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Abstract

The classification of malignant gliomas is moving from a morphology-based guide to a system

built on molecular criteria. The development of a genomic landscape for gliomas and a better

understanding of its functional consequences have led to the development of internally consistent

molecular classifiers. However, development of a biologically insightful classification to guide

therapy is still a work in progress. Response to targeted treatments is based not only on the

presence of drugable targets, but rather on the molecular circuitry of the cells. Further, tumours are

heterogeneous and change and adapt in response to drugs. Therefore, the challenge of developing

molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major

challenge for the field. In this review, we examine the potential role of MGMT methylation,

IDH1/2 mutations, 1p/19q deletions, aberrant epidermal growth factor receptor and PI3K

pathways, abnormal p53/Rb pathways, cancer stem-cell markers and microRNAs as prognostic

and predictive molecular markers in the setting of adult high-grade gliomas and we outline the

clinically relevant subtypes of glioblastoma with genomic, transcriptomic and proteomic

integrated analyses. Furthermore, we describe how these advances, especially in epidermal growth

factor receptor/PI3K/mTOR signalling pathway, affect our approaches towards targeted therapy,

raising new challenges and identifying new leads.
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Introduction

Malignant gliomas are the most common type of primary brain cancer. They arise from the

constituent glial cells of the brain, or their precursors, and diffusely invade surrounding

brain, making curative surgical resection almost impossible. Diffuse gliomas are classified

on their morphological appearance and similarity to astrocytic or oligodendroglial cells and

graded on a scale of II–IV with increasing malignancy, according to the World Health

Organization (WHO) classification [1]. The high-grade gliomas, anaplastic gliomas (WHO

grade III) and glioblastoma (GBM, WHO grade IV), have a dismal prognosis, with median

survivals of a few years for the former and 9–12 months for the latter [2]. On rare occasions,

patients with GBM survive greater than 3 years and are referred to as GBM long-term

survivors [3,4]. Several clinical and histopathological elements are reportedly associated

with a better prognosis for GBM, including young age, good performance status, gross total

resection, adjuvant treatments, giant-cell subtype and oligodendroglial differentiation [1,5–

9]. The heterogeneity of patient outcomes points to the insufficiency of a classification

based on histopathology. That is, as a group, the diagnostic categories provide information

about the group, but limited information about an individual patient. More importantly, in an

era of therapies designed to target specific molecular lesions, a classification based on histo-

pathology does not provide sufficient insight for patient stratification. Therefore, great

efforts have been made to incorporate new information about the molecular landscape of

gliomas into novel classifications that may potentially guide treatment. Importantly, this is

an evolving process. Classifications based on molecular abnormalities, which will be

discussed below, are internally consistent and in general correlate well with morphological

criteria. However, these classifiers have yet to reach the level of sophistication and depth

that will enable patient stratification.

During the last few decades, the discoveries of several genetic alterations and aberrant

signalling pathways have made a considerable contribution to our understanding of the

genesis and biology of gliomas (Figure 1). One of the significant spin-offs from this is that

genetic profile can be of prognostic or predictive importance [10,11]. This is an important

step towards developing specific treatments for the individual, that is, the concept of

personalized medicine [12,13]. Here, we provide a brief look at what is known about the

molecular aspects of high-grade gliomas, including prognostic/predictive markers and

emerging new concepts, that are useful for the stratification of patients and an adequate

evaluation of the potential efficacy of therapeutic agents.

Distinctive molecular features and their prognostic and predictive

significance for high-grade gliomas (Table 1)

O-6-methylguanine-DNA methyltransferase (MGMT)

The DNA-repair enzyme MGMT gene, located on 10q26, has been a subject of interest

owing to its association with response to alkylating drugs [14, 15]. In tumours, the cytosines

in the MGMT promoter CG dinucleotides (CpG)-rich sites often carry a methyl group that

silences its expression relative to normal tissue [15]. Of interest, epi-genetic abrogation of
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MGMT augments sensitivity to one of the most-used alkylating agents for GBM,

temozolomide (TMZ), which damages DNA by methylating the O-6 position of the guanine

[16,17].

