cluster location was recoded as a very near distance for tight
clusters (distance = 4) and a near distance for loose clusters (distance = 3) in keeping with
the coding scale for distance. Two regressions were conducted for each attribute subset and
combined map set - one using PBH and the other using map attributes. Step one included
covariates, step two included attributes or PBH, and step three included the attribute
interaction term. If the interaction term contributed a significant amount of variance (ΔR2 at
p < .05), regressions were conducted for attribute pairs stratified by hazard value to further
explore interaction effects.
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For aim 3 we compared the relative influences of PBH and attributes on the risk belief
variable. Ratios of R2 from aim 2 regressions indicated the amount of variance in the belief
explained by attributes (denominator) relative to PBH (numerator). To examine whether
PBH explained additional variance beyond attributes, a third step for attribute regressions
included PBH.

For aim 4, we examined the alignment of the risk belief variable with PBH using color-
coded maps and graphs and arithmetic differences between PBH (assigned location) and the
mean risk belief.

3. Results
Since key findings are summarized in Section 4 prior to discussion, results are described
briefly.

750 of roughly 1045 students picked up a study packet, and 447 returned a completed
survey; about a 43% response rate. Sample sizes for map blocks are in Figure 2 headers.
28% were males. Mean age was 19.6 (3.03) years. Race was 92% white, 5% Asian, and 3%
as other or another race. About 36% drank unfiltered, 44% filtered, and 20% bottled water.
Prior residence was reported as 14% rural, 17% town, 52% suburban, and 16% urban. Mean
numeracy was 4.6 (0.63) on a 6 point scale from low to high. Partial correlations between
two covariates (controlling for other covariates) showed males reported more numerical
ability than females (r = -.14, p < .001) and females were more likely to drink treated water
(r = .06, p < .01). Drinking untreated tap water was related to prior residence in a more rural
area (r = .10, p < .001) and lower numeracy (r = -.07, p < .001). No other correlations among
covariates were significant.

3.1 Aim 1
Table I shows partial correlations for each risk belief with manipulated attributes or PBH
ranked by column from left to right. P-values were not adjusted for multiple tests because
results were used to assess general trends. Numerical susceptibility (%Ch>MCL) was
ranked among the top three variables (first 3 columns) for all but prevalence. Locational
social comparison to township residents (Cp TS) was ranked among the top three belief
variables for all but PBH and hazard value. Severity was least correlated with map variables
followed by locational social comparison to nearby others (Cp near). Rows show
correlations ranked by PBH and attributes. PBH was more correlated than others for
susceptibility and global beliefs (6 of 9 belief variables) and cluster location was more
correlated for locational social comparison and severity variables (3 of 9 belief variables).
Based on results, numerical susceptibility (%Ch>MCL), hereafter called susceptibility, was
selected as the dependent variable for all subsequent analyses.

3.2 Aims 2 and 3
Table II shows stepwise regression results for 16 attribute subsets and Table III for both sets
of combined maps. Tables provide: standardized beta coefficients (β) for the impact of PBH
(Regression 1) and map attributes (Regression 2) on susceptibility; adjusted R2; stepwise
change in R2; and R2 ratios for attribute compared to PBH regressions. Column headers
indicate maps for each regression using Figure 2 map labels. Standardized beta coefficients
and R2 ratios are bolded. Unstandardized coefficients and standard errors are available from
first author.

Table II columns are ranked within attribute categories based on the amount of explained
variance (R2) for PBH regressions. PBH explained as much or more variance in
susceptibility than attributes for 6 of 16 regressions, 90 - 99% variance for 5, 83% for 2, and
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57% - 74% for 3. Large standardized coefficients (β ≥ .60) for the influence of independent
map variables on susceptibility were noted in 8 of 16 attribute subsets for PBH, 6 of 16 for
hazard value, 1 of 3 for cluster location, and 1 of 6 for distance. Covariates explained no or
small amounts of variance; Step 1 R2 ranged from 0 - .04. Among covariates, gender had the
largest influence and numeracy had smaller or no influences (see note 4 under Table II).

Interaction effects explained variance beyond that of attributes for 5 of 6 distance subsets, 2
of 3 cluster location subsets and 1 of 3 prevalence subsets. Figure 3 shows results from
regressions for these subsets stratified by hazard value (standardized beta coefficients and
R2 values at http://research.son.wisc.edu/wellstudy/f3table.pdf). For distance and cluster
location maps, all showed a trend of stronger effects for maps with large (all red) hazard
values compared to small (all blue) or mixed values. For prevalence maps the trend was
opposite; greater prevalence generated stronger effects for mixed compared to large hazard
values.

