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SUMMARY

The central structure of the symbiotic association between plants and arbuscular mycorrhizal (AM) fungi is the

fungal arbuscule that delivers minerals to the plant. Our earlier transcriptome analyses identified two half-size

ABCG transporters that displayed enhanced mRNA levels in mycorrhizal roots. We now show specific

transcript accumulation in arbusculated cells of both genes during symbiosis. Presently, arbuscule-relevant

factors from monocotyledons have not been reported. Mutation of either of the Oryza sativa (rice) ABCG

transporters blocked arbuscule growth of different AM fungi at a small and stunted stage, recapitulating the

phenotype of Medicago truncatula stunted arbuscule 1 and 2 (str1 and str2) mutants that are deficient in

homologous ABCG genes. This phenotypic resemblance and phylogenetic analysis suggest functional

conservation of STR1 and STR2 across the angiosperms. Malnutrition of the fungus underlying limited

arbuscular growth was excluded by the absence of complementation of the str1 phenotype by wild-type nurse

plants. Furthermore, plant AM signaling was found to be intact, as arbuscule-induced marker transcript

accumulation was not affected in str1 mutants. Strigolactones have previously been hypothesized to operate

as intracellular hyphal branching signals and possible substrates of STR1 and STR2. However, full arbuscule

development in the strigolactone biosynthesis mutants d10 and d17 suggested strigolactones to be unlikely

substrates of STR1/STR2. Interestingly, rice STR1 is associated with a cis-natural antisense transcript

(antiSTR1). Analogous to STR1 and STR2, at the root cortex level, the antiSTR1 transcript is specifically

detected in arbusculated cells, suggesting unexpected modes of STR1 regulation in rice.
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INTRODUCTION

Arbuscular mycorrhizal (AM) symbioses are intimate asso-

ciations between most terrestrial plants and fungi of the

Glomeromycota (Schüßler et al., 2001 and citations therein).

The symbioses are based on reciprocal nutrient exchange

between the symbiotic partners. The fungus depends on a

supply of carbon from the plant, and in turn delivers mineral

nutrients, especially phosphate and nitrogen, to its host

(Smith and Read, 2008).

A pre-symbiotic molecular dialogue represents the start of

the interaction. Plant-released strigolactones and fungal

Myc factors induce symbiotic responses in the interacting

counterpart (Akiyama et al., 2005; Maillet et al., 2011). Upon

contact with the root surface the fungal hypha differentiates

into an attachment structure, called the hyphopodium, from

where the fungus passes the rhizodermis (Genre et al., 2005)

and subsequently proliferates inter- and intracellularly
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within the cortex. A network of eight plant signaling proteins

is essential for rhizodermis penetration by the fungus, and is

conserved across the two angiosperm classes (Banba et al.,

2008; Gutjahr et al., 2008; Parniske, 2008; Groth et al., 2010).

Inside cortical cells the fungus branches dichotomously and

differentiates into a tree-shaped haustorium: the arbuscule

that expands until it reaches the physical limits of the host

cell. Development of an arbuscule is a highly complex

process that involves dramatic architectural reorganization

of the colonized cell. This includes invagination of both the

plasma membrane and the tonoplast (Pumplin and Harrison,

2009, and citations therein), dramatic plasma membrane

proliferation and, in consequence, the formation of a large

surface area for signal and nutrient exchange. In parallel, the

cytoskeleton is rearranged, and possibly guides membrane

deposition and the accumulation of Golgi, endoplasmic

reticulum (ER), mitochondria and plastids, as well as

peroxisomes, around arbuscule branches (Lohse et al.,

2005; Genre et al., 2008; Pumplin and Harrison, 2009). The

newly formed periarbuscular membrane (PAM) is continu-

ous with the plasma membrane of the cortex cell. However,

immunolocalization and life-cell imaging revealed that it

represents a distinct membrane domain that is further

subdivided into discrete ‘trunk’ and ‘branch’ subdomains

(Pumplin and Harrison, 2009). Therefore arbuscule forma-

tion induces a polarization of the plant cortex cell. Consistent

with a specific function in symbiotic phosphate uptake, the

branch domain of the arbuscule harbours highly specific

phosphate transporters that mediate symbiotic phosphate

acquisition (Harrison et al., 2002; Javot et al., 2007a). Muta-

tion of the Medicago arbuscule-specific phosphate trans-

porter MtPT4 leads to higher arbuscule turnover, indicating

that phosphate might not only act as a nutrient but also a

signal (Javot et al., 2007b; Yang and Paszkowski, 2011). It is

likely that arbuscules are also predominantly involved in

fungal nutrient acquisition. Support for this view is lent by

the recent observation that the knock-down of symbiosis-

induced Medicago truncatula sucrose synthase MtSUC1

causes an arbuscule phenotype (Baier et al., 2010).

Arbuscules represent an intimate and extreme form of

compatibility between two organisms that must be the result

of a precisely orchestrated molecular dialogue. Prior to

arbuscule formation the cortex cell is reshaped and forms a

tunnel-like structure, the so-called pre-penetration apparatus

(PPA), to guide the anticipated fungal development within

the cell (Genre et al., 2008). This indicates that arbuscule

development is initiated by the plant rather than the AM

fungus. The search for plant proteins involved in arbuscule

development is therefore a promising start in understanding

this process. The first proteins required for arbuscule

formation have recently been identified. VAPYRIN, a protein

that consists of a major sperm protein domain and an

ankyrin domain, is indispensable for intercellular accom-

modation of AM fungi and for arbuscule formation

(Feddermann et al., 2010; Pumplin et al., 2010). A Medicago

steroid-binding protein is also required for proper arbuscule

formation, possibly by regulating sterol homeostasis in the

root (Kuhn et al., 2010). Two M. truncatula half-size ABCG

transporters called STR1 and STR2 (for stunted arbuscule)

interact in the periarbuscular membrane. As mutation or

expression perturbation of one of these proteins results in

small and stunted arbuscules, the dimer is probably neces-

sary for the export of an essential but yet unknown com-

pound into the peri-arbuscular space (Zhang et al., 2010).

