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Summary
The bacteria in the fruitfly Drosophila melanogaster of different life stages was quantified by 454
pyrosequencing of 16S rRNA gene amplicons. The sequence reads were dominated by 5
operational taxonomic units (OTUs) at ≤ 97% sequence identity that could be assigned to
Acetobacter pomorum, A. tropicalis, Lactobacillus brevis, L. fructivorans and L. plantarum. The
saturated rarefaction curves and species richness indices indicated that the sampling (85 000–159
000 reads per sample) was comprehensive. Parallel diagnostic PCR assays revealed only minor
variation in the complement of the five bacterial species across individual insects and three D.
melanogaster strains. Other gut-associated bacteria included 6 OTUs with low %ID to previously
reported sequences, raising the possibility that they represent novel taxa within the genera
Acetobacter and Lactobacillus. A developmental change in the most abundant species, from L.
fructivorans in young adults to A. pomorum in aged adults was identified; changes in gut oxygen
tension or immune system function might account for this effect. Host immune responses and
disturbance may also contribute to the low bacterial diversity in the Drosophila gut habitat.

Introduction
Healthy animals are a habitat for microorganisms, most of which are benign or beneficial
(Wilson, 2005; Douglas, 2010). Mammals and other vertebrates appear to support many
more microbial species than most invertebrates. For example, the gut microbiota in an
individual mammal comprises > 1000 taxa, most of which are unique to each host individual
(Dethlefsen et al., 2007; Ley et al., 2008; Costello et al., 2009; Qin et al., 2010). The
diversity of the gut microbiota in most invertebrates that have been studied is apparently one
to two orders of magnitude lower than in the mammals (Dillon and Dillon, 2004; Dunn and
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Stabb, 2005; Behar et al., 2008; Lehman et al., 2009; Morales-Jimenez et al., 2009;
Grunwald et al., 2010; Robinson et al., 2010). Nevertheless, vertebrates, especially
mammals, have been the subject of far greater sampling effort than invertebrates, raising the
possibility that this difference between vertebrates and invertebrates may be partly
artefactual. Two further issues affect the interpretation of data on the diversity of the
microbiota in animal guts. First, the composition of the gut microbiota can vary with diet,
and developmental age and physiological condition of the animal host (e.g. Dethlefsen et al.,
2007; Lehman et al., 2009; Sharon et al., 2010). Second, microorganisms recovered from the
gut comprise two ecologically distinct groups: the autochthonous (resident) taxa and the
allochthonous (non-resident) forms that are ingested with, and pass through, the gut with the
food. The allochthonous microbes can artificially inflate both the reported microbial
diversity in an individual host, and among-host variation in microbial diversity, especially
where the animals sampled utilize different sources of food.

The purpose of this study was to determine the diversity of the gut bacteria of the fruitfly
Drosophila melanogaster using 454 pyrosequencing of PCR-generated amplicons from the
16S rRNA gene. We used Drosophila raised on an axenic diet of fixed composition, to
minimize the diversity of allochthonous taxa, and sampled the animals across the full life
cycle, to establish the total diversity and how it varies with life stage. Our analysis builds on
previous research, which has identified various taxa, including Lactobacillus, Enterococcus
and Acetobacter associated with Drosophila [Corby-Harris et al., 2007; Cox and Gilmore,
2007; Ren et al., 2007; Ryu et al., 2008; also see the review (Crotti et al., 2010) of
Acetobacter as insect symbionts]. Our study overcomes three key limitations of previous
studies: all may have failed to detect low-abundance taxa through shallow sampling using
limited Sanger sequencing of cloned 16S rRNA gene sequences; most were conducted on
the whole insect, making it impossible to identify the bacteria specifically associated with
the gut; and several studies did not attempt to limit the incidence of allochthonous taxa.