The MGMT status can be tested by methylation-specific polymerase chain reaction (MS-

PCR), which is based on bisulphite conversion of unmethylated cytosines into uracils [18].

The assay can be performed on formalin-fixed paraffin-embedded (FFPE) tissue [19].

Further, real-time MS-PCR allows for quantification with high throughput [20]. Other

techniques have also emerged, including methylation-specific pyrosequencing [21] and

methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) [22],

but the value of immunohistochemistry (IHC) in the assessment of MGMT methylation is

controversial [23].

About 40% of primary GBM and over 70% of secondary GBM display epigenetic MGMT

silencing [24,25], although these frequencies vary [15,26]. MGMT promoter methylation is

also observed in anaplastic gliomas, ranging from 50% to 80% [27–29]. The relationship

between MGMT and TMZ was revealed by a prospective trial as a strong and independent

predictive factor for GBM patients [6,17,30]. Subsequent studies confirmed that MGMT

promoter hypermethylation can also be a prognostic factor for patients with GBM [31,32],

including elderly patients [33]. In anaplastic gliomas, MGMT methylation seems to be a

favourable prognostic marker independent of therapy (radiation or chemotherapy) [28,34].

Anaplastic gliomas with hypermethylated-MGMT exhibit a survival benefit when treated

with radiation alone [32]. In ana-plastic oligodendroglioma (AO), MGMT promoter

methylation is also prognostic, but does not have predictive value [34]. MGMT promoter

methylation is associated with improved outcome in patients with anaplastic astrocytoma

(AA) and anaplastic oligoastrocytoma (AOA) treated with TMZ at recurrence [35]. These

results might be related to associations with other prognostic markers in these tumours,

including 1p/19q deletions [34,36,37] and IDH1 mutation [38,39].

Isocitrate dehydrogenase 1/2 (IDH1/2)

One of the significant recent discoveries in the field of GBM is a recurrent mutation in the

active site of cytosolic NADP-dependent isocitrate dehydrogenase (IDH1) [40].

Subsequently, mutations in mitochondrial NADP-dependent isocitrate dehydrogenase

(IDH2) gene have also been reported in around 3% of gliomas [41]. The IDH1 gene, located

on chromosome 2q33, encodes an enzyme which catalyses the oxidative carboxylation of

isocitrate to a-ketoglutarate, resulting in the reduction of NADP to NADPH [42]. IDH2 on

chromosome 15q26 produces an enzyme that plays the same role in mitochondria [43].

Several theories for the tumorigenic potential of mutant IDH1/2 protein have been

promulgated; the mutation can decrease the amount of NADPH necessary for cellular

protection from oxidative stress [39,44] or produce a decrement in a-ketoglutarate, which

degrades HIF-1a, a promoter for tumour growth and angiogenesis [45]. However,

heterozygous IDH1/2 mutations may be consistent with a gain of function, and the mutant

enzyme was reported to increase the formation of 2-hydroxyglutarate, which might be

tumorigenic [46,47]. Despite their tumorigenic potential, IDH1/2 mutations are associated

with young patient age, secondary GBM and longer overall survival [40].
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Detection of IDH1/2 mutations relies on direct sequencing, including pyrosequencing

[38,48], or single strand conformation polymorphism [49]. An alternative method, derived

cleaved amplified polymorphic sequence, utilizes mismatched primers for endonuclease-

based detection of mutations in codon 132 of IDH1 [50]. Another approach is melting curve

analysis performed on real-time PCR products [51], allowing for rapid and sensitive analysis

easily accessible in the diagnostic laboratory. An IDH1 R132H (93% of glioma-associated

IDH1 hotspot mutations) mutation-specific antibody suitable for FFPE tissue is now

available for IHC [52,53].