For combined maps (Table III), PBH explained more variance than attributes (R2 ratio =
1.07) for the regression without inside cluster location maps and nearly as much variance
(0.95) for all combined maps. R2 values with PBH added to the attribute regression were
larger than those with PBH or attributes alone. R2 values with interaction terms added to the
regression show distance by hazard value (DxH) explained the same amount of additional
variance as did PBH for maps with no inside cluster location but less variance than PBH for
all combined maps.

3.3 Aim 4
Figure 4 provides isarithmic maps7 depicting the spatial distribution of PBH estimates. The
11 class diverging color scheme shows incrementally higher and lower classified PBH
values above and below the middle yellow range (45-55) that includes the PBH midpoint.
White dots in blue and red areas show the respective locations of blue and dark red dots on
study maps. The black X shows participants' assigned map location. Maps labeled as in
Figure 2 are ordered from high to low in 3 rows across 8 columns based on PBH at the
assigned location. Bar graphs of response frequencies for the 11 point susceptibility variable
(% chance over the MCL) are color coded to match classified PBH (eg. 50% chance =
yellow) to illustrate how susceptibility beliefs align with PBH values. PBH values (assigned
location), mean beliefs with standard deviations, and mean PBH minus mean beliefs are
below each graph.

4. Discussion
Here, we summarize and discuss results for each study aim. Figure 4 maps and graphs are
referred to by column-row (C-R) numbers, e.g. 1-2 for those in C1 R2.

4.1. Aim 1: Variable Most Consistently and Strongly Influenced by Map Features
Overall, rankings showed susceptibility and locational social comparison (for township)
variables as more strongly influenced, severity as least influenced, and global beliefs ranked
after susceptibility. Among these, numerical susceptability8 was ranked highest
(%Ch>MCL, Table I). This variable assessed the percent chance of having a rhynium value
exceeding the MCL for one's assigned map location. It is not surprising that SV interviewees
spoke of risk in global terms,(4) but susceptibility better quantified this relationship because

7Isarithmic maps are used for continuously varying attributes like rainfall, air temperature, or PBH.(52)
8This analysis was used to select a single dependent variable for following analyses. Given the similarities among correlations for
some variables, a different belief variable (likely a susceptibility variable) could consistently rank more highly for a different study
sample or type of risk map.
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underlying beliefs may not be directly stated in interviews.(40) The negligible to small
effects of map variables on severity were appropriate because the maps did not convey the
severity of health consequences. Small but significant effects on severity for cluster location,
PBH, and hazard value may have been prompted by the strong warning meaning of red. Our
proposal that spatial information on maps may facilitate locational social comparison was
supported by findings that comparison at a township level was among the top three variables
for all attributes except hazard value - the only attribute lacking a spatial component.9

4.2 Aim 2: Differential Influence of Map Attributes on Susceptibility Beliefs
All of the mapped hazard attributes identified in SV interviews as potential influences on
risk beliefs(4) had quantifiable impacts on susceptibility, but effects varied substantially
across and within attributes subsets (see Table II). Hazard value, a central component of
PBH (substantiated by their strong correlation, see Table I, last column), had a substantial
influence on participants' perceived chance of having elevated rhynium. For all attribute
subsets except cluster location, hazard value had larger effects than the other manipulated
attribute (see Table II). The impact of hazard value may be influenced by three factors: the
strong symbolic “warning” meaning of red, top-down attention to larger and riskier hazards,
and bottom-up attention to a salient color. The strong effect of color is supported by other
research, summarized by McEachren,(41) that color was more influential than shape or
size(42) and not overpowered by proximity.(43) Graph pairs in Figure 4 illustrate the impact
of hazard value on susceptibility for near locations to one, two, or eight dots (C-R: 5-1 6-3,
4-1 1-3, 2-1 4-2).