Results
Pyrosequencing data

The 454 pyrosequencing analysis of 16S rRNA gene amplicons from the dissected guts of
D. melanogaster strain Canton S produced 923 109 reads, with an average length of 361
nucleotides (including the multiplex identifier ‘MID’ and primer sequences), after quality
filtering and removal of chimaeric sequences. The reads could be assigned to 720
operational taxonomic units (OTUs) at 93% sequence identity threshold, 894 and 1135
OTUs at 95% and 97% threshold, and 8935 OTUs at 99% threshold. A substantial number
of the OTUs identified were represented by just one to several reads in both the
experimental samples and the reagent-only control. These were interpreted as contaminants
and they were discarded, leaving 808 483 reads that were distributed among the samples as
follows: D. melanogaster eggs (0.2%), early-instar larvae (10.6%), pupae (13.9%) and guts
from third-instar larvae (13.4%), 3- to 7-day-old males (14.0%) and females (19.7%), 3- to
5-week-old males (10.5%) and females (17.5%). Altogether, the reads yielded 122 OTUs at
the 97% identity threshold recommended for accurate diversity estimation (Kunin et al.,
2010).

For each sample, the rarefaction curves tended towards saturation at similar numbers of
clusters at 97%, 95% and 93% pairwise ID thresholds (Fig. 1). Subsequent analysis was,
therefore, conducted at 97% ID. All values of richness indices (Chao1, ACE and Jackknife)
equalled the number of OTUs (Table 1), confirming the conclusion from rarefaction analysis
that sampling of each life stage had reached saturation. The third-instar larvae bore the most
species-rich bacterial community, comprising 71 OTUs. The egg surface had the most
diverse bacterial community by both Simpson’s and Shannon indices (Table 1), including
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19/28 (68%) unique clusters. In all other samples, five OTUs (clusters 1, 2, 5, 6 and 7)
accounted for > 80% of all reads (Table S1), and OTUs unique to one life stage were rare
(early instars, 3- to 5-week-old adults) or absent (3- to 7-day-old adults). Exceptionally,
12/30 (40%) of OTUs in pupae and 48/71 (68%) OTUs in third-instar larvae were unique.

Taxonomic composition of bacteria identified by pyrosequencing
At the phylum level, Firmicutes and Proteobacteria accounted for the vast majority of reads
(> 97%) in the larvae, pupae and adults, and 66% of the reads for the eggs. Actinobacteria,
Bacteroides and Cyanobacteria were also detected (Table 2a).

The five OTUs dominating most samples (see above) corresponded to Acetobacter and
Lactobacillus species: A. pomorum, A. tropicalis, L. brevis, L. fructivorans and L.
plantarum (Table 2b, Table S1). The relative abundance of these taxa varied with
developmental age (Table 2b). Lactobacillus fructivorans accounted for > 60% of the reads
in early-instar larvae and 3- to 7-day-old adults (both sexes); L. plantarum dominated the gut
bacteria of third-instar larvae; and A. tropicalis and A. pomorum were strongly represented
in pupae and 3- to 5-week-old adults respectively. These species were detected in eggs at
varying abundance (Table S1): L. fructivorans (21%), A. pomorum (14%), A. tropicalis
(2%), L. brevis (1.5%) and L. plantarum (four reads, which was below the cut-off for
contaminants). The sequences of the five OTUs were submitted to NCBI GenBank
(accession HQ173707–HQ173711).

Pupae bore appreciable numbers of Staphylococcus, accounting for 16% of the reads, of
which > 99% were assigned to Staphylococcus sp. K6-17B (Table S1D), while
Staphylococcus represented < 0.1% of reads in all other life stages.

Candidate novel bacterial taxa
The %ID between some 454 reads and the BLAST top hits was less than 97% (Table S1 and
Table 3). Two approaches were adopted to assess whether these low %IDs were likely a
consequence of sequencing error. First, the polymorphisms were confirmed not to be in
homopolymeric regions, which are common sites of 454 sequencing error. Second, the
Bonferroni-corrected Poisson probabilities were calculated for each biological sample. At
%IDs of 96% or less, the probability of the polymorphism arising by sequencing error was ≤
0.0002 (Table S2). These data suggest that the low %ID of the clusters in Table 3 are not the
result of sequencing error.