IDH1 mutations appear to be found almost exclusively in grade II and III gliomas and the

secondary GBMs that arise from them. Over 80% of secondary GBMs possess an IDH1

mutation, and anaplastic gliomas also show high frequencies of IDH1 mutation (AA: 69.2%

and AO: 86.1%) [44]. In contrast, IDH1 and IDH2 mutations are rarely detected in primary

GBMs, with a frequency of 3–7% [38,39,44,54–56]. The original studies describing these

mutations in GBMs [55], AAs [28] and AOs [29] demonstrated a better outcome for

tumours with mutation than for those without. Furthermore, a recent trial provides evidence

that IDH1 status is more prognostic for overall survival than standard histological criteria,

the order from relatively favourable to poor outcome being: AA with mutation, GBM with

mutation, AA without mutation and GBM without mutation [57]. These findings suggest

that the classification of anaplastic glioma and GBM, and thus patient management, should

include IDH1 status. While IDH1/2 mutations signify a more favourable prognosis across all

grades of glioma, attempts to demonstrate a link between these mutations and benefit from a

specific treatment have so far failed [29], and the role of IDH mutations as predictive

indicators remains to be defined.

The IDH1/2 mutation story has two important consequences. First, it provides a powerful

link between genetic alteration and the biochemical phenotype of cancer. In leukaemia,

IDH1/2 mutations result in a hypermethylated phenotype, which impairs haematopoietic

differentiation [58]. The recent finding that IDH1 mutations are tightly linked with the CpG

island methylator phenotype (G-CIMP) across all glioma tumour grades [59], raises the

possibility that IDH1 mutations may also be disrupting global methylation patterns in

diffuse gliomas. Future studies will be needed to determine if IDH1 mutations similarly

limit differentiation and promote tumour stem-cell self-renewal. Second, the strong

association between IDH1/2 mutations and grade II/III gliomas and secondary GBMs and its

relative exclusion from primary GBMs provide a critical insight – primary and secondary

GBMs are fundamentally not the same disease. The recent finding that IDH1-mutant and

IDH1-wild type GBMs contain non-overlapping sets of molecular events and that IDH1-

mutant tumours preferentially arise from oligodendroglial precursors involved in frontal

cortex maturation further suggest a different cell of origin for IDH1-mutant gliomas [60].

These results also raise a critical question. If IDH1/2 mutations are a rare event in the

majority of primary GBMs, which are phosphatidylinositol 3′; kinase (PI3K) hyperactivated,

what are the links between PI3K hyperactivation and altered cellular metabolism in primary

GBMs?
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Chromosome 1p/19q

Oligodendroglial tumours exhibit frequent loss of heterozygosity (LOH) on the short arm of

chromosome 1 (1p) and the long arm of chromosome 19 (19q) [61]. Although putative

tumour suppressors on 1p and 19q have been evaluated and no tumorigenic genes definitely

identified thus far [62–66], a recent exome sequencing study of oligodendrogliomas

revealed inactivating mutations of the CIC gene (homologue of the Drosophila gene

capicua) on 19q and the FUBP1 gene (far-upstream element binding protein 1) on 1p in a

substantial fraction of oligodendrogliomas, providing important insights into the

pathogenesis, diagnosis, prognosis and treatment of these tumours [67]. One of the notable

findings with 1p/19q LOH is the favourable response to chemotherapy in oligodendroglial

tumours with this co-deletion [10].

Generally, 1p/19q loss is assessed with PCR-based LOH assays [68] or fluorescence in situ

hybridization (FISH) [69]. FISH uses fluorescence-conjugated probes directly on tissue

sections, and is favoured by neuropathologists, because tissue architecture is preserved.

MLPA is another option and detects multiple copy number changes in a single analysis [70].

Other techniques, such as array comparative genomic hybridization (CGH), provide an

estimate of copy number at all chromosomal loci and can detect losses as well as polysomies

[71].