To identify genes necessary for AM development in

monocotyledons we combined whole-genome transcrip-

tome profiling of mycorrhizal Oryza sativa (rice) roots

(Güimil et al., 2005) with a reverse genetics screen (Hiroch-

ika et al., 2004) for altered mycorrhizal phenotypes. Two

genes strongly induced by AM colonization corresponded to

two half-size ABCG transporters with homology to M. trun-

catula STR1 and STR2 (Güimil et al., 2005; Zhang et al.,

2010). Here we characterized their temporal and spatial

expression and found transcript accumulation to be associ-

ated with arbuscules. Interestingly, STR1 and STR2 expres-

sion was accompanied by a natural antisense transcript

(cis-NAT) of STR1, the expression pattern of which suggests

an unexpected involvement in the regulation of STR1.

Importantly, we show that rice STR1 and STR2 are indis-

pensable for arbuscule formation, demonstrating that their

function is evolutionarily conserved between di- and mono-

cotyledons.

RESULTS

Transcripts of STR1, STR2 and antiSTR1 accumulate

in arbusculated cells

To detect mycorrhiza-regulated genes with a possible func-

tion in AM development in monocotyledons, we previously

performed whole-genome microarray analysis of mycorrhi-

zal rice roots (Güimil et al., 2005). One strongly AM-induced

gene encoded an ABCG transporter homologous to Medi-

cago STR1 (Zhang et al., 2010). Different versions of the

STR1 transcript (TIGR ID, LOC_Os09g23640; RAP ID,

Os09g0401100) were found in rice genome databases (http://

www.orygenesdb.cirad.fr, http://www.rice.plantbiology.msu.

edu and http://www.rapdb.dna.affrc.go.jp). Sequencing of

the cDNA from mycorrhizal roots revealed that the

STR1 gene consists of four exons that correspond to

LOC_Os09g23640.1 (Figure 1a; http://www.orygenesdb.cirad.

fr and http://www.rice.plantbiology.msu.edu). BLASTP

searches identified a close homologue of STR1 in the rice

genome that shared homology with M. truncatula STR2

(Zhang et al., 2010). A whole-genome transcriptomics study

using an updated version of the Affymetrix gene chip also

revealed STR2 to be induced by AM colonization (C. Gutjahr,

R. J. H. Sawers, H. Angliker, T. Roloff, E. Oakeley, U. Pasz-

kowski, unpublished data). The STR2 transcript contained
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two exons, confirming the computational prediction model,

jigsaw_7.642, available on the rice genome browser (http://

www.rapdb.dna.affrc.go.jp).

Database analyses indicated that STR1 was accompanied

by a natural antisense transcript of 1842 nt in length (cis-

NAT; RAP ID, Os09t0401200-02), termed antiSTR1 hereafter.

According to a full-length cDNA clone (AK106846), antiSTR1

contains two exons and is complementary with STR1 in a

tail-to-tail orientation: the second exon of antiSTR1 overlaps

with the third intron of STR1 by 80 nt, and with its fourth

exon by 819 nt (Figure 1a). The first exon of antiSTR1

matches 131 nt of another gene adjacent to STR1 (RAP ID,

Os09t0401200-01; data not shown) in sense orientation.

AntiSTR1 is predicted (http://www.rapdb.dna.affrc.go.jp) to

encode a protein of 94 amino acids. However, no corre-

sponding protein sequence has been reported from any

organism, as determined by BLAST searches. Therefore,

antiSTR1 is not likely to encode for a protein but instead

represents a bona fide cis-NAT. Computational searches for

similar cis-NAT sequences from other plant species did not

yield any match. The presence of antiSTR1 was confirmed

by real-time RT-PCR, with primers specifically targeting

antiSTR1 and with cDNA synthesized by an antiSTR1-

specific primer (Tables S1 and S3).

Natural antisense transcripts have been proposed to

regulate complementary mRNA in many different ways,

such as transcriptional interference, RNA masking, chro-

matin remodelling, RNA editing and RNA interference

(Lapidot and Pilpel, 2006). For RNA interference, small

interfering (si) RNAs of mostly 21–25 nt in length are

produced from the antisense transcript, and lead to Argo-

naut-dependent degradation of mRNAs (Okamura and Lai,

2008). We considered the possibility that siRNAs might be

produced from antiSTR1 and could also target other genes

in trans. Applying a cut-off of 21-nt sequence complemen-

tarity revealed a matching sequence of 121 nt in length

contained within the first exon of the STR2 open reading

frame, indicating the possibility that STR2 could be targeted

by antiSTR1 in trans. However, as antiSTR1 originates from

the same locus as STR1 we kept the name antiSTR1. Small

complementary stretches of 23–34 nucleotides were also

found in three other genes located on chromosomes 4 and

7, and encoding an inorganic pyrophosphatase, a glycosyl-

transferase and a hypothetical protein (Table S2). However,

these genes are not regulated by AM colonization (Güimil

et al., 2005; C. Gutjahr, R. J. H. Sawers, H. Angliker, T.

Roloff, E. Oakeley, U. Paszkowski unpublished data).

Next, to confirm the AM-responsive induction of STR1,

and to assess AM induction of STR2 and antiSTR1, real-time

RT-PCR analysis was performed on cDNA from non-colo-

nized and Glomus intraradices-colonized roots. High levels

of STR1 and STR2 mRNA were detected in mycorrhizal

roots, thereby confirming previous microarray data,

whereas expression was at the background level in non-

colonized roots (Güimil et al., 2005; C. Gutjahr, R. J. H.

Sawers, H. Angliker, T. Roloff, E. Oakekly, U. Paszkowski,

unpublished data). antiSTR1 mRNA also accumulated in

roots, but the level did not change upon AM colonization

(Figure 1b). Examination of the transcript levels of STR1,

STR2 and antiSTR1 in panicle, leaf, stem and embryo

revealed only background levels of expression in these

organs for all three genes.

As STR1 and STR2 were induced in mycorrhizal roots we

next examined their expression in arbusculated cells
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Figure 1. Gene structure and tissue- and cell-specific expression of STR1,

STR2 and antiSTR1.

