Skip to main content
Log in

Spatial differentiation in the eastern Pacific yellowfin tuna revealed by microsatellite variation

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Five eastern Pacific yellowfin tuna samples (four northern: 10–25°N, 95–130°W, and one southern: 16–18°S, 95–97°W), collected from fishing vessels between 1994 and 2002 were analyzed for variation at seven microsatellite loci to evaluate their spatial genetic homogeneity. Single-locus homogeneity exact tests revealed significant genetic differentiation caused by three of seven loci. Pairwise sample comparisons of multilocus allele-frequency homogeneity tests and subpopulation division (F ST), revealed significant differentiation in comparisons between north equatorial samples and the south equatorial sample. AMOVA analysis among collections grouped as northern and southern populations separated by the equator in the eastern Pacific confirmed the differentiation observed. These results may be considered as preliminary evidence of the presence of discrete populations in the eastern Pacific yellowfin tuna. The possibility that the spatial differentiation observed corresponds to temporal variation or non-random sampling cannot be discarded. The genetic differences encountered need to be corroborated by increasing sample sizes, including temporal replicates, and by the use of an alternative marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Agricultural Organization of United Nations (FAO). FISHSTAT Plus Ver. 2.3. Universal software for fishery statistical time series. Fisheries Department, Fishery Information. Data and Statistics Unit, Rome. 2000.

    Google Scholar 

  2. Godsil HC, Greenhood EC. A comparison of the populations of yellowfin tuna (Neothunnus macropterus) from the eastern and central Pacific. Calif. Dept Fish Game Fish. Bull. 1951; 82: 33p.

    Google Scholar 

  3. Schaefer MB. Morphometric comparison of yellowfin tuna from southeast Polynesia, Central America, and Hawaii. Inter-Am. Trop. Tuna Comm. Bull. 1955; 1: 89–136.

    Google Scholar 

  4. Kurogane K, Hiyama Y. Morphometric comparison of the yellowfin tuna taken from the Equatorial Pacific. Jpn. Soc. Sci. Fish. Bull. 1957; 23: 388–293.

    Google Scholar 

  5. Schaefer KM. Morphometric analysis of yellowfin tuna, Thunnus albacares, from the eastern Pacific ocean. Bull. Inter-Am. Trop. Tuna Comm. 1989; 19: 387–427.

    Google Scholar 

  6. Schaefer KM. Geographical variation in morphometric characters and gill-raker counts of yellowfin tuna Thunnus albacares, from the Pacific Ocean. Fish. Bull. 1991; 91: 690–698.

    Google Scholar 

  7. Suzuki Z, Tomlinson PK, Honma M. Population structure of Pacific Yellowfin tuna. Bull. Inter-Am. Trop. Tuna Comm. 1978; 17: 273–441.

    Google Scholar 

  8. Fink BD, Bayliff WH. Migrations of yellowfin and skipjack tuna in the eastern Pacific Ocean as determined by tagging experiments, 1952–64. Inter-Am. Trop. Tuna Comm. Bull. 1978; 15: 1–227.

    Google Scholar 

  9. Barret I, Tsuyuki H. Serum transferrin polymorphism in some scombroid fishes. Copeia 1967; 3: 551–557.

    Article  Google Scholar 

  10. Fujino K. Immunological and biochemical genetics of tunas. Trans. Am. Fish. Soc. 1970; 99: 152–178.

    Article  CAS  Google Scholar 

  11. IATTC (Inter-American Tropical Tuna Commission). Annual report of the Inter-American Tropical Tuna Commission. IATTC. LaJolla, CA. 1975.

    Google Scholar 

  12. Scoles DR, Graves JE. Genetic analysis of the population structure of yellowfin tuna, Thunnus albacares, from the Pacific Ocean. Fish. Bull. 1993; 91: 690–698.

    Google Scholar 

  13. Ward RD, Elliott NG, Grewe PM, Smolenski A. Allozyme and mitochondrial DNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Mar. Biol. 1994; 118: 531–539.

    Article  CAS  Google Scholar 

  14. Sharp GD. Behavioral and physiological properties of tunas and their effects on vulnerability to fishing gear. In: Sharp GD, Dizon AE (eds). The Physiological Ecology of Tunas. Academic Press, New York. 1978; 397–449.

    Google Scholar 

  15. Ward RD, Elliott NG, Innes BH, Smolenski AJ, Grewe PM. Global population structure of yellowfin tuna, Thunnus albacares, inferred from allozyme and mitochondrial DNA variation. Fish. Bull. 1997; 95: 566–575.

    Google Scholar 

  16. Appleyard SA, Grewe PM, Innes BH, Ward RD. Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Mar. Biol. 2001; 139: 383–393.

    Article  CAS  Google Scholar 

  17. Bentzen P, Taggart TC, Ruzzante DE, Cook D. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 1996; 53: 2706–2721.

    Article  Google Scholar 

  18. Gold JR, Kristmundsdóttir ÁÝ, Richardson LR. Mitochondrial DNA variation in king mackerel (Scomberomorus cavalla) from the western Atlantic Ocean and Gulf of Mexico. Mar. Biol. 1997; 129: 221–232.