Losses of 1p and 19q are detected in up to 90% of oligodendrogliomas and 50–70% of AO

[72], whereas 30–50% of oligoastrocytomas, 20–30% of AOA, and less than 10% of diffuse

astrocytic gliomas, including GBM, demonstrate this aberration [73]. The role of 1p/19q loss

in AO has been studied, confirming the prognostic and possibly predictive role of these

markers in the setting of first-line chemotherapy [74,75], although their relationship to

second-line chemotherapy is less clear [76,77]. Furthermore, favourable outcome may be

independent of the type of adjuvant therapy [28,74,75]. In contrast to AO, the frequency of

1p/19q deletions among GBMs is low, and any association with outcome is complex. 1p/19q

deletions alone did not appear to associate with relatively good survival in one series of

patients with GBM [78], but in another study using CGH some GBM long-term survivors

showed combined loss of 1p and 19q [79]. Conversely, deletions involving 1p and 19q seem

to display shorter survival in a small number of GBM, possibly due to genomic instability

[80]. As 1p/19q LOH in anaplastic gliomas is significantly correlated with prognosis and

chemosensitivity, and given the difficulties associated with histopathological classification,

genetic testing should be performed routinely for these tumours [81].

Epidermal growth factor receptor (EGFR) and PI3K-Akt pathway

Overexpressed or mutated tyrosine kinases contribute to the development and progression of

many tumours [82]. This is also the case with gliomas, and EGFR (7p12) amplification is a

hallmark of GBM, specifically primary tumours [83]. About 50% of EGFR-amplified GBM

express a ligand-independent truncated mutant variant, EGFRvIII, which is characterized by

genomic deletion of exons 2–7, resulting in a constitutively active oncogenic form [84,85].

The subsequent strong and persistent activation of downstream PI3K signalling provides

advantages for cell survival, proliferation, and motility [86–88]. There are additional

missense mutations in the extracellular domain of EGFR in GBM, which are oncogenic and
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mutually exclusive to EGFRvIII [89]. These findings suggest a broader spectrum of EGFR-

activating mutations in GBM, the clinical importance of which is not currently understood.

By cytogenetics, EGFR amplification usually manifests as double-minutes, small fragments

of extrachromosomal DNA that can be effectively detected by FISH. FISH can also provide

information about genetic heterogeneity within tumours [85]. Other techniques such as real-

time PCR can be used to identify and quantify EGFR amplification [90]. MLPA analysis

allows for simultaneous and semi-quantitative copy number analysis [91]. IHC with an

antibody specific for EGFRvIII is claimed to detect tumour cells with this variant [92],

although the value of EGFR IHC is less clear [93]. In addition, a real-time RT-PCR assay

has been developed for quantification of EGFRvIII expression in FFPE samples [94].

Increased EGFR-mediated signalling is observed in about 30% of gliomas [95,96] and 60%

of GBMs [12], and the Cancer Genome Atlas (TCGA) project identified copy number

alterations and/or amplification of EGFR in 45% of GBMs [97]. EGFR amplification and

EGFRvIII associate with high-grade malignancy and may provide prognostic information

[1,92]; EGFRvIII overexpression and EGFR amplification have been promoted as indicators

of poor survival in GBM [98,99]. Additionally, EGFRvIII has been reported to be an

indicator of poor prognosis in GBM and AA [85,100–102], and also poor response to

radiation therapy and chemotherapy [103,104]. Conversely, other studies have reported that

these abnormalities lack any association with survival in GBM [105,106], or that EGFR

amplification may confer improved survival in elderly patients [107,108].

Activation of the PI3K pathway is significantly linked to increasing tumour grade, decreased

levels of apoptosis, and adverse outcome in human gliomas [109,110]. Multivariate analysis

suggests that elevated expression of p-Akt is related to poor prognosis in GBM [111]. p-

MAPK also appears to be an independent marker of outcome in GBM, associated with

increased resistance to radiation therapy [110]. One of the key mesenchymal signature

genes, Chitinase 3-like 1 (YKL-40), which potentially activates Akt and MAPK [112,113], is

predictive of poor outcome in EGFRvIII-negative patients, but not in EGFRvIII-positive

patients [114]. Raf kinase inhibitory protein expression correlates with tumour grade and is a

marker for good prognosis in high-grade gliomas [115]. Low PTEN (phosphatase and tensin

homologue deleted in chromosome 10) RNA or protein levels, or LOH, portend decreased

survival in patients with GBM [116,117]. Also, PTEN mutation, although not having a

prognostic impact on patients with GBM, is a negative prognostic factor in AA [108].