(a) Gene structure and position of insertions of STR1, STR2 and antiSTR1,

drawn to scale. Black boxes indicate exons separated by introns (solid lines).

Grey boxes indicate untranslated regions (UTRs). The mutants str1-1 and str1-

2 carry T-DNA insertions (LB, left border; RB, right border) and str2-1, a dSpm

insertion. The position of the insertion with respect to the A of ATG is

displayed. Dashed arrows indicate primers used for real-time RT-PCR.

(b) Tissue-specific expression of STR1, STR2 and antiSTR1, as determined by

real-time RT-PCR. Error bars represent SDs of three technical replicates. The

experiment was repeated twice with similar results.

(c) Real-time RT-PCR based expression of PT11, STR1, STR2 and antiSTR1 in

rice cortex cells obtained by laser microdissection: arb, arbusculated; syst,

systemic (from colonized roots, but not containing arbuscules); mock, from

mock-inoculated roots. Expression is shown relative to the constitutively

expressed gene GAPDH. Error bars show SDs of three technical replicates.

The experiment was repeated three times with similar results.
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collected by laser microdissection (Figure 1c). Transcript

levels were compared between arbusculated and non-

arbusculated cortex cells from mycorrhizal roots (hereafter

called systemic cortex cells) and cortex cells from mock-

inoculated roots. To ensure the specificity of the samples,

we first recorded the expression of the arbuscule marker

PT11. PT11 was specifically expressed in arbusculated cells,

but not in systemic or mock control cells, as reported earlier

(Gutjahr et al., 2008). Similarly, STR1 and STR2 were

specifically expressed in arbusculated cortex cells. Arbus-

cule-specific expression was also observed for antiSTR1.

This cell-specific expression pattern was unexpected as the

expression level of antiSTR1 was similar between mock and

Glomus intraradices-inoculated root systems (Figure 1b).

antiSTR1 transcript accumulation might therefore differ

spatially between colonized and non-colonized roots, but

the total level of antiSTR1 transcripts in the root system

might not differ between the two treatments. In summary,

(a) 2-1rts1-1rts Nipponbare WTHwayoung WT

(b) Nipponbare WTstr2-1

Figure 2. Phenotypes of rice str1 and str2 mutants colonized by Glomus intraradices.

Confocal images of G. intraradices arbuscules stained with wheatgerm agglutinin (WGA) conjugated with Alexa Fluor 488 in cortex cells of (a) str1-1 and str1-2 and

(b) str2-1, their corresponding wild type. Bright-field images and overlays show the outline of cortical cells. Whereas the arbuscules in the cortex cells of the wild type

are well developed, they are small, stunted and clumped in str1-1, str1-2 and str2-1. Scale bars: 10 lm.
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all three transcripts accumulate in arbusculated cells,

suggesting they play a role in arbuscule development,

maintenance or function.

STR1 and STR2 are conserved across grass species

The G subfamily of the half-size ABC transporters is the

largest subfamily of ABC transporters in plants (Verrier et al.,

2008), and encompasses STR1 and STR2. An earlier phylo-

genetic analysis of STR1 and STR2 proteins revealed that

they form a distinct clade with respect to the M. truncatula

and Arabidopsis thaliana subfamily of ABCG transporters

(Zhang et al., 2010). To determine the conservation of rice

STR1 and STR2 across the Poaceae we performed BLAST

searches against the available grass genomes representing

the subfamilies Pooideae, Paniceae and Anthopogoneae,

and found putative orthologs for both genes in Brachypo-

dium dystachion, Setaria italica, Sorghum bicolor and Zea

mays (maize). Surprisingly, among the plants with duplicate

genomes, such as Populus sp. (poplar), Glycine max (soy-

bean) and maize, only the latter contains a single putative

copy of STR1 and STR2, whereas in the others, at least one

of the two genes has been duplicated. (Zhang et al., 2010).

A phylogenetic tree was constructed including the full

complement of rice and Arabidopsis ABCG protein

sequences, and additionally sequences of STR1 and STR2

from dicotyledons and Poaceae, with sequenced genomes

(Figure S1). STR1 and STR2 formed distinct clusters with

respect to the rice and Arabidopsis ABCG transporter

subfamily, confirming earlier observations (Zhang et al.,

2010). Within the STR1 and STR2 clusters the putative

monocotyledon and dicotyledon orthologs formed distinct

subclusters, where the monocotyledon clusters recapitu-

lated the phylogenetic relationships of the grass species that

were included in the analysis (Vicentini et al., 2008). In

summary, STR1 and STR2 are conserved across grass

subfamilies. Furthermore, the distinct clustering of the

STR1 and STR2 sister clades, both containing proteins from

di- and monocotyledons, indicates that orthologs in these

two major angiosperm lineages originated from a common

ancestor.

STR1 and STR2 are indispensable for arbuscule formation

To assess the functional relevance of STR1 and STR2 for rice

interaction with AM fungi, we searched public databases

(http://www.orygenesdb.cirad.fr; http://www.signal.salk.edu)

for lines carrying insertions in the STR genes. We chose two

insertion lines with T-DNA insertions in the first and third

exon of STR1 (1C-04850 and CL522472) and a line carrying a

dSpm transposon insertion within the first exon of STR2

(RdSpm 2654D). PCR analysis and sequencing of 5¢ and 3¢
boundaries of the insertion confirmed the presence of the

insertion for all lines, which were named str1-1, str1-2

and str2-1, respectively (Figure 1a). Homozygous str1 and

str2 mutants and corresponding wild-type varieties were

inoculated with Glomus intraradices and fungal structures

were inspected at 7 weeks post inoculation (wpi). In the

wild-type cultivars arbuscules were well developed and

highly branched, completely filling cortical cells (Figure 2).