Variance in susceptibility was substantial for maps with mixed hazard values in the lower
half. The ambiguity of mixed hazard appeared to allow more room for personal
interpretation. Nearness to mixed dots led to mean susceptibility greater than a 50% chance,
suggesting a trend of more attention to red than blue dots (Figure 4, 6-2). This could result
from a mix of top-down attention to personally relevant near and large values, and bottom-
up attention to more visually salient red dots. As distance to mixed values increased,
susceptibility beliefs decreased, likely due to the waning influence of red dots (Figure 4, 8-2,
6-2). The personal relevance of near hazards and of large compared to small hazard values
were expressed by SV study participants.(4)

For combined maps, distance had substantial effects on susceptibility, nearly as much as
hazard value. However, distance effects across attribute subsets ranged from small to large.
The impact of distance on participants' perceived chance of having elevated rhynium may be
explained by top-down attention to more personally relevant nearby hazards and pre-
attentive (bottom-up) comprehension of distance from one's assigned location to mapped
hazards. As distance to large hazards increased, beliefs grew weaker. Results are supported
by findings that proximity to actual “on the ground hazard” is related to stronger perceived
risk.(5-7) Participants' common sense understanding of hazards and associated risk may
include the assumption that nearness to a hazard measure increases susceptibility, a tendency
noted among SV participants.(4) Increased variance in susceptibility beliefs with increasing
distance is consistent with the proposition that farther locations have a more uncertain risk
status than near locations. For maps showing far distance from manipulated dots,
susceptibility was likely weaker because location was closer to the constant blue dots at the
top of the map. Maps C-R 3-1 and 6-1 show the impact of distance to large hazards
controlling for distance to the upper blue dots.

9Although prevalence was measured as number of dots, prevalence indirectly includes spatial information about the distribution of
dots.
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Distance interacted with hazard value. The solid lines in Figure 3 show distance had a
stronger influence on susceptibility for large compared to mixed or small hazard values.
These interaction effects were most pronounced for single dot maps where manipulated
hazard value was only small and large (gray lines in Figure 3). As expected, near distance to
a blue dot resulted in a small perceived chance of having rhynium, but as distance increased
perceived chance slightly increased. The resulting negative relationship between distance
and susceptibility for low hazard maps may occur because participants were less certain of a
small chance with increasing distance. The relationship between distance and susceptibility
was weak for distance to a blue compared to red dot, likely because homogeneous blue dots
decreased variance in interpolated and perceived probabilistic risk for locations between two
blue dots. The influence of all blue dot maps on susceptibility is discussed further in section
4.4. Susceptibility beliefs associated with small and large hazard values that vary by distance
are illustrated in Figure 4 C-R 5-1, 2-2, 5-3 (large hazard) and 6-3, 7-3, 8-3 (small hazard).

Results for attribute subsets indicated prevalence was weakly and positively related to
susceptibility (Table II). Smaller effects for prevalence may be explained by the complexity
and resulting distributed visual attention for maps with more dots.(20) Medium distance
outside locations for two compared to eight dot maps indicated prevalence had substantially
greater impacts on susceptibility for mixed compared to all red dots (dash-dot line in Figure
3; Figure 4, C-R: 8-1,7-1,3-3,7-2). Effects were due to substantially weaker beliefs for two
mixed than two red dots, perhaps because participants found it easier to discount the
influence of one red dot (of 5 on map) compared to two and because prevalence effects were
stronger for less complex maps.

Participants perceived substantially more susceptibility for locations in rather than out of
eight dot clusters, indeed cluster location had a larger impact on susceptibility than hazard
value for maps with a tight cluster and the same impact for those with a loose cluster.
Gestalt Laws of proximity, similarity, and continuity may explain how a cluster of similar
dots is perceived as an area. MacEachren identified key factors that explain how “Gestalt
groupings” are perceived as a figure against a visual background,(41) e.g. a cluster of dots
against a background of distributed dots. Contour (a visually discriminable edge to the
figure) and surroundedness (completely surrounded figures more likely to be seen as a unit)
appear to explain how clustered dots could be perceived as an area. Clusters had a
discriminable edge - more so for tight than loose clusters. All dot clusters were completely
surrounded by white space. The unambiguous portrayal of clusters that exemplified these
factors explains how they could have been perceived as a hazard area. For location within a
hazard pattern, the potential visual salience of a two dimensional hazard area compared to a
one dimensional line (location within a line of hazard) may further explain the substantial
impact of clusters.

It is also possible that clustered hazard measures could generate a heightened sense of
susceptibility independent of hazard value. Viewers may assume more testing occurs in
areas with a larger potential for hazards. In addition, bottom-up processing of more dots or
larger areas of testing may unconsciously promote stronger susceptibility beliefs. If so, this
is problematic given that clusters reflect an increase in sampling density and may have
nothing to do with hazard variations. For example in a few states, well test reports must be
filed whenever a residential property changes hands. In this case, clustered measurements
would reflect an active real estate market, not necessarily an area of increased hazard.