p53 and Rb pathway

The TP53 tumour suppressor gene, located on 17p13, is frequently mutated or deleted in

human tumours, including gliomas [118,119]. p53 can execute diverse cellular programmes,

such as cell cycle arrest, DNA repair, apoptosis, autophagy, differentiation, senescence and

self-renewal [120,121]. The retinoblastoma (Rb, 13q14) pathway is also a key cell cycle

regulatory complex at the G1 checkpoint. CDKN2A, located on 9p21 and deleted in many

cancers, encodes the p16 protein, a key inhibitor of the cell cycle via Rb pathway signalling,

and its homozygous deletion is associated with WHO grade III or IV gliomas [1]. Gliomas

often display mutations in the ARFMDM2-p53 and p16INK4A-CDK4-RB tumour

suppressor pathways [122,123]. Primary GBM often displays loss of the INK4A/ARF tumour
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suppressor gene locus along with PTEN mutation and EGFR amplification/mutation, and

secondary GBM shows frequent mutations of TP53 [124].

The relevance of p53 to the treatment and outcome of patients with high-grade glioma has

remained controversial. Some studies have shown that p53 status, assayed either by

expression or mutation analysis, is correlated with (relatively good) outcome [125,126],

while others have demonstrated no prognostic impact in anaplastic gliomas and GBM [127–

130]. Also, MDM2 amplification, although infrequent, has been shown by some to be

predictive of poor outcome [125,131], whereas others have observed no prognostic value

[132]. p53 status might cooperate with other prognostic variables; for example, TP53

mutation has been linked to low MGMT mRNA expression [133], although this does not

correlate with MGMT promoter methylation [134]. Loss of CDKN2A, CDKN2B, or RB or

CDK4 amplification, disrupting the Rb pathway, has been shown in AA to associate with

decreased survival [135,136]. Conversely, p16 appears to be associated with improved

survival in patients treated with chemotherapy and radiation [137]. Overall, it appears that

the prognostic impact of p53 and Rb aberrations is at best marginal.

Emerging biological markers, entities and integrative concepts for high-

grade gliomas

Cancer stem-cell markers

Cumulative data indicate that clonal populations of tumour cells display heterogeneity with

respect to proliferation and differentiation [138,139]. Recent concepts of cancer

development propose that a minor population of cancer stem cells or stem-like cells derived

from GBM contribute to tumorigenicity [140] and therapeutic resistance [141,142]. Previous

reports showed diverse stem-cell marker expression within gliomas, including CD133,

nestin, Sox-2, Musashi-1, LHX2, Bmi-1, CXCR4, Flt-4/VEGFR-3 and CD105/Endoglin

[143–145]. However, it remains uncertain what role stem-cell markers might have in

predicting glioma development, progression or outcome.

In vitro cancer stem-cell generation and presence of CD133+/Ki67+ cells are reportedly

indicators of disease progression and poor clinical outcome [146]. Several studies also

provide clinical evidence for the involvement of a tumour stem-cell phenotype in the

progression and chemoradiotherapeutic resistance of GBM, including CD133 (prominin-1)

[146–148], nestin [147,149,150], BMI-1 [151], Notch1 [152] and Wnt/β-catenin-related

molecules [153]. However, other studies do not support these findings [154,155].

MicroRNA

MicroRNAs (miRNAs) are short (19–24 nucleotides) nonprotein-coding RNAs that regulate

gene expression at the post-transcriptional level. These tiny RNA molecules can function as

key regulators of a wide variety of biological processes, including cell proliferation, cell

differentiation, apoptosis and development [156]. Given the pivotal regulatory role of

miRNAs in a wide range of processes, several miRNAs seem to act as tumour suppressors

or oncogenes in the biology of cancers, including GBM.
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Increasing numbers of miRNAs have been shown to target important pathways that drive

GBM, including tyrosine kinase signalling [157], cell cycle progression [158–161],

gliomagenesis via stem-cell regulation [159,162,163] and malignant progression [164].

Furthermore, there are differences in miRNA expression patterns among gliomas of

different grades, and miRNAs can be useful for subclassifying GBM in a manner that

facilitates more accurate prognosis and treatment decisions [165,166]. These include

miR-196 [167] and miR-21, miR-181b, miR-106a [168].