In contrast, arbuscules appeared small, stunted and

clumped in cortical cells of str1-1, str1-2 and str2-1 (Fig-

ure 2). The morphology of other mycorrhizal structures in

str1 and str2 was comparable with those of the wild type

(data not shown). We conclude that STR1 and STR2 are

required for arbuscule development of Glomus intraradices

in rice, consistent with previous observations made for

M. truncatula str1 and str2 mutant roots (Zhang et al., 2010).

Therefore, both ABC transporters are functionally conserved

between Medicago and rice, and probably in other angio-

sperms. Because of the phenotypic equivalence between

str1 and str2 mutants, we concentrated our further studies

on the str1 alleles.

It has been observed that the phenotype of mycorrhizal

plant mutants can vary depending on the species of the AM

fungal partner (Manjarrez et al., 2009). To determine the role

of STR1 for arbuscule development of diverse AM fungi the

two str1 alleles were inoculated with Gigaspora rosea, which

is distantly related to Glomus intraradices (Schüßler et al.,

2001). Although roots of both wild-type genotypes con-

tained fully developed and highly branched Gigaspora rosea

arbuscules in both str1 mutants, the arbuscules appeared

smaller, stunted and particularly clumped (Figure 3). Thus,

STR1 is required for arbuscule formation in at least two

genera of different and distantly related AM fungal species.

Arbuscule-related plant signaling is intact in str1 mutants

It could be expected that abnormal arbuscule development

affected the signaling pathways required for the wild-type

induction of arbuscule-responsive genes. The transcript

level of eight AM-specific marker genes was assessed.

Previously these were classified as early (AM1, AM2, AM3,

AM11) or late (AM10, AM14, AM15, PT11; Gutjahr et al.,

2008) with respect to induction profiles preceding or coin-

ciding with arbuscule formation. To capture possible tran-

sience in marker gene expression, a time-course experiment

was performed and Glomus intraradices-inoculated str1-1,

str1-2 and wild-type roots were sampled at 3, 5 and 7 wpi

(Figure 4). Since colonization kinetics vary across biologi-

cally independent experiments, we display the results as

separate replicates.

As expected, Hwayoung and Nipponbare wild-type root

length colonization was low at 3 wpi, and rose at later time

points (Figures 4a and S2a). Root length colonization of str1-1

and str1-2 also increased with time, but remained signifi-

cantly lower than wild-type colonization. In both wild-type

cultivars all eight marker genes were expressed at 3 wpi,

reflecting the presence of all mycorrhizal structures (Fig-

ures 4b and S2b). As previously established, the transcript

level of marker genes increased with colonization level
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(Gutjahr et al., 2008). In str1-1 and str1-2, transcripts of the

four early marker genes accumulated at 3 and 5 wpi, and

increased with time and colonization level (Figure 4b). In

contrast, mRNA of the late markers was generally not

detected, despite the presence of stunted arbuscules at these

time points. At 7 wpi, however, the four late marker genes,

including PT11, were additionally expressed in both mutant

alleles. The expression profile of the marker genes was

equivalent between the two mutant alleles, and was addi-

tionally confirmed by an independent replicate experiment

focusing on two early (AM1 and AM3) and two late (AM14 and

PT11) marker genes (Figure S2b). Therefore, AM-specific

signalling cues are not perturbed in str1 roots containing

stunted arbuscules, and the increased intraradical coloniza-

tion, including an elevated number of stunted arbuscules,

was sufficient to elicit detectable expression.

To confirm correlation between the morphological and

the molecular str1 phenotype across divergent AM fungal

species, marker gene expression patterns in str1 mutants

colonized by Gigaspora rosea were determined (Figure 5).

A reduced set of representative marker genes was em-

ployed, namely two early (AM1 and AM3) and two late

(AM14 and PT11) marker genes. As observed for Glomus

intraradices, colonization by Gigaspora rosea increased

with time in wild-type cultivars, and remained significantly

lower in the str1 mutants (Figure 5a). The transcripts of the

four markers were detected at high levels in both wild-type

cultivars at all time points (Figure 5b). In contrast, in the

two str1 mutants only the mRNAs of the two early marker

genes were detected. The distinct marker gene expression

profile consistently observed in the mutant alleles was

supported by an independent biological replicate (Fig-

ure S3b). Thus, despite the comparable abundance of

arbusculated cells in plants inoculated with Glomus intra-

radices and Gigaspora rosea, the gene induction of the late

markers PT11 and AM14 could not be detected in roots

colonized by Gigaspora rosea (Figures 4, 5, S2 and S3).

Morphological differences between the Glomus intraradic-

es and Gigaspora rosea arbuscules observed in rice (Gut-

jahr et al., 2008; Kobae and Hata, 2010) are a likely cause for

variation in their capacity to elicit gene expression. Differ-

ences in the composition of signaling molecules released

by the two AM fungal species offers an alternative expla-

nation for variation in host gene expression. Nevertheless,

the expression of late marker genes in str1 mutants

colonized by Glomus intraradices shows that the signaling

pathway leading to arbuscule response marker gene

expression is intact.

Within the same experiment we also examined the

expression of STR1, STR2 and antiSTR1 in the mutant

background (Figure 6 and S4). In both wild-type cultivars

STR1 and STR2 expression was induced by Glomus intra-

radices and Gigaspora rosea colonization, and correlated

well with time and increasing levels of colonization. In both

str1 mutant alleles colonized with Glomus intraradices and

Gigaspora rosea, transcripts of STR1 and STR2 did not

accumulate beyond the background level of mock-inocu-

lated roots, and remained close to the detection limit

2-1rts1-1rts Nipponbare WTHwayoung WT

Figure 3. Phenotype of rice str1 mutants colonized by Gigaspora rosea.

Confocal images of Gigaspora rosea arbuscules stained with wheatgerm agglutinin (WGA) conjugated with Alexa Fluor 488 in the cortex cells of str1-1 and str1-2,

and their corresponding wild type. Bright-field images and overlays show the outline of cortical cells. Whereas the arbuscules in the cortex cells of the wild type are

well developed, they are small, stunted and clumped in str1-1 and str1-2. Scale bars: 10 lm.