To investigate the possibility that the sequences might represent novel taxa, the %ID
between each cluster and its top BLAST hit (Table 3) was compared with pairwise %ID
comparisons among publicly available sequences representing the same bacterial species in
the 16S rRNA databases (Text S1). The minimum values of pairwise %ID of the V2 region
among publicly available sequences of A. pomorum and A. tropicalis are 99.6% and 94.5%
respectively; equivalent values for L. brevis, L. fructivorans and L. plantarum are 80.8%,
98.5% and 61.8% (Fig. 2A and B). The variation in minimum %ID could be explained by its
significant negative regression on the number of publicly available sequences (Fig. 2A and
B), which can be attributed to inadequate sampling at high %ID and possible mis-
identifications, especially at low %ID.

We adopted two criteria to investigate whether the sequences in Table 3 might be candidate
novel taxa. The first criterion applied the minimum %ID obtained for publicly available
sequences of the target bacterial species as the cut-off value (Fig. 2A and B). When applied
to the 18 clusters listed in Table 3, this criterion yielded eight clusters, three of Acetobacter
and five of Lactobacillus (Fig. 2C and D, summarized in Table 3).
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The second criterion was based on the widely used 97% ID of the full 16S rRNA gene as a
cut-off threshold to define bacterial species (Drancourt et al., 2004; Drancourt and Raoult,
2005; Janda and Abbott, 2007). A 97% ID of the (near-)full 16S rRNA gene is equivalent to
95.6% ID of the V2 region for Acetobacter (96.0% after excluding the outlier species with
very low %ID) and 95.4% ID for the V2 region of Lactobacillus (whether or not outliers are
included) (Fig. 2E and F). To be conservative, we rounded down these values to 95% ID
cut-off for both species. The 14 clusters in Table 3 with < 95% ID to the top hit overlapped
with the eight clusters identified by the first criterion [Fig. 2C and D, yielding six sequences
as representative of candidate novel taxa (Table 3): one each related to A. pomorum
(cluster932, NCBI GenBank accession HQ168004) and A. tropicalis (cluster7664,
HQ168006), and four clusters related to L. fructivorans (cluster94, HQ168011; cluster467,
HQ168009; cluster668, HQ168008; cluster1982, HQ168012)]. The candidate novel species
accounted for 0.1–0.8% of the total reads in a sample (calculated from data in Table S1).

QRT-PCR and diagnostic PCR analyses
QRT-PCR conducted on adult flies of different ages in June 2010 confirmed the change in
relative number of 16S rRNA gene copies of L. fructivorans and A. pomorum, from
dominance by L. fructivorans sequences in young adults to A. pomorum sequences in old
flies, identified by 454 analysis in November 2009 (Fig. 3A). The dominance of 16S rRNA
gene copies of L. plantarum and A. tropicalis in the third-instar larvae and pupae,
respectively, were not observed in June 2010, suggesting those life stage-specific effects are
not consistent (Fig. 3B and C).

Each DNA sample used for 454 sequencing comprised many insects of strain Canton-S. To
assess the prevalence of 16S rRNA gene copies of the various bacterial taxa in individual
insects, the guts from five adult males and females were tested for the five dominant bacteria
by diagnostic end-point PCR. All Canton S flies were positive for every bacterium, apart
from one female which yielded a negative result for L. fructivorans (Fig. S1A). Gut samples
from D. melanogaster strains Oregon-R and Ithaca-83 also bore A. pomorum, A. tropicalis,
L. fructivorans and L. plantarum, but were negative for L. brevis (Fig. S1B).