GBM with oligodendroglial component (GBMO)

Glioblastoma represents the most malignant type of diffuse astrocytic tumour, but a subset

of GBM shows focal oligodendroglial features, suggesting that some GBM may also have

an oligodendroglial origin [169,170]. The presence of an oligodendroglial component in

GBM appears to be an important prognostic factor, outcome being better for GBMO than for

classic GBM [171]. An oligodendroglial component is detected in 10% of GBM, and these

patients are significantly younger and survive longer [172]. Furthermore, patients with

GBMO treated with post-operative chemotherapy and radiotherapy have a better prognosis

than is reported for GBM in modern chemoradiation series [172]. An oligodendroglial

component is also associated with improved survival in patients with AA [173], although

this lost power in a multivariate analysis [174]. These results support the concept that GBM

and AA with an oligodendroglial component have a better prognosis than pure GBM and

AA respectively.

What factors may have a prognostic impact in GBMO? LOH on 1p and 19q is significantly

associated with GBMO [173]. In a study using CGH and FISH, four discrete cyto-genetic

subtypes of GBMO with different outcomes have been proposed: an ‘astrocytic’ subtype

characterized by +7/-10; an ‘oligodendroglial’ subtype with -1p/-19q, an ‘intermediate’

subtype showing +7/-1p and an ‘other’ subtype having none of the former aberrations [175].

However, others have found no association between cytogenetics, histopathology, and

outcome in GBMO [176]. The designation of AOA with necrosis as GBMO remains a

controversial move, which has yet to be backed by a clear understanding of how GBMO

overlaps GBM on a genetic basis, but the clinical relevance of this histopathological

phenotype needs to be addressed in future studies of high-grade gliomas [1,177,178].

Clinically relevant subtypes of GBM by integrated analyses (Table 2)

One recent approach to the molecular characterization of GBM utilizes a combination of

molecular signatures, as opposed to individual markers. Previous molecular studies have

identified important genetic events in GBM: (i) dysregulation of growth factor signalling via

receptor tyrosine kinase (RTK) aberrations; (ii) activation of the PI3K pathway; and (iii)

inactivation of the p53 and Rb tumour suppressor pathways [123]. These findings can be

integrated with data from the TCGA Research Network, which was established to generate a

comprehensive catalogue of genomic abnormalities driving tumorigenesis [97]. Utilizing

gene expression profiles generated from a large series of GBMs, unsupervised clustering

identifies four molecular subgroups: Proneural, Neural, Classical and Mesenchymal [179].

In line with previous mRNA-based studies on GBM [180], a proneural signature appears to

be associated with a better clinical outcome than a proliferative or mesenchymal signature.
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In addition, an analysis of epigenetic changes from TCGA samples identified the existence

of a proportion of GBM tumours with highly concordant DNA methylation at a subset of

loci, indicative of G-CIMP [59]. G-CIMP-positive GBMs are associated with specific

clinical and genetic features, showing a favourable prognosis among all GBMs and among

the proneural subset [59]. These data could provide a scheme that integrates genomic,

epigenomic and transcriptomic elements in a molecular stratification of GBM. Additionally,

proteomic analysis of GBM samples revealed three patterns of expression and activation of

proteins in glioma-relevant signalling pathways: (i) EGFR activation associated with

amplification and mutation of the receptor; (ii) platelet-derived growth factor (PDGF)-

pathway activation that is primarily ligand-driven; and (iii) loss of NF1 expression, all of

which provide insight into glioma biology and therapeutic strategies [181].