6 Caroline Gutjahr et al.

ª 2011 The Authors
The Plant Journal ª 2011 Blackwell Publishing Ltd, doi: 10.1111/j.1365-313X.2011.04842.x



(Figures 6 and S4). Even at 7 wpi with Glomus intraradices,

when late marker transcripts were detected in both str1

mutants, the mRNA level of STR1 and STR2 in the mutant

background did not increase consistently (Figures 6 and

S4a). It could have been expected that the expression profile

of the wild-type STR2 gene in the str1 mutant backgrounds

was similar to late marker genes. The common absence of

gene activity induction of both STR genes, however,

(a)

40

50

60
Total
Hyphopodia
Int hyphae

str1-1 Hwayoung WT

–10

0

10

20

30

3 5 7

wpi

R
oo

t l
en

gt
h 

co
lo

ni
za

tio
n 

(%
)

40

50

60

–10

10

0

20

30

R
oo

t l
en

gt
h 

co
lo

ni
za

tio
n 

(%
)

40

50

60

–10

10

0

20

30

R
oo

t l
en

gt
h 

co
lo

ni
za

tio
n 

(%
)

40

50

60

–10

0

10

20

30

R
oo

t l
en

gt
h 

co
lo

ni
za

tio
n 

(%
)

Arbuscules
Vesicles

3 5 7

wpi

str1-2 Nipponbare WT

1.0E+00

wpi

(b)
1.0E+00

str1-1 Hwayoung WT

3 5 7

3 5 7

3 5 7

wpi

1.0E–08

1.0E–07

1.0E–06

1.0E–05

1.0E–04

1.0E–03

1.0E–02

1.0E–01

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

1.0E–08

1.0E–07

1.0E–06

1.0E–05

1.0E–04

1.0E–03

1.0E–02

1.0E–01

N
or

m
al

iz
ed

 e
xp

re
ss

io
n AM1

AM2
AM3
AM10
AM11
AM14
AM15
PT11

wpi
3 5 7

wpi

3 5 7
wpi

3 5 7
wpi

1.0E–03

1.0E–04

1.0E–02

1.0E–01

1.0E+00
str1-2

1.0E–03

1.0E–04

1.0E–02

1.0E–01

1.0E+00
Nipponbare WT

1.0E–08

1.0E–07

1.0E–06

1.0E–05

1.0E–08

1.0E–07

1.0E–06

1.0E–05

Figure 4. Molecular phenotype of str1 mutants colonized by Glomus intraradices.

(a) Glomus intraradices colonization kinetics in str1-1 and str1-2, as compared with their corresponding wild type. The percentage root length colonization was

determined by the grid line intersect method. Means and SEs of three biological replicates each represented by duplicate samples are shown. Int hyphae:

intraradical hyphae.

(b) Real-time RT-PCR-based expression kinetics of four early (AM1, AM2, AM3, AM11) and four late (AM10, AM14, AM15, PT11) rice arbuscular mycorrhizal (AM)

marker genes in roots of str1-1, str1-2 and the corresponding wild type in response to G. intraradices colonization. Error bars indicate SDs of three technical

replicates. Each sample is a pool of three plants.
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suggests a positive feedback loop to co-regulate both genes.

AntiSTR1 was expressed in roots of all treatments at

approximately the same level at all time points. In summary,

the T-DNA insertions in str1-1 and str1-2 perturb STR1 and

STR2 induction in response to AM colonization, but do not

affect the expression of antiSTR1.

The stunted arbuscule phenotype of str1 persists

in nurse culture

In M. truncatula, STR1 and STR2 have been shown to reside

and interact in the periarbuscular membrane, and with

analogy to other half-size ABCG transporters are predicted
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Figure 5. Molecular phenotypes of str1 mutants colonized by Gigaspora rosea.

(a) Gigaspora rosea colonization kinetics of str1-1 and str1-2, compared with their corresponding wild type. The percentage of root length colonization was

determined by the grid line intersect method. Means and SEs of three biological replicates each represented by duplicate samples are shown. Int hyphae:

intraradical hyphae. (b) Real-time RT-PCR-based expression kinetics of two early (AM1, AM3) and two late (AM14, PT11) rice arbuscular mycorrhizal (AM) marker

genes in roots of str1-1, str1-2 and the corresponding wild type in response to G. rosea colonization. Error bars indicate SDs of three technical replicates. Each

sample is a pool of three plants.
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to be exporters (Zhang et al., 2010). Consequently, the lack

of the STR1/STR2 substrate in the periarbuscular interface

might interfere with symbiosis signalling, and could ulti-

mately lead to altered carbon flow and thus to energy

deprivation of the fungus, reflected by stunted arbuscules.

Fungal starvation as a cause for limited arbuscule develop-

ment was examined by co-cultivating inoculated str1-1

plants with wild-type nurse plants, which serve nutrients

and energy to the fungus (Figure 7a). To obtain good reso-

lution of possible quantitative differences, half-strength

inoculum was used for this experiment. At 6 wpi monocul-

tured wild-type plants had high colonization levels, whereas

monocultured str1-1 plants were barely colonized

(Figure 7b). The presence of wild-type plants quantitatively

enhanced the colonization of str1-1 plants relative to the

pure mutant culture (Figure 7b), yet the stunted arbuscule

phenotype persisted (Figure 7c). Therefore, fungal fitness

can be enhanced by community culture with wild-type nurse

plants, but the morphological arbuscule defect is not com-

plemented and thus not caused by a general lack of energy.

Strigolactones are unlikely substrates for STR1 and STR2

Root-released strigolactones induce branching of AM fungal

hyphae prior to root colonization (Akiyama et al., 2005). It
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Figure 6. Expression kinetics of STR1, STR2 and antiSTR1 in str1 mutants.
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Expression was determined by real-time RT-PCR. Means and standard deviations of three technical replicates are shown. As all plants were grown in parallel, the

same data for mock-inoculated roots are shown in (a) and (b).
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has been hypothesized that strigolactones might also be

required as a signal for hyphal branching inside the root

during arbuscule formation, and furthermore that the

absence of wild-type arbuscule branching in str1 and str2

mutants might suggest an involvement of the STR1/STR2

exporters in strigolactone release (Zhang et al., 2010).

