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Summary 

 

The objective of this study was to examine the impact of polymorphisms in the acyl- 

CoA:diacylglycerol acyltransferase (DGAT1), leptin and growth hormone receptor genes on 

body energy (body condition score, total body energy content and cumulative effective 

energy balance) and blood metabolic traits (levels of b-hydroxybutyrate, glucose and non-

esterified fatty acids), measured once before the first calving and then repeatedly throughout 

first lactation in 497 Holstein cows. The influence of the same polymorphisms on cow 

reproductive performance and health during the first and second lactations was also assessed. 

Several reproductive traits were considered including interval, conception and insemination 

traits, as well as incidence of metritis and reproductive problems. Genotyping was performed 

using PCR-RFLP (DGAT1, leptin) or allele-specific PCR (growth hormone receptor). For 

each locus, the effect of allele substitution on body energy and blood metabolic traits was 

estimated using random regression models. The same effect on reproductive traits was 

assessed with single-trait mixed linear models. Significant (P < 0.05) effects on specific 

reproductive traits were observed. DGAT1 and growth hormone receptor alleles responsible 

for significant increases in milk production were found to have an adverse effect on 

reproduction, while the leptin allele responsible for significant increase in milk production 

was linked to marginally increased metritis frequency. Furthermore, the three studied loci 

were also found to significantly (P < 0.05) affect certain body energy and blood metabolic 

traits. Several associations are published for the first time, but these should be confirmed by 

other investigators before the polymorphisms are used in gene-assisted selection. 

 

Key words: DGAT1, energy balance, gene, growth hormone receptor, leptin, reproduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

In the last decade, the availability of molecular biology techniques has provided conventional 

dairy cattle breeding and selection schemes with an additional tool: genomic data that can be 

used for gene- or marker-assisted selection. This kind of selection is based on the 

identification of genes or markers that may affect economically important traits of dairy 

cows. Several polymorphisms in various gene loci have been reported to affect production 

traits such as milk yield and composition. Polymorphisms in the acyl-CoA:diacylglycerol 

acyltransferase (DGAT1), leptin (LEP) and growth hormone receptor (GHR) gene loci are 

some notable examples. 

The DGAT1 gene, which maps at the centromeric end of BTA14, is known to encode acyl-

CoA:diacylglycerol acyltransferase, the enzyme that catalyses the last step in triglyceride 

synthesis. A non-conservative lysine-to-alanine substitution (p.Lys232Ala) in this gene has 

been proved to have a major influence on milk production traits and particularly on milk fat 

content (Grisart et al. 2002; Gautier et al. 2007). Ashwell et al. (2004) suggested possible 

pleiotropic effects of this polymorphism on reproduction (pregnancy rate) and Kaupe et al. 

(2007) provided some evidence supporting the assumption. 

The LEP gene (BTA4) encodes leptin, a hormone that is involved in the regulation of feed 

intake, energy balance, fertility and metabolism (Fruhbeck et al. 1998; Macajova et al. 2004). 

Several polymorphisms in this gene have been studied for their association with economically 

important traits. A polymorphism in intron 2 of the LEP gene, first reported by Pomp et al. 

(1997), was found to affect milk production and feed intake (Liefers et al. 2002). 

The GHR gene (BTA20) controls the function of the growth hormone receptor, which largely 

determines the action of the growth hormone. A phenylalanine-to-tyrosine substitution 

(p.Phe279Tyr) in this gene has been shown to affect milk yield and composition (Blott et al. 

2003; Viitala et al. 2006). 

Before any polymorphism information is used for the genetic improvement of dairy cattle 

productivity, their effect on other economically important traits should be examined. This 

way, potential unfavourable effects of the selected polymorphism on such traits because of 

pleiotropy or linkage could be avoided. Given the well-established unfavourable genetic 

correlation between milk production and reproduction in dairy cows (Berger et al. 1981; 

Dematawewa & Berger 1998; Windig et al. 2006), as well as the importance of reproductive 

efficiency in the economics of a dairy cow enterprise, the effect of these polymorphisms on 

reproductive traits should be investigated. 



The investigation of the relationship of these polymorphisms with cow energy balance also 

seems justified because the adverse effect, which selection for milk production has on 

reproduction, can be mainly attributed to the increase, in both magnitude and duration, in the 

postpartum negative energy balance period (Lucy 2001). This period is characterized by 

inadequate daily energy intake with regard to essential cow functions such as maintenance, 

growth and milk production. For cows to carry out these functions, they mobilize energy 

reserves that could otherwise be used to sustain their reproductive performance. Monitoring 

daily changes in energy balance requires the recording of the daily feed intake of each cow, 

which, however, is not possible under field conditions. For this reason, other traits known to 

be related to energy balance can be used. Body condition scoring, a subjective but reliable 

and widely accepted way of assessing a cow_s body energy reserves (Edmonson et al. 1989; 

Fox et al. 1999), is an example of such a trait. Body condition score (BCS) and live weight 

records can be used for the calculation of total body energy content (EC) and cumulative 

effective energy balance (CEEB), which have also been proposed as energy balance indicator 

traits (Banos et al. 2006). Furthermore, various blood metabolic traits have been associated 

with the mobilization of a cow’s energy reserves. For example, blood serum levels of glucose, 

β-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA) have been reported to be 

strongly correlated with energy balance (Reist et al. 2002; Clark et al. 2005). 