The current status of molecular therapies targeting the EGFR/PI3K/

mammalian target of rapamycin (mTOR) signalling pathway in high-grade

gliomas

Despite contradictory findings on the prognostic utility of EGFR amplification, advances in

our understanding of the EGFR/PI3K pathway in GBM suggest that targeted therapeutics

could be used to treat tumours with specific aberrations. Additionally, mTOR acts through

the canonical PI3K pathway to mediate cell growth and proliferation via two distinct

complexes, mTORC1 (mTOR with PRAS40, raptor, mLST8/GbL) and mTORC2 (mTOR

with rictor, mSIN1, protor, mLST8) [182]. mTORC1 has been identified as a critical step in

glial transformation and, through its substrates such as S6K1 and 4E-BP1, integrates growth

factor signalling with cellular metabolism underscoring its value as a cancer cell target

[183,184]. mTORC2 regulates Akt signalling in a rapamycin-insensitive manner, placing

mTOR as both a downstream target and an upstream activator of Akt [185]. Thus, mTOR is

an important integrator of multiple signalling cascades, which could be therapeutically

targeted (Figure 2).

In the clinic, EGFR tyrosine kinase inhibitors and the allosteric mTOR inhibitor rapamycin

(and its derivatives), have failed to show durable efficacy as monotherapies [186–190].

However, some of these trials have emphasized the importance of EGFR and mTOR

signalling in GBM, validating their role as targets, while also demonstrating the relative ease

by which GBMs develop compensatory resistance mechanisms to maintain signal flux to

critical downstream effectors. These clinical experiences suggest that tumour cell

susceptibility to targeted therapeutics is greatly affected by context-dependent oncogene

addiction and acquired resistance. Initial results with the EGFR tyrosine kinase inhibitors,

gefitinib and erlotinib, indicate relatively low response rates of 10–15% [188,191].

However, expression of the constitutively active mutant EGFRvIII sensitizes tumours to

EGFR inhibitors, but only if the PTEN tumour suppressor protein is intact. In fact, loss of

PTEN uncouples the inhibition of EGFR from the inhibition of downstream PI3K signalling,

demonstrating that PTEN loss is a critical factor in promoting resistance to EGFR inhibitors,

in part, because maintained PI3K signal flux is maintained in PTEN-deficient tumours

[186]. Concurrently, cells with high levels of EGFR coupled with low levels of activated

Akt were proven more likely to respond to small molecule tyrosine kinase inhibitors [188].
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These studies indicate that intact regulation of PI3K signalling appears to be critical for

effective response to EGFR. Furthermore, mTORC1 appears to be an effector of EGFR

inhibitor resistance through PTEN loss or RTK activation [192,193]. Indeed, preclinical

studies have demonstrated that dual EGFR/mTOR inhibition was effective at targeting

EGFR-activated PTEN deficient tumours [193–195]. In contrast, some PTEN-intact

malignant glioma patients relapse after a relatively short window of clinical response to

EGFR kinase inhibitors. Notably, it was reported that upon treatment with EGFR inhibitors,

other RTKs such as c-MET and/or PDGFR were co-activated, engaging PI3K to maintain

downstream pathway activation, despite EGFR inhibition [196]. Also, a recent report shows

that AKT inhibition induces the expression and phosphorylation of multiple RTKs, effects

due partly to mTORC1 inhibition and partly to a FOXO-dependent activation of receptor

expression [197]. Altogether, these findings suggest that nongenetic adaptations in tumour

cells result in resistance to treatment and teach a critical lesson; there are many paths

towards resistance, whereas a few critical mediators must be inhibited for sensitivity.

Understanding the complex role of mTOR in regulating signal transduction is critical to

developing more effective mTOR-targeted therapies, even though studies in human patients

with recurrent malignant glioma have failed to demonstrate consistent responses to

rapamycin and its analogues [190,198–200]. Rapamycin treatment leads to Akt activation,

presumably due to the loss of negative feedback for attenuating PI3K signalling, which is

associated with significantly shorter time-to-progression [187]. PI3K pathway reactivation

after rapamycin treatment suggests that dual PI3K/mTOR inhibitors function by preventing

PI3K signalling reactivation and more effectively targeting mTORC2 (and mTORC1)

signalling. A dual PI3K/mTOR inhibitor (PI-103) was indeed efficacious at blocking the

growth of GBM cells, independent of PTEN status [194]. Dual PI3K/mTOR inhibitors may

also suppress extracellular signal-regulated kinase signalling activation through mTORC1

inhibition and a PI3K-dependent mechanism [201].