Therefore, mutants deficient in strigolactone biosynthesis

should display a stunted arbuscule phenotype similar to str1

and str2. Decreased colonization levels have been observed

in strigolactone mutants of pea and tomato, but arbuscule

morphology in roots of these mutants have not been

reported (Gomez-Roldan et al., 2008; Koltai et al., 2010). We

therefore tested this hypothesis by employing the d17 and

d10 rice lines that carry mutations in CAROTEOID CLEAV-

AGE DIOXIGENASE 7 and 8 (CCD7 and CCD8), respectively,

which are required for strigolactone biosynthesis (Umehara

et al., 2008), and for which the arbuscule phenotype is not

known.

Similar to str1 and str2 mutants, colonization of d10 and

d17 by Glomus intraradices was reduced at 6 wpi by more

than half in both mutants with respect to the corresponding

wild type (Figure 8a). However, a close inspection of arbus-

cule morphology revealed wild-type like highly branched

arbuscules in roots of both strigolactone-deficient mutants

(Figure 8b). Therefore, as strigolactone levels in d10 and d17

are below the detection limit (Umehara et al., 2008), we

conclude that strigolactones are unlikely to be required for

arbuscule branching, and that the phenotype of str1 and str2

mutants is not caused by a lack of strigolactone transport.

DISCUSSION

Arbuscular mycorrhizal symbiosis has great potential for

application in sustainable agricultural practices, reducing

fertilizer input because of the nutritional benefit it confers to

plants. To improve crop performance through the applica-

tion of AM fungi it is crucial to understand the molecular

components that are important for arbuscular mycorrhiza

development and function, especially in cereals, which

represent the world’s most important staple crops. Here we

analyzed the function of STR1 and STR2, two half-size ABCG
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Figure 7. Enhanced colonization of str1 by wild-type nurse plants.

(a) Experimental set-up: two str1-1 mutant plants were surrounded by six wild-type plants and inoculated with Glomus intraradices. As a control, two plants of each

genotype were surrounded by six plants of the same genotype.

(b) The percentage of root length colonization, as determined by the gridline intersect method, of the Hwayoung wild type surrounded by six wild-type plants (WT/

WT), str1-1 surrounded by wild type (str1-1/WT) and str1-1 surrounded by str1-1 (str1-1/str1-1) at 6 weeks post inoculation (wpi). Means and SEs of three biological

replicates represented by duplicate samples are shown. Int hyphae: intraradical hyphae.

(c) Confocal images of G. intraradices arbuscules stained with wheatgerm agglutinin (WGA) conjugated with Alexa Fluor 488 in cortex cells of str1-1 and Hwayoung

wild type at 6 wpi. Bright-field images and overlays show the outline of the cortical cells. Although colonization in str1-1 is enhanced by the presence of the wild type,

the arbuscule phenotype is not complemented. Scale bars: 20 lm.
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transporters in the major staple crop rice. We show that the

mutation of rice STR1 and STR2 interferes with arbuscule

formation, thus providing evidence for functional conser-

vation of STR1 and STR2 between members of the di- and

monocotyledons (Zhang et al., 2010).

We found putative orthologs of STR1 and STR2 in the

currently sequenced representatives of the Pooideae, Pani-

ceae and Anthopogoneae. This evidence, together with the

presence of putative orthologs in the genome of the

lycophyte Sellaginella moellendorfii (Zhang et al., 2010),

suggests that STR1 and STR2 arose in lower plants prior to

the divergence of the angiosperms, and that their function is

broadly conserved among mycorrhizal land plants. Also, the

common SYM pathway, required for fungal penetration into

the host root, is functionally conserved across the major

angiosperm classes (Chen et al., 2007, 2008, 2009; Banba

et al., 2008; Gutjahr et al., 2008), and orthologs of common

SYM genes have been found in all plant lineages (Wang

et al., 2010). Conservation of STR1 and STR2 consolidates

the hypothesis that arbuscular mycorrhizal symbiosis arose

simultaneously with the colonization of land by plants

(Remy et al., 1994; Kistner and Parniske, 2002), and that

the genetic repertoire required for the development of

arbuscular mycorrhiza might have emerged in a common

ancestor of land plants.

Although the knock-out of STR1 interferes with arbuscule

development, the signaling pathway leading to arbuscule-

related gene induction is not perturbed, as late marker gene

expression can be detected at higher levels of colonization

with stunted Glomus intraradices arbuscules. This suggests

that the expression level of arbuscule-related marker genes

is a function of average arbuscule growth in the root system,

such that an early arrest of arbuscule growth leads to lower

levels of induction, and a certain minimum number of

arbuscules is required to reach the threshold for transcript

detection. Corroborating our findings in M. truncatula, the

transcript of the specifically arbuscule-induced OsPT11

orthologue MtPT4 was detected at a relatively high level at

7 days after contact with Glomus intraradices spores (Zhang

et al., 2010). The earlier time point of PT4 detection in

M. truncatula is explained by the use of an inoculation

system that allows synchronized burst colonization in a very

short time (Zhang et al., 2010).

Interestingly, the severity of the molecular phenotype

of rice str1 mutants depended on the AM fungus

employed, as roots colonized by Gigaspora rosea showed

no arbuscule-related gene induction. It has been reported

earlier that different fungal species might differ in their

influence on host transcriptional responses (Hohnjec et al.,

2005; Liu et al., 2007), and this might result from variation in

colonization dynamics or the cocktail of signaling molecules

produced by different fungal species. More importantly,

differences in arbuscule morphology in rice roots have been

reported for Glomus intraradices and Gigaspora rosea

(Gutjahr et al., 2008; Kobae and Hata, 2010). Glomus intra-

radices only forms highly branched arbuscules, whereas

Gigaspora rosea develops a mixture of branched arbuscules

and thick arbuscular and hyphal coils. As the PT11 protein

accumulates only in the membranes surrounding highly

branched arbuscules, but not in those surrounding thick

coiled hyphae (Kobae and Hata, 2010), it is possible that the

number of arbuscules with inductive capacity in Gigaspora

rosea-colonized str1 mutant roots was not sufficient to elicit

late marker genes. Alternatively, differences in the compo-

sition of signaling molecules released by two AM fungal

species might lead to differences in host gene expression,

which might in turn impact on arbuscule morphology.