The objective of this study was to examine the impact of the above-described polymorphisms 

in the DGAT1, LEP and GHR genes on body energy traits (BCS, EC, CEEB), blood 

metabolic traits (glucose, BHBA, NEFA) and reproductive traits in dairy cows. 

 

Materials and Methods 

 

Population description 

The study was conducted in a large commercial dairy farm in Northern Greece (41 °02’37’N, 

25 °15’16’E, altitude 20 m above sea level). Cows were housed in four free-stall barns and 

fed, twice daily, a total mixed ration to meet their energy and protein requirements. The 

ration formulation was based on US National Research Council recommendations (NRC, 

2001). Four-hundred and ninety-seven (497) primiparous Holstein cows that calved at an 

average age of 842 ± 80 days between January 2005 and July 2006 were included in the 

study. These animals had either been born on the farm or had been imported as pregnant 



heifers from three other European countries (Austria, France and the Netherlands). The latter 

is a rather common practice amongst many commercial dairy farms in Greece.  

Cows were milked twice daily and their milk production was automatically recorded. Daily 

milk records were used for the calculation of 305-day yields. Pedigree information was 

available for all cows in the herd. After considering all animals related to the cows in this 

study, the total population size increased to 3306, spanning the three most recent generations. 

All these data were included in the subsequent analyses. 

 

Body energy and blood metabolic traits 

Cow BCS was assessed after the morning milking by a trained veterinarian on a weekly basis 

from calving to week 13 of lactation and thereafter, monthly, until the end of a 305-day 

lactation. A 5-point scale (1 = emaciated, 5 = obese; scored in 0.25-point intervals) and the 

method described by Ferguson et al. (1994) were used. At the same time, cow live weight 

was estimated using a heart girth tape (Webo) and blood sample was drawn from the 

coccygeal vein in a randomly selected subset (365 animals) of the 

studied cows. 

Blood samples were left to clot at room temperature for approximately 30 min and then 

centrifuged at 2000 g. The obtained serum samples were stored at )20 °C until analysed for 

glucose, BHBA and NEFA concentrations. Serum glucose and NEFA were assayed 

colorimetrically using commercial kits (Glucose GOD-PAP method, P. Zafiropoulos S.A. and 

Wako NEFA C kit, Wako Chemicals GmbH respectively) and a Hitachi U-2000 

spectrophotometer. β-Hydroxybutyrate serum concentration was assayed using the same 

spectrophotometer and an enzymatic kinetic method based on the oxidation of BHBA to 

acetoacetate by BHBA dehydrogenase in the presence of NAD
+
 (Bruss 1997). 

The final dataset consisted of 8094 BCS, 8087 estimated live weight and 6015 serum glucose, 

BHBA and NEFA concentration records. BCS and estimated live weight records were used 

for the calculation of total body EC and CEEB with a procedure that is described by Banos et 

al. (2006). Table 1 shows descriptive statistics of all of these traits. 

Single measurements of BCS, EC and serum levels of glucose, BHBA and NEFA, taken 

approximately 2 months before calving, were also available for a subgroup of the studied 

animals. Calculation of CEEB before calving was not possible because it related to energy 

changes between consecutive measurements and there was only a single record for each 

pregnant heifer. Descriptive statistics of these heifer traits are in Table 1. 

 



Reproductive traits 

Cows were observed for signs of oestrus twice daily for 30 min each, as well as during the 

morning and afternoon milking. Cows detected in oestrus were artificially inseminated by the 

same two experienced veterinarians 12 h later. Cows that did not exhibit oestrus within 60–80 

days postpartum joined a combined gonadotropin-releasing hormone-prostaglandin oestrus 

synchronization programme, following the GPG protocol described by Stevenson et al. 

(1996). Pregnancy was diagnosed by rectal palpation 45–55 days after insemination. Cows 

with signs of metritis were diagnosed by the farms veterinarians and treated as appropriate. 

All events regarding cow reproductive performance were systematically recorded. The 

following traits were derived from these records, spanning the time period from January 2005 

to November 2007 (all traits refer to first lactation unless otherwise stated): conception rate 

(0/1) following first insemination (CONC_1AI1), conception rate (0/1) in the first 305 days 

of lactation (CONC_305), number of inseminations per conception (NINS), number of 

inseminations per conception for cows that conceived in the first 305 days of lactation 

(NINS_305), interval (days) from calving to conception for cows that conceived in the first 

305 days of lactation (CAL_CONC_305), interval (days) between the cows first and second 

calving (CI), presence (0/1) of metritis (METR), presence (0/1) of reproductive problems 

(REPRO_PROB) and conception rate (0/1) following first insemination of second lactation 

(CONC_1AI2). In this study, the trait REPRO_PROB was defined as an index of two 

different reproductive problems with practical interest to the farmer (diagnosed metritis or 

failure to conceive within the first 305 days of lactation). Descriptive statistics for these traits 

are presented in Table 2. Information on some traits was not available for animals that were 

involuntarily culled. As the main reason that led to involuntary culling was lameness, all 

lameness incidences were recorded and included in the analysis. 