In GBM, mTORC2 signalling is less well understood than mTORC1 signalling. mTORC2,

which is activated by PI3K, phosphorylates Akt on serine 473 (Ser473), thereby promoting

Akt activity. mTORC2 also activates additional kinases, including serum glucocorticoid-

induced protein kinase (SGK) and protein kinase Ca, all of which may play important roles

in regulating cell proliferation and growth. mTORC2 activity has been shown to be relevant

to glioma cell proliferation, motility and gliomagenesis [202] and is required for growth of

EGFR/PI3K-activated gliomas in a drosophila model [203]. These results raise the

possibility that mTORC2 signalling is essential for glioma growth, particularly in the

context of enhanced PI3K signalling [203]. We recently demonstrated that mTORC2 is

frequently activated in GBM and that EGFRvIII can potently stimulate mTORC2 and GBM

growth and survival, by activating NF-kB through SGK1. We also showed that mTORC2 is

involved in feedback activation of Akt in rapamycin-treated patients, implying a need to

inhibit both mTORC1 and mTORC2 in order to achieve a better clinical response. Such

clinical trials are currently under way. However, a previously unsuspected role for mTORC2

in mediating chemotherapy resistance has also been indentified. EGFRvIII-expressing

GBMs are exquisitely resistant to cisplatin [204]. We have shown that mTORC2 mediates

chemotherapy resistance through mTORC2/SGK1-mediated activation of NF-kB. Genetic or
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pharmacologic inhibition of mTORC2 reverses GBM cell resistance to cisplatin, TMZ and

etoposide. These results strongly suggest a critical role for drugs that target both mTORC1

and mTORC2, including in combination with chemotherapy [205].

mTOR also plays a critical role in integrating cellular metabolism with signal transduction.

Class 3 PI3K (vps34) is reported to provide an amino acid sensing mechanism to activate

mTORC1 signalling through a process that is independent of class I PI3K and its canonical

signalling pathway [206]. This observation suggests that class 3 PI3K signalling (to

mTORC1) could facilitate escape from mTOR or dual class I PI3K/mTOR inhibitors.

mTORC1 has also emerged as a critical downstream effector of the tumour suppressor liver

kinase B1. Liver kinase B1 is thought to suppress tumours by negatively regulating

mTORC1 signalling through AMP-activated protein kinase. A study by our group has

demonstrated that the AMP-activated protein kinase agonist, AICAR, effectively blocks the

growth of EGFR-activated GBM, primarily by inhibiting lipogenesis [207]. We have also

shown that EGFR signalling promotes activation of a transcriptional regulator of fatty acid

synthesis, SREBP-1 [208,209]. Importantly, abundant EGFR signalling makes GBM cells

more dependent on fatty acid synthesis, and consequently interruption of fatty acid synthesis

causes massive apoptotic cell death in tumours with abundant EGFR signalling. Further

investigations have uncovered an EGFRvIII-activated, PI3K/SREBP-1-dependent tumour

survival pathway acting through the low-density lipoprotein receptor (LDLR) [210].

Targeting LDLR with the liver X receptor agonist GW3965 caused inducible degrader of

LDLR-mediated LDLR degradation and increased expression of the ABCA1 cholesterol

efflux transporter, potently promoting tumour cell death in a GBM model. Thus,

understanding interactions between cellular metabolism and mTOR signalling, as well as

EGFR signalling through the PI3K/Akt and RAS/extracellular signal-regulated kinase

pathways, may pave the way for developing more effective treatment strategies.

Conclusion

The classification of malignant gliomas is changing profoundly; novel schemes are being

developed around data on their genomic landscape from the TCGA [97] and from next

generation sequencing [40]. While we await an ideal scheme that successfully matches the

molecular profile of a malignant glioma to its targeted therapy, further advances gleaned

from these methodologies, plus epigenetics, proteomics and an understanding of oncogenic

miRNAs, will move the field forward to its goal of personalized medicine for patients with

malignant glioma.
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Figure 1.
Proposed genetic alterations, aberrant signalling pathways and therapeutic modulators in

human high-grade gliomas.
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Figure 2.
mTORC plays a key role in integrating signal transduction and metabolic pathways in

glioblastoma.
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