The STR1/STR2 complex resides in the peri-arbuscular

membrane, which represents the plant border of the

apoplastic symbiotic interface. Based on the structure of

STR1 and STR2, it was predicted that they are involved in the

export of a molecule, which might be required locally at the

periarbuscular space (Zhang et al., 2010). ABC transporters

can transport a large variety of substrates ranging from

small peptides, oligosaccharides, secondary metabolites,

hormone xenobiotics and lipids to mineral ions (Rea, 2007;

Rees et al., 2009; Woodward et al., 2011). An appealing
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Figure 8. Colonization of strigolcatone biosynthesis mutants by Glomus

intraradices.

(a) The percentage root length colonization of strigolactone biosynthesis

mutants defective in CCD8 (d10) and CCD7 (d17), as determined by the grid

line intersect method, at 6 wpi. Means and SEs of three independent

biological replicates represented by duplicate samples are shown.

(b) The arbuscule morphology in d10 and d17 mutants is comparable with

that of the Shiokari wild type. Bright-field images and overlays show the

outline of cortical cells. Scale bars: 10 lm.
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hypothesis was that strigolactones could be a possible

substrate of the STR1/STR2 dimer, and a signal for arbuscule

branching (Zhang et al., 2010), as they induce hyphal

branching outside of the root prior to colonization (Akiyama

et al., 2005). To test this hypothesis we took advantage of the

availability of the rice mutants d10 and d17, which are

defective in strigolactone biosynthesis (Umehara et al.,

2008), and report for the first time the AM phenotype of

those mutants in rice. The colonization level of d10 and d17

was reduced, consistent with previous observations on

strigolactone biosynthesis mutants in Pisum sativum (pea)

and Solanum lycopersicum (tomato) (Gomez-Roldan et al.,

2008; Koltai et al., 2010). However, the arbuscule morpho-

logy was equivalent to that of wild-type plants, indicating

that strigolactones are not required for arbuscule develop-

ment, and are probably not the substrate of the STR1/STR2

dimer. It has recently been shown that in addition to

strigolactones, hydroxy fatty acids can induce branching in

germination hyphae of AM fungi (Nagahashi and Douds,

2011), and it is possible that similar compounds are trans-

ported by STR1 and STR2 to induce arbuscule branching

inside cortical cells.

A second hypothesis was that the STR1/STR2 dimer might

transport a plant-derived nutrient required for arbuscule

development (Zhang et al., 2010). Thus, reduced arbuscule

development might result from energy deprivation of the

fungus. Inoculation of a str1 mutant with wild-type plants in

the same pot enhanced the level of colonization in the

mutant, but did not complement the stunted arbuscule

phenotype, showing that although the vigour of the fungus

can be enhanced by external energy supply, arbuscule

stunting is not caused by a general malnutrition of the

fungus. However, it cannot be excluded that the STR1/STR2

dimer exports a specific nutritious compound, which is

locally required at the arbuscule.

In plants, half-size ABC transporters of the G subfamily

have been implicated in the export of lipid molecules from

the leaf epidermis to the cuticle (Bird et al., 2007; Luo

et al., 2007; Panikashvili et al., 2007; Bessire et al., 2011),

and also other hydrophobic compounds such as sporo-

pollenin precursors, which are required for pollen exine

development and male fertility (Quilichini et al., 2010;

Bessire et al., 2011; Choi et al., 2011; Dou et al., 2011).

Animal ABCG family members transport cholesterol and

other sterols or hydrophobic molecules (Borst et al., 2000;

Schmitz et al., 2001; Wittenburg and Carey, 2002; Wang

et al., 2011). Sterols and sphingolipids are structural con-

stituents of membranes, and are important for the con-

struction of specific membrane domains, for example lipid

rafts that are believed to unite proteins involved in signal

transduction processes (Simons and Toomre, 2000).

Whereas the STR1/STR2 substrate could be a signal or a

locally required nutrient, it might alternatively be a

precursor of or a plant-derived structural component that

serves to build specific fungal membrane domains, and is

not synthesized by the AM fungus itself.

We found that rice STR1 is associated with a cis-NAT,

antiSTR1. cDNA sequencing showed that in rice 7% of

transcripts are associated with cis-NATs (Osato et al., 2003),

but their function is not clear to date. In Arabidopsis,

antisense transcipts have been reported to generate small

interfering RNAs (siRNAs) that negatively regulate genes

involved in diverse processes (Borsani et al., 2005; Zubko

and Meyer, 2007; Held et al., 2008; Swiezewski et al., 2009)

or influence the location of the polyadenylation site of the

sense transcript (Zubko et al., 2011). However, cis-NATs

might regulate their corresponding sense transcript in other

ways, such as RNA masking, chromatin remodelling or RNA

editing, and it has been proposed that the expression pattern

of sense and antisense transcript might give clues on the

regulatory outcome of their interaction (Lapidot and Pilpel,

2006). It is surprising that antiSTR1 accumulates at equal

levels in mycorrhizal and non-mycorrhizal roots, in contrast

to STR1 and STR2 mRNAs, which are barely detectable in

non-mycorrhizal roots and abundantly induced upon mycor-

rhizal colonization. However, at the level of the root cortex

antiSTR1 is specifically expressed in arbusculated cells,

along with STR1 and STR2. It is likely that in non-colonized

roots antiSTR1 is expressed in cell types other than cortex

cells, for example in the vascular tissue, as shown for

Medicago STR1 and STR2 (Zhang et al., 2010). Furthermore,

constitutive antiSTR1 transcript accumulation might serve to

control possible deleterious OsSTR1 (and OsSTR2) accumu-

lation in the absence of arbuscular mycorrhiza. Intriguingly,

it has recently been reported that rice PHO1 genes are also

coupled with cis-NATs (Secco et al., 2010). Rice PHO1;2

maintains phosphate homeostasis, especially in phosphate

starvation conditions. Interestingly, upon phosphate starva-

tion, PHO1;2 transcript abundance remains constant,

whereas that of its cis-NAT is increased, pointing to a

positive impact of the antisense transcript on PHO1;2 protein

availability. Analogously, expression of antiSTR1 in arbus-

culated cells might promote the translation of STR1 by

stabilizing its mRNA. Further experiments involving tran-

script localization and (cell type-specific) expression pertur-

bation of antiSTR1 are required to test these hypotheses.