Location inside to distance outside interacted with hazard value such that locations had
stronger effects for all red than mixed clusters (dashed lines in Figure 3); similar to the trend
noted for distance. Location within a tight compared to loose cluster was weakly related to
stronger susceptibility (Table II), and did not vary by hazard value. Stronger contour and
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surroundedness for tight clusters may explain the larger influence of tight than loose
clusters, even though they have a smaller area.

Interaction effects between color and other attributes showed that often, attributes did not
have separate, independent influences. MacEachren suggests attributes interact to influence
visual perception.(41) For our study, interactions were also likely influenced by the meaning
of map attributes, e.g., the meaning of hazard value interacting with the meaning of
proximity.

Covariates, had only small effects, if any, on susceptibility. Females had stronger
susceptibility beliefs than males for some maps - consistent with a broad body of work
showing that females are more risk averse than males.(44) When present, the effects of self-
rated numeracy were substantially weaker than gender. Males had higher numeracy scores
than females, a tendency found in other research.(45)

4.3 Aim 3: Influence of PBH Estimates Compared to Map Attributes
Recall the R2 ratio compares R2 for attribute regression models (denominator) to R2 for
PBH regression models (numerator). Values over 1.00 indicate PBH explained more
variance in susceptibility than attributes. Attributes may have explained more variance than
PBH for a larger number of subsets (10 compared to 4; 2 were equivalent) because attributes
were measured categorically while PBH was derived from continuous measures of
attributes. Despite bottom-up perceptual ability to discern incremental length,(19) people
tend to think and talk about proximity in terms of categories, such as near and far
distances.(46) This reflects a human tendency to process complex perceptual stimuli through
categorization.(41) In addition, the design of study maps to accentuate differences in map
attributes, may have increased the influence of attributes over PBH.

In reality, the configuration of dots relative to a location could vary widely across different
viewer locations and maps. The performance of PBH compared to attributes across a variety
of dot configurations was best illustrated by the combined map analyses (see Table III). For
combined maps, the interaction between hazard value and distance (Step 3 - DxH) explained
significant amounts of additional variance beyond that of attributes indicating this in an
important source of variance in the PBH model. For all combined maps, PBH explained
almost as much variance in susceptibility as attributes (0.95) and more variance than
attributes (1.07) for combined maps with no inside cluster locations. The robust performance
of PBH across this wide variety of dot configurations suggests its potential usefulness for
estimating proximity-based hazard for dot maps. It is worth noting that attributes with PBH
explained more variance than either PBH or attributes alone, indicating each explained a
small amount of unique variance in susceptibility. This suggests a PBH model that accounts
for numerical and categorical aspects of mapped hazards may explain more variance in risk
beliefs than a model with only one of these approaches.

4.4. Aim 4: PBH Compared to Susceptibility Beliefs
PBH maps in Figure 4 provide insights into the assumptions of the PBH model illustrated in
Figure 1. The proportional relationship of PBH to hazard value shown in Figures 1a and 1b
is illustrated in Figure 4 map 1-1 where PBH is close to 100 when surrounding hazards are
all large and near, but about 50 for the mixed hazard cluster in map 5-2. Decreasing weight
for distance shown in Figure 1c is illustrated in Figure 4 maps 3-1 and map 6-1. The impact
of lower weights for clustered dots shown in Figure 1d is illustrated in maps 6-2 and 8-2 that
show colored zones of red and dark blue PBH are smaller when dots are closer.

Differences between PBH and mean susceptibility in Figure 4 show susceptibility was more
aligned with some PBH estimates than others. Overall, the perceived chance of having
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elevated rhynium was less than PBH for maps with all red dots in the lower half. This
difference was larger for map locations showing less compared to more location-based risk
(low prevalence or farther distance). Smaller susceptibility beliefs compared to PBH may
have been influenced by increasing uncertainty about the chance of having elevated rhynium
with increasing distance to large values and also by the uncertainty generated by viewing
preceding mixed hazard maps in which small values often occurred in close proximity to
large values. It might also be partially explained by the tendency for people to have
optimistic responses to threat information.(47)

Conversely, the perceived chance of having elevated rhynium was greater than PBH for
maps with mixed dots in the lower half, especially for location within a mixed dot cluster.
When values are mixed and distance is near, it appears viewers focused more on large than
small hazards, suggesting the role of nearness to larger hazard values on perceived
susceptibility. Susceptibility grew weaker and more aligned with PBH with increasing
distance, consistent with a persistent trend that farther distance from riskier hazard values
weakens risk beliefs.