 

Genotyping procedure 

DNA was extracted from whole blood samples taken from a randomly selected subset (319) 

of the above-described 497 cows using the NucleoSpin Blood kit (Macherey-Nagel). The 

manufacturer’s instructions were followed throughout. The DGAT1 and LEP gene 

polymorphisms were determined using PCR and RFLP according to previously described 

protocols (Liefers et al. 2002; Kaupe et al. 2004). To exclude any possibility of false 

genotyping, samples with ambiguous results were reanalysed using different RFLP 

conditions (e.g. increasing restriction enzyme concentrations, decreasing PCR product 

volumes in the digestion mix, increasing digestion times). The DGAT1 polymorphism was 



p.Lys232Ala, coding a lysine-to-alanine substitution (Grisart et al. 2002). The LEP 

polymorphism was an intron 2 polymorphism first described by Pomp et al. (1997) and 

then studied by Liefers et al. (2002). 

For the detection of the GHR polymorphism (a T-to-A substitution within exon 8), an allele-

specific PCR (AS-PCR) was developed. The following primers, which amplify a 341-bp 

sequence of the GHR gene, were designed: (i) two allelespecific forward primers, designated 

as 4962-N (5`-GGGCTAGCAGTGACATTATT-3`) and 4962-M (5`-GGGCTAGCAG 

TGACATTATA-3`), anneal between nucleotides 4943–4962 of the GHR gene (AM161140) 

and detect the normal and the mutant allele respectively and (ii) a common reverse primer 

designated as 5283-R (5`–ACCTCTGGGTCCTGGAATAAA-3¢), which anneals between 

nucleotides 5263–5283 of the same sequence. PCR amplification was performed in 25-ll 

reaction mixtures containing 500 ng genomic DNA, 67 mM Tris–HCl (pH 8.8), 16.6 mM 

(NH4)2SO4, 0.01% Tween 20, 1.5 mM MgCl2, 200 lM deoxynucleoside triphosphates 

(dNTPs), 0.4 μM each primer (4962-N/5283-R or 4962-M/5283-R), and 1 U Taq DNA 

polymerase (SmarTaq; Dialat Ltd). The temperature cycling protocol on a TAKARA 

Thermal Cycler consisted of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s and 

extension at 72 °C for 40 s. The cycling was repeated 35 times. Each PCR reaction was 

initiated with a 5-min denaturation at 94 °C and terminated with a 5-min extension at 72 °C. 

All PCR and RFLP products were analysed by electrophoresis on 1.5% agarose gels, stained 

with ethidium bromide and visualized on a UV transilluminator. Once the genotypes were 

determined, allelic frequencies at each gene locus were calculated by gene counting. 

Deviations from Hardy–Weinberg equilibrium were examined for each locus using chi-

squared tests. 

 

Statistical analysis 

The impact of the DGAT1, LEP and GHR polymorphisms on first lactation BCS, EC, CEEB, 

glucose, BHBA and NEFA was estimated with the following random regression model that 

takes into account repeated measures on the same animal; each trait was analysed separately 

and each polymorphism was also fitted separately. 

                Yijkmn = YSi + Cj + a1 
. age + a2 

. 
milk + a3 

. 
pol                         (1) 

 

 
 



where Yijkmn is the record of cow k in week of lactation m, YSi is a fixed effect of year-season 

of calving i, Cj is the fixed effect of country of origin j, a1 is the linear regression coefficient 

on age at calving (age), a2 is the linear regression coefficient on 305-day milk yield (milk), 

a3 is the linear regression coefficient on polymorphism effect (pol), Wm is the week of 

lactation m, bn is the fixed regression coefficient on week of lactation, ckn is the random 

regression coefficient on week of lactation associated with cow k (including all known 

pedigree, representing the polygenic residual effect), Pn is the nth orthogonal polynomial of 

week m (n = order of polynomial), PEk is the random permanent environment effect 

associated with cow k and eijkmn is a random residual term. 

In model 1, the polymorphism’s allelic effect was described as 0, 1 or 2, in each case 

corresponding to the number of copies of the substitution allele. For example, the DGAT1 

polymorphism includes the lysine (K) and alanine (A) variants. For this polymorphism, the 

variable in model 1 would be assigned values 0, 1 and 2 for cows with the KK, KA and AA 

variants respectively; A is equivalent to the allele-substitution effect at this gene locus at the 

observed frequency. Thus, the effect of allele substitution at each locus was estimated with 

this model.  

Individual records, taken on pregnant heifers before calving, were analysed with a model 

similar to model 1 that included the effect of days to calving, but excluded the fixed and 

random regressions on week of lactation and the permanent environment. Model 2 was used 

to determine the impact of the same three polymorphisms on reproduction traits; each trait 

was analysed separately and each