    Article  Google Scholar 

  19. Grant SW, Clark AM, Bowen BW. Why restriction fragment length polymorphism analysis of mitochondrial DNA failed to resolve sardine (Sardinops) biogeography: insights from mitochondrial DNA cytochrome b sequences. Can. J. Fish. Aquat. Sci. 1998; 55: 2539–2547.

    Article  CAS  Google Scholar 

  20. O’Connell M, Wright JM. Microsatellite DNA in fishes. Rev. Fish Biol. Fish 1997; 7: 331–363.

    Article  Google Scholar 

  21. Hoffman IJ, Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol. Ecol. 2005; 14: 599–612.

    Article  PubMed  CAS  Google Scholar 

  22. McDowell JR, Diaz-Jaimes P, Graves JE. Isolation and characterization of seven tetra-nucleotide microsatellite loci from Atlantic northern bluefin tuna Thunnus thynnus thynnus. Mol. Ecol. Notes 2002; 2: 214–216.

    Article  CAS  Google Scholar 

  23. Carlsson J, McDowell JR, Díaz-Jaimes P, Carlsson JEL, Boles SB, Gold JR, Graves JE. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 2004; 13: 3345–3356.

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory. Cold Sprig Harbor, NY. 1989.

    Google Scholar 

  25. Laird PW, Zijdervel A, Linders K, Rudnicki MA, Jaenisch R, Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 1991; 19: 4293.

    Article  PubMed  CAS  Google Scholar 

  26. Takagi M, Okamura T, Chow S, Taniguchi N. PCR primers for microsatellite loci in tuna species of the genus Thunnus and its application for population genetic study. Fish. Sci. 1999; 65: 571–576.

    CAS  Google Scholar 

  27. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004; 4: 535–538.

    Article  Google Scholar 

  28. Wattier E, Enger CL, Saumitou-Laprade P, Valero M. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rodophyta). Mol. Ecol. 1998; 7: 1569–1573.

    Article  CAS  Google Scholar 

  29. Schneider S, Kueffer JM, Roessli D, Excoffier L. Arlequin Ver. 1.1: a Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland. 1997.

    Google Scholar 

  30. Guo SW, Thompson EA. Performing the exact test for Hardy-Weinberg proportion for multiple alleles. Biometrics 1992; 48: 361–372.

    Article  PubMed  CAS  Google Scholar 

  31. Weir BS, Cockerham CC. Estimating F statistics for the analysis of population structure. Evolution 1984; 38: 1358–1370.

    Article  Google Scholar 

  32. Goudet J. Fstat (vers. 1.2): a computer program to calculate F-statistics. J. Hered. 1995; 86: 485–486.

    Google Scholar 

  33. Raymond M, Rousset F. Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 1995; 86: 248–249.

    Google Scholar 

  34. Rice WR. Analyzing tables of statistical tests. Evolution 1989; 43: 223–225.

    Article  Google Scholar 

  35. Cabin JR, Mitchell RJ. To Bonferroni or not Bonferroni: when and how are the questions. ESA Bull. 2000; 81: 246–248.

    Google Scholar 

  36. Moran DM. Arguments for rejecting the sequential Boferroni in ecological studies. Oikos 2003; 100: 403–405.

    Article  Google Scholar 

  37. Perneger TV. What’s wrong with the Bonferroni adjustments. BMJ 1998; 316: 1236–1238.

    PubMed  CAS  Google Scholar 

  38. Klein AP, Kovac I, Sorant AJM, Baffoe-Bonnie A, Doan QB, Ibay G, Lockwood E, Mandal D, Santhosh L, Weissbecker K, Woo J, Zambelli-Weiner A, Zhang J, Naiman DQ, Malley J, Bailey JEW. Importance sampling method of correction for multiple testing in affected sib-pair linkage analysis. BMC Genet. 2003; 4: S73.

    Article  Google Scholar 

  39. Ueyanagi S, Mori K, Nishikawa Y. Research on distribution of larvae. S. Ser. Far Seas Fish. Res. Lab. 1969; 1: 7–12.

    Google Scholar 

  40. Schaefer KM. Reproductive biology of the yellowfin tuna (Thunnusalbacares) in the eastern Pacific ocean. Bull. Inter-Am. Trop. Tuna Comm. 1998; 21: 205–272.

    Google Scholar 

  41. Wyrtki K. Circulation and water masses in the eastern equatorial Pacific Ocean. Int. J. Oceanol. Limnol. 1967; 1: 117–147.

    Google Scholar 

  42. Ely B, Viñas J, Alvarado-Bremer J, Black D, Lucas L, Covello K, Labrie AV, Thelen E. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonis pelamis). BMC Evol. Biol. 2005; 5: 19.

    Article  PubMed  Google Scholar 

  43. Waples RS. Separating the wheat from the chaff: patterns of genetic differentiation in high flow species. J. Hered. 1998; 89: 438–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pindaro Díaz-Jaimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Jaimes, P., Uribe-Alcocer, M. Spatial differentiation in the eastern Pacific yellowfin tuna revealed by microsatellite variation. Fish Sci 72, 590–596 (2006). https://doi.org/10.1111/j.1444-2906.2006.01188.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2006.01188.x

Key words

Navigation