For maps with no red dots, susceptibility was substantially larger than PBH. Recall PBH can
be no greater than the largest value on the map, in this case zero. Despite no elevated hazard
values on the map, many participants were unwilling to assign a zero chance of having an
elevated value of rhynium at their location. The presence of red dots in the first viewed map
may have primed non-zero susceptibility beliefs for later maps with all blue dots. However,
this finding highlights a potential shortfall of the PBH model. Areas which are a certain
distance from hazard measures may be more appropriately represented with values that
represent hazard uncertainty. This is especially important for dot maps with few and
homogeneous dots resulting in homogeneous PBH across the map when, in fact, the hazard
status of many areas is uncertain.

4.5. Limitations
The generalizability of results is limited by the contrived nature of study maps (manipulated
dots and fictitious substance) and the undergraduate sample. The lack of personal relevance
for private well hazards among college students together with potentially greater numerical
abilities may have fostered a more analytical response to study maps compared to a target
population of residents with a private well. In addition, prior knowledge and experience
attenuate the influence of visual features on cognition,(30) therefore map attributes are likely
to have stronger influences among college students because many lack prior knowledge and
experience with private wells. A training effect over the six map sequence may have
influenced beliefs for later maps. Maps varied in the degree to which un-manipulated
content was held constant for different assigned locations and introduced error for
comparing the influence of some map attributes. Finally, we can only speculate as to how
information was processed or noticed.

4.6 Implications for Research and Practice
Although results suggest the PBH model may be improved by accounting for map locations
with uncertain risk status and categorical aspects of map attributes, more research is needed
to inform further revisions. This research should test the predictive impact of PBH on risk
beliefs using more realistic looking maps, representative participants, and participants'
perceived home location rather than assigned locations since personal relevance has a role in
the interpretation of hazard proximity.10 Research is also needed to study the potential
influences of: (1) dot prevalence and dot clusters to examine how areas of intensive testing
influence beliefs independent of hazard values, (2) the use of symbolic risk colors on the
impact of hazard value, (3) different map scales and sizes of depicted geographic area on the
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impact of proximity, (4) user characteristics such as numeracy and prior beliefs, (5) different
types of risk information and maps, and (6) how risk beliefs mediate the influence of map
attributes or PBH on protective behavior within a context of viewer characteristics.

The contrived nature of the maps and undergraduate sample constrain our ability to make
recommendations for practice. Generally speaking, those who use dot maps to convey risk
information to the public should be aware that viewers' perceived distance to different
amounts of risk will influence derived risk beliefs, and that nearness to elevated risks and
location within elevated or mixed risk clusters will be especially influential.

4.7 Conclusions
Susceptibility (a specific rather than global belief) was most strongly and consistently
correlated with PBH and is consistent with the proposition that increasing hazard intensity
increases one's beliefs of susceptibility to a hazard. Attributes interact to influence derived
meaning. Notably, distance, including location inside to distance outside of a hazard cluster,
had stronger effects for large than small or mixed values, perhaps due to the personal
relevance of nearness to larger hazards and the use of red to symbolically convey “unsafe”
hazard values. Participants' common sense assumptions that proximity to unsafe hazards
increases risk would support these findings. Location within clustered hazard values had a
substantial impact on risk beliefs. Gestalt Laws and factors that explain how a figure is
visually discriminated against a background suggest how clusters may have been perceived
as an area of elevated risk rather than discrete points. The perception of being surrounded by
risk may heighten risk beliefs. Other map attributes (prevalence, angle, cluster density)
influenced beliefs, but had substantially smaller effects.

Study results, especially those for combined maps, indicate our simple PBH model
performed quite well compared to map attributes. PBH is advantageous because it combines
the influence of attributes into a single estimate. We developed the PBH model to study how
some types of risk maps influence risk beliefs and protective behavior based on viewers'
perceived map locations. Further work is needed to assess the predictive value of the model
in more realistic settings and for other hazards and types of maps.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix:
Risk Belief Variables

Belief concept Survey Item Response Categories

Numerical Susceptibility (%Ch
>MCL)*

In your opinion, approximately what is the
chance that your well has rhynium over the
health-based MCL of 10 ppb?