Discussion
Previous research on the microbiota of D. melanogaster (Ryu et al., 2006; Corby-Harris et
al., 2007; Cox and Gilmore, 2007; Ren et al., 2007) employed relatively shallow sampling
strategies that would not have detected low-abundance bacteria, and, apart from Ryu et al.
(2008), sampled whole insects. These sampling limitations are overcome in this study by the
pyrosequencing of dissected guts. The saturation of the rarefaction curves and species
richness indices for all samples of larval, pupal and adult flies (Fig. 1, Table 1) suggests that
the entire gut microbiota had been sampled effectively. Nevertheless, it is formally possible
that the microbial diversity was underestimated because either the general primers used in
this study failed to amplify sequences from certain bacteria, or the amplification of very
low-abundance sequences in the template was consistently inadequate for detection. Despite
these caveats, which are common to any study founded on PCR, the data indicate that the
bacterial community of the Drosophila studied here is, indeed, small, with 17–71 OTUs at
97% ID detected, and dominated by just five species in the two genera, Acetobacter and
Lactobacillus. The Shannon index of diversity, at 0.35–1.47 (Table 1), is lower than values
for the microbiota in many habitats, including soils (2.4–3.7) (Fierer and Jackson, 2006),
coral-associated assemblages (1.54–3.33) (Garren et al., 2009) and vertebrate gut
communities [e.g. 4.29 in ostrich caecum (Matsui et al., 2010)], and it overlaps with values
(0.8–1.7) obtained for the gut microbiota in the butterfly, Pieris rapae (Robinson et al.,
2010).
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The diversity obtained from our inventory of the bacteria in the gut habitat of Drosophila is
orders of magnitude lower than in the mammalian gut habitat, validating the general pattern
in the literature (see Introduction). Low-diversity communities are generated in habitats with
extreme disturbance regimes or inhospitable conditions in which few organisms can grow
(Grime, 1977; Connell, 1978). The D. melanogaster gut is a transient and disturbed
environment at multiple spatiotemporal scales, and arguably more so than in mammals. The
larval gut persists for about 4 days before dissolution at metamorphosis, followed by the
development of the adult gut and its colonization by bacteria; and the lifespan of the adult
gut is 4–5 weeks. Additional sources of disturbance include the passage of food, the
elimination of the cuticle lining the foregut and hindgut at each larval moult, and sloughing
of gut epithelial cells by a process that is accelerated by the presence of microorganisms
(Buchon et al., 2009). Features of animal guts that render them inhospitable to many
microorganisms include active enzymes (proteases, lysozyme, etc.) and unfavourable
oxygen tensions or pH. The oxygen tension in the D. melanogaster gut has not been studied
directly, but its colonization by Acetobacter, which require molecular oxygen, and
Lactobacillus, which is intolerant of fully oxic conditions (Yamada and Yukphan, 2008;
Ljungh and Wadstrom, 2009), suggests that the conditions in the D. melanogaster gut are
either microaerobic or spatially variable with respect to oxygen tension. The composition of
the gut microbiota may also be influenced by the composition of the food ingested by the
insect host (see Introduction). Of particular relevance to the data obtained here, the
Drosophila used in this analysis had been reared on a nutritionally complex diet of yeast
extract, fortified with glucose and supplemented with organic acid preservatives for many
generations. This regime is predicted to have exerted a strong and consistent selection
pressure, for example against taxa intolerant of the organic acids, and favouring taxa at a
competitive advantage in high-glucose environments. Further research is needed to
understand the detail of interactions between diet and composition of the gut microbiota for
Drosophila and other animals.