EXPERIMENTAL PROCEDURES

Plant material

For all experiments O. sativa ssp. japonica cv. Nipponbare was
used, if not indicated otherwise. For the functional analysis of STR1
(TIGR ID, LOC_Os09g23640; RAP ID, Os09g0401100), two T-DNA
insertion mutants were identified: str1-1 (1C-04850; FST-Postech;
Jeon et al., 2000) in the cv. Hwayoung background; and str1-2
(CL522472; FST-Genoplante; Sallaud et al., 2004) in the cv.
Nipponbare background. For STR2 (RAP ID, jigsaw07_642) a dSpm
transposon insertion mutant str2-1 (RdSpm 2654D; http://sundar-
lab.ucdavis.edu/rice/query_database.html) in the cv. Nipponbare
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background was obtained. Homozygous mutant lines were identi-
fied and the exact position of the insertion was determined by
re-sequencing the insertion flanks, as described previously (Gutjahr
et al., 2008), using the primers shown in Table S1. The strigolactone
biosynthesis mutants d10 and d17 (Umehara et al., 2008) and the
corresponding wild-type cv. Shiokari were kindly provided by
Shinjiro Yamaguchi (RIKEN Plant Science Center, http://
www.psc.riken.jp).

Growth conditions and inoculation by AM fungi

Plants were inoculated with Glomus intraradices or Gigaspora
rosea, as described previously (Gutjahr et al., 2008). For the
community experiment, plants were inoculated with Glomus
intraradices and grown in pots where two str1-1 mutant plants or
two Nipponbare wild-type plants were surrounded by six str1-1
mutant or six wild-type plants, as shown in Figure 7a. All plants
were watered three times a week for the first 2 wpi. Thereafter
they were watered once a week and fertilized twice a week with a
mix of 0.005% (w/v) Hauert-Flory 2 type K (Hauert, http://www.
hauert.com) and 0.01% Sequestren Rapid (Syngenta, http://www.
syngenta.com).

Root staining, quantification of AM colonization

and confocal microscopy

Quantification of AM colonization after Trypan blue staining was
performed as described previously (Gutjahr et al., 2008). For con-
focal microscopy, roots were stained with WGA-Alexafluor 488 and
imaged with a Zeiss LSM 700 confocal microscope (http://www.
zeiss.de).

Amplification of full-length cDNAs

The full-length cDNAs of STR1 and STR2 were segmentally ampli-
fied for sequencing with the primers listed in Table S3. The 5¢ and 3¢
untranslated regions (UTRs) were obtained with the Invitrogen
GeneRacer� kit (Invitrogen, http://www.invitrogen.com) according
to the manufacturer’s instructions and using the gene-specific
primers shown in Table S3. Full-length cDNA sequences were
submitted to GenBank under the accession numbers JN608807
(STR1) and JN608806 (STR2).

Laser microdissection

A small number of roots inoculated with Glomus intraradices
were collected at 7 wpi and cut into 0.5-cm-long pieces. These were
acetone fixed and embedded employing a microwave-enhanced
paraffin embedding protocol, as previously described (Tang et al.,
2006). Tissue blocks were immediately cut into 12-lm sections on a
rotary microtome (Leitz, http://www.leica-microsystems.com) and
mounted on UV-treated PEN 1-mm PALM membrane slides (PALM,
http://www.zeiss.de). A total of 2000 cells per replicate were laser
captured with a PALM microbeam system (PALM) from deparaffi-
nized sections within 48 h of preparation.

RNA extraction, cDNA synthesis and real-time RT-PCR

RNA extraction, cDNA synthesis and real-time RT-PCR were
performed as described previously (Gutjahr et al., 2008). Primer
sequences not mentioned in Gutjahr et al. (2008) are listed in
Table S3. The specificity of the primers designed to amplify
antiSTR1 from oligo dT-primed cDNA was tested by comparison
with with cDNA primed with antiSTR1-specific primers (Tables S1
and S3). If not indicated otherwise, all expression values are dis-
played relative to CYCLOPHILIN2 expression.

Phylogenetic analysis

Phylogenetic analyses were conducted in MEGA4 (Tamura et al.,
2007) using the maximum parsimony method. The bootstrap con-
sensus tree inferred from 1000 replicates was obtained using the
Close-Neighbor-Interchange algorithm (Nei and Kumar, 2000), with
search level 7, in which the initial trees were obtained with the
random addition of sequences (10 replicates). All alignment gaps
were treated as missing data. There were a total of 2457 positions in
the final data set, out of which 1557 were parsimony informative.
Protein sequences were adopted from Verrier et al. (2008) and
Zhang et al. (2010), except for: Brachypodium distachyon, BdSTR1
(Bradi4g29810.1) and BdSTR2 (Bradi2g26560.1); Setaria italica,
SiSTR1 (SiPROV028709m.g) and SiSTR2 (SiPROV033915m.g); and
Zea mays, ZmSTR1 (GRMZM2G357034_P01) and ZmSTR2
(GRMZM2G035276_P01). which were obtained by searches in http://
www.phytozome.com and http://www.maizesequence.org.
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Figure S3. Experiment II: molecular phenotype of str1 mutants
colonized by Gigaspora rosea.
Figure S4. Experiment II: expression kinetics of STR1, STR2 and
antiSTR1 in str1 mutants.
Table S1. Specificity test for real-time RT-PCR primers targeting
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delivery, but are not copy-edited or typeset. Technical support
issues arising from supporting information (other than missing
files) should be addressed to the authors.

REFERENCES

Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes

induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435,

824–827.

Baier, M., Keck, M., Gödde, V., Niehaus, K., Küster, H. and Hohnjec, N. (2010)
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