11 (0 – 100%) “No chance” and
“Certain” at each end

Susceptibility (Ch > MCL)* What is the chance that your well has
rhynium over the health-based MCL of 10
ppb?

5 (no chance – nearly certain)

Susceptibility: w/global belief
(Ch problem)*

There is a good chance that my well has a
rhynium problem.

6 (strongly agree-strongly
disagree)

Susceptibility: w/global belief
(Ch unsafe)*

There is a good chance my well has unsafe
water.

6 (strongly agree-strongly
disagree)

Severity (Severity)* Rhynium-related health problems are
serious.

6 (strongly agree-strongly
disagree)

Global belief (S problem)* Rhynium is a serious problem for my well. 6 (strongly agree-strongly
disagree)

Global belief (Concern)* I am concerned about the risk of having
rhynium in my well.

6 (strongly agree-strongly
disagree)

Locational social comparison (Cp
TS)*

In your opinion, what is your risk for having
rhynium in your well water compared to
other people who live in Springdale
township?

7 (much less - much more)

Locational social comparison (Cp
near)*

In your opinion, what is your risk for having
rhynium in your well water compared to
people who live near you?

7 (much less - much more)

*
Variable name in Table 1
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Figure 1.
Numerical weights (Wi) and computed PBH in hazard model. Black dots depict hazards
surrounding a subject's location (black X). Hazard values Hi are indicated by dot size. All
hazards have a value of 1 except in (b), where one hazard equals 2. In (a) and (b) all dots
contribute equally to PBH because of their uniform distance and spacing. PBH is higher in
(b) owing the larger value of one dot. In (c) the proximity of the bottom dot gives it a larger
weight than the others, whereas in (d) the bottom dot has more weight because it is spatially
isolated. That is, the top dots form a cluster and individually count less than the bottom dot.
Diagram (e) shows how increasing distance and decreasing angle of separation capture the
shadowing effect.
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Figure 2.
Map blocks with labels (1.a – 6.d) at lower right of each map. For the study maps used in the
survey the black dots were red (high arsenic value) and the light grey dots were blue (low
arsenic value).
Note: C and R refer to the column and row numbers (upper right of each map) in Figure 4
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Figure 3. Standardized regression coefficients* for maps with significant interaction effects
* Maps used in each regression are labeled on the graph (map labels from Figure 2)
** The interaction between cluster location and hazard value was not significant. This pair
was included to Illustrate the similarity across loose and tight clusters.

Severtson and Burt Page 26

Risk Anal. Author manuscript; available in PMC 2013 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Severtson and Burt Page 27

Risk Anal. Author manuscript; available in PMC 2013 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Maps of PBH, graphs* of susceptibility frequencies, and PBH and mean susceptibility
values**
*x axis = percent chance categories (11 categories), y axis = frequencies (axis labels on 1st

graph in each row)
** below each graph are: PBH values for the assigned map location, means (standard
deviations) for susceptibility beliefs, and the difference between PBH and mean
susceptibility (PBH minus mean susceptibility)
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Table III
Stepwise Regression for Combined Maps: Standardized Beta Coefficients, Adjusted R2,
R2 change, R2 ratios

All Maps except 5sa(no inside cluster maps) (n=2230) All Maps (n = 2676)

Regression 1 or 2 Step 1 Covariates R2 .01 .01

Regression 1 Step 2 - PBH R2 .58 .57

 R2 change ΔR2 .57*** .57***

 PBH β .76*** .75***

Regression 2 Step 2 - Attributes R2 .54 .60

 R2 change ΔR2 .53*** .59***

 Hazard value (H) β .57*** .52***

 Distanceb(D) β .45*** .50***

 Prevalence (P) β .11*** .11***

Step 2 R2 ratio (PBH/attribute) 1.07 0.95

Regression 2: Step 3ac-PBH R2 .61 .65

 R2change ΔR2 .07*** .05***

Regression 2: Step 3bc-DxH R2 .61 .63

 R2 change ΔR2 .07*** .03***

Regression 2: Step 3cc - PxH Re .55 .60

 R2 changed ΔR2 .007*** .003***

Regression 2: Step 3dc - DxHxP R2 .55 .60

 R2 changed ΔR2 .011*** .001*

a
Map labels from Figure 2 maps

b
Distance recoded to include cluster location

c
For Steps 3a – 3d, only one of these variables was added at a time.

d
More precise values to show the variation across these smaller interaction effects

+
p < .10,

*
p < .05*,

**
p < .01,

***
p < .001
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