The low bacterial diversity in the Drosophila gut habitat is evident at the within-species
level as well as higher taxonomic levels, such that the same OTU at 97% ID is the most
abundant representative for each of the five dominant species in every host life stage from
early-instar larvae to aged adults. The additional OTUs of each species (Table S1) may
represent low-abundance taxa present in many or all individual hosts, or taxa that dominate a
few hosts but are absent from most individuals. Low-abundance ‘cryptic’ taxa have been
reported in a various symbiotic systems, including rhizobia in legume root nodules (Denison
and Kiers, 2004) and dinoflagellate Symbiodinium in corals (Baker et al., 2004). They may
be competitively inferior to the dominant OTU under the prevailing conditions, but become
dominant under different circumstances, as reported, for example in coral hosts (Venn et al.,
2008). Such shuffling of microbial symbionts can be advantageous to the host, offering
insurance against failure of the previous dominant to tolerate or deliver services under
different environmental conditions (Douglas, 2010). Alternatively, the minor OTUs may be
deleterious to the host, acting as opportunistic pathogens when controls over their growth
and division are relaxed. For example, Gluconobacter morbifer is generally occurs at low
abundance in D. melanogaster guts, but it proliferates rapidly in immunocompromised flies
to become the dominant gut inhabitant with deleterious consequences for the insect (Roh et
al., 2008; Ryu et al., 2008). (This species was not detected in our study.)

Central to the design of this study was the variation in the gut bacteria with developmental
age and stage of D. melanogaster. The pyrosequencing and QRT-PCR analyses concur that
the bacterial composition changed with increasing adult age from dominance of 16S rRNA
gene sequences of L. fructivorans to A. pomorum sequences (Table 2b and Fig. 3).
Acetobacter, unlike Lactobacillus, grows rapidly under fully aerobic conditions, raising the
possibility that the conditions in the D. melanogaster gut become more oxic in ageing

Wong et al. Page 5

Environ Microbiol. Author manuscript; available in PMC 2012 November 12.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



insects. Immunological dysfunction associated with ageing can also affect the composition
of the gut microbiota, as illustrated by elevated Bacteroides populations in elderly people
with persistent activation of the NF-κB transcription factor that plays a central role in innate
immunity (Claesson et al., 2011). In this study, two further developmental changes in
relative abundance of 16S rRNA gene sequences were identified by pyrosequencing: to high
levels of L. plantarum sequences in third-instar larvae and A. tropicalis sequences in pupae
(Table 2b). Although confirmed by QRT-PCR of technical replicates, these results were not
reproduced in separate biological samples (Fig. 3). In the absence of any overt variation in
culture conditions, these data point to potentially important sources of environmental
variation that remain to be identified.

This study is based exclusively on 16S rRNA gene sequence data. It should be interpreted
with caution in that information on the complement and expression of genes mediating
bacterial colonization and proliferation in the gut environment is entirely lacking. This
limitation is potentially significant because functionally distinct bacteria with identical or
near-identical 16S sequence are known (Scanlan et al., 2009), and differences in gene
sequence or expression can have far-reaching phenotypic consequences. For example, gene
expression levels are important determinants of the abundance of Leptospirillum bacteria in
natural biofilms in acid mine drainage (Denef et al., 2010), and the host range of symbiotic
Vibrio is determined by a single regulatory gene (Mandel et al., 2009). These considerations
raise the possibility that both the divergent representatives of Acetobacter and Lactobacillus
species in D. melanogaster (Table 3) and the bacteria that can confidently be allocated to
known species by 16S criteria may be genetically distinct from free-living conspecifics in
the content, sequence or regulation of protein-coding genes.

In conclusion, this comprehensive analysis of 16S rRNA gene diversity indicates that the D.
melanogaster gut bears a low-diversity bacterial community. Further research focusing on
the functional traits of the bacteria is critically important to establish the scale of
evolutionary change and diversification of protein-coding genes associated with life in an
animal gut.

Experimental procedures
The experimental material

Drosophila melanogaster was reared at 25°C with a 12 h:12 h light–dark cycle on autoclaved
yeast-glucose medium [Y-G diet, comprising Brewer’s yeast and glucose (both at 83 g l−1,
from MP Biomedicals), agar (10 g l−1, from Frutarom) and preservatives (0.04% phosphoric
acid, 0.42% propionic acid, from Sigma)], and transferred to fresh medium weekly. Outbred
populations of strains Canton-S and Oregon-R had been maintained on Y-G diet for at least
18 years. Strain Ithaca-83 is an isofemale line established from a single female collected at
Littletree Orchard, New-field, New York in 2004, and maintained on Y-G diet since
collection.

The experimental samples comprised: guts (from proventriculus to rectum, excluding
Malpighian tubules) dissected from third-instar larvae and adults; whole first- to second-
(‘early’) instar larvae (< 48 h after hatching: these insects were too small for gut
dissections); pupae (which lack a gut); and eggs (< 20 h after deposition). All samples
except the eggs were surface-sterilized in 10% sodium hypochlorite solution, followed by
three rinses in sterile distilled water. Gut dissections were conducted in sterile Ringer’s
solution on clean glass slides with sterilized forceps, using a dissecting microscope at × 7
magnification. This sampling design followed preliminary experiments that confirmed the
presence of bacteria in all surface-sterilized samples except eggs (data not shown),
consistent with published evidence that bacteria are borne within larvae, pupae and adults,
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but not internal to the eggshell (Bakula, 1969). All experiments used reagent-only controls
comprising a drop of Ringer’s solution treated as for dissections (including swirling the
dissection instruments in the solution), but without D. melanogaster materials.

DNA isolation
For pyrosequencing, total genomic DNA was extracted using the DNeasy Blood and Tissue
Kit (Qiagen, Valencia, California, USA) following a protocol modified from the
manufacturer’s instructions for Gram-positive bacteria. Briefly, samples were hand-
homogenized in 20 mM Tris-HCl (pH 8.0), 2 mM sodium EDTA, 1.2% Triton® X-100
containing 20 mg lysozyme ml−1. The homogenates were incubated at 37°C for 1.5 h with a
5 min bead-beating in a Disruptor Genie® using 0.1 mm glass beads (Scientific Industries)
at 45 min. Pilot experiments confirmed that this treatment disrupted Gram-positive bacteria
including Bacillus and Lactobacillus, and achieved 10–50% greater yield than lysozyme
digestion without bead-beating (data not shown). All DNA samples were quantified by
Nanodrop 1000 (Thermo Scientific) and the PCR products for pyrosequencing were
analysed by Agilent 2100 Bioanalyser.

Multiplex 454 pyrosequencing of 16S rRNA gene sequences
Each DNA sample comprised three biological replicates of D. melanogaster strain Canton S:
100 eggs, 50 early-instar larvae, guts from 50 third-instar larvae, 30 pupae, and guts from 50
each of male and female adults at 3–7 days and 3–5 weeks post eclosion. The variable
region 2 (V2) of the bacterial 16S rRNA gene was amplified with the general 16S rRNA
gene primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 338R (5′-
TGCTGCCTCCCGTAGGAGT-3′), with the sample-specific 27F primer bearing a
multiplex identifier (MID) sequences and all 27F and 338R primers modified with 5′-
Adaptor A and 5′-Adaptor B sequences, respectively, for pyrosequencing (Roche) (Table
S3A). PCRs for the biological samples and reagent control were conducted in triplicate with
0.6 U Platinum® Taq DNA Polymerase (Invitrogen) in 1 × PCR buffer, 2 mM MgCl2, 8
pmol each primer, 0.24 mM dNTP and c. 100 ng of DNA sample in 25 μl final volume, at
94°C for 10 min followed by 25 cycles of 94°C for 1 min, 58°C for 1 min and 72°C for 1
min. DNA from an aliquot of each PCR reaction was purified using the Agencourt
Ampure® SPRI kit and quantified using the Quant-iT™ PicoGreen® Kit. Each reaction
product was diluted to 1 × 109 molecules μl−1, except MID-1 (egg DNA) and MID-9
(reagent-only control), which were diluted to 1 × 108 molecules μl−1. Equal volumes of the
three reaction products per sample were mixed together and diluted to 1 × 107 (samples 2–8)
or 1 × 106 (MID-1 and MID-9) molecules μl−1 for emulsion PCR at one copy per bead using
only ‘A’ beads for unidirectional sequencing. Beads were subjected to sequencing on one
full plate of the 454 GS-FLX pyrosequencing instrument using standard Titanium chemistry.

Pyrosequencing flowgrams were converted to sequence reads using 454 Life Science
software (http://www.454.com). Reads with ambiguous nucleotides (N) and < 270
nucleotides after the forward primer, and mismatches with the 16S rRNA gene primers were
excluded in the initial filtering. To ensure accurate determination of microbial diversity, the
data were processed with Perl scripts (Kunin and Hugenholtz, 2010) (http://pyrotagger.jgi-
psf.org/release) modified to remove reads with 0.2% per-base error probability (≥ 3% of
bases with Phred scores < 27). The remaining sequences were trimmed to 270 nucleotides,
dereplicated and clustered into OTUs with 93%, 95% and 97% sequence identity (ID)
thresholds. The most abundant unique sequence of each OTU cluster was selected as
representative, aligned by P-CLUSTALW at BioHPC (http://cbsuapps.tc.cornell.edu/
clustalw.aspx) and subjected to chimera check by the Mallard algorithm (Ashelford et al.,
2006). Taxonomy of the non-chimaeric sequences was assigned by NCBI StandAlone
BLAST (megaBLAST program) using the nucleotide (nt) database (13 June 2010) with
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default settings. Identified reads were counted and distributed to their respective MID
samples. Phylotypes with < 10 reads or fewer reads than in the reagent-only control were
interpreted as contaminants, and removed. The richness [Chao1, abundance-based coverage
estimators (ACE) and Jackknife] and diversity (Simpson’s and Shannon) indices for each
biological sample were calculated using R. Rarefaction curves were generated using
Analytic Rarefaction v1.3 (http://www.uga.edu/~strata/software/index.html).

The Bonferroni-corrected Poisson probability of occurrence of 454 reads with %ID ≤ 98%
to the BLAST top hits in each biological sample were calculated using R. A pyrose-
quencing error rate of 0.3% was used as it was suggested that pyrosequencing errors can be
reduced 0.25% (i.e. up to 3 bp per kb) after discarding reads with ambiguous bases (N)
(Huse et al., 2007).

All non-chimaeric 454 sequences are deposited in the short read archive at NCBI, Accession
No. SRA023605.3.

PCR assays
Taxon-specific 16S rRNA gene primers were designed for A. tropicalis, A. pomorum, L.
brevis, L. fructivorans and L. plantarum (Table S3B) using Primer3 software and unique
regions identified from alignments of full 16S rRNA gene sequences. Preliminary
experiments confirmed that the primers generated no detectable cross-amplification between
species (data not shown). PCRs were performed as above with 65°C annealing temperature
and 35 cycles. PCR products were separated by gel electrophoresis using 1% agarose gel
and visualized with SYBR®Safe (Invitrogen), and their identities were confirmed by Sanger
sequencing.

Specific 16S rRNA gene primers were designed for QRT-PCR of the dominant bacteria
(Table S3B). The reactions were conducted in triplicate, with a reagent-only negative
control, in C1000™ Thermal cycler (Bio-Rad) with 1 × Brilliant III Ultra-Fast QPCR Master
Mix (Agilent Technologies), 8 pmol each primer and c. 100 ng in 20 μl volume, under a
thermal profile of 95°C for 10 min, then 35 amplification cycles of 95°C for 10 s, 60°C for
30 s and dissociation cycle of 95°C for 10 s, 60°C for 5 s then brought back to 95°C. Fold
differences of bacterial genes were calculated by the ΔΔCt method (Livak and Schmittgen,
2001). The dissociation curve confirmed that every reaction yielded a single PCR product
with the predicted Tm. QRT-PCR assays were used to check the repeatability of
pyrosequencing data for dominant bacterial species in D. melanogaster. Samples comprised
DNA samples from the 454 pyrosequencing experiment (November 2009), and Canton-S
flies (June 2010: 10 replicate samples of five pupae and five guts from third-instar larvae
and adults at 3–7 days, 2–3 weeks and 4–5 weeks post eclosion). Bacterial relative
abundances were compared for A. pomorum/L. fructivorans in adults, L. fructivorans/L.
plantarum in third-instar larvae and A. tropicalis/L. fructivorans in pupae.

Pairwise comparisons of %ID of 16S rRNA gene sequences
A non-redundant set of (near-)full 16S rRNA gene sequences for 15 species of Acetobacter
(79 sequences) and 102 species of Lactobacillus (1082 sequences) was collected from
Greengenes (http://greengenes.lbl.gov), Ribosomal Database Project (RDP; http://
rdp.cme.msu.edu) and Silva (http://www.arb-silva.de). Species with a single sequence,
unidentified species and species without binomial nomenclature were excluded from the
analysis. The remaining sequences were trimmed to 1270 bp, and the V2 region was isolated
in silico and trimmed to 270 bp from position 48–318. For each species, all possible
pairwise alignments were obtained, and %ID between every sequence pair was calculated
using algorithm of (Needleman and Wunsch, 1970) for the (near-full) 16S rRNA and V2
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sequences. The lowest value of %ID for each species was adopted as a measure of the total
sequence variation for that species.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Rarefaction curves of OTUs clustered at different %ID across life stages of D. melanogaster
Canton-S. (A) 93%, (B) 95%, (C) 97%.
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Fig. 2. Identification of candidate novel taxa from pairwise comparisons of %ID among 16S
rRNA gene sequences
A and B. Minimum pairwise %ID of the V2 region of the 16S rRNA genes for publicly
available sequences of each species of Acetobacter and Lactobacillus respectively. The
values for the species detected in this study are highlighted as ◆ A. pomorum, △ A.
tropicalis in (A), and + L. brevis, ◇ L. fructivorans and ▲ L. plantarum in (B). The
equations and r2 values for regression of minimum %ID (y) on number of valid sequences
(x) are shown. [For (A), the asterisk refers to the regression equation and r2 excluding outlier
species (minimum %ID < 70%).]
C and D. Relationship between minimum pairwise %ID of the V2 region of the 16S rRNA
genes and corresponding (near-)full 16S rRNA gene sequences for the publicly available
Acetobacter and Lactobacillus species used in (A) and (B) respectively. Regression
equations for %ID V2 region of the 16S rRNA gene (y) on %ID near-full 16S rRNA gene
(x) are shown.
E and F. Comparison of the %ID of sequences in Table 3 of this study with known species
of Acetobacter and Lactobacillus respectively. Species detected in this study are highlighted
as in (A) and (B), and clusters are indicated by letter notations (a–r) used in Table 3. For
clarity, only clusters with %ID < minimum %ID for the species represented by the top hit
are shown.
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Fig. 3. QRT-PCR of relative abundance of 16S rRNA gene sequence in technical replicates of the
pyrosequencing experiment (November 2009) and independent biological samples (June 2010)
A. Lactobacillus fructivorans: A. pomorum in adults of different ages (*3–5 weeks for
November 2009 samples; 4–5 weeks for June 2010 samples); 2- to 3-week-old flies were not
obtained for the pyrosequencing experiment and its technical replicates in November 2009.
B. Lactobacillus fructivorans: L. plantarum in third-instar larvae.
C. Lactobacillus fructivorans: A. tropicalis in pupae. Ten replicates per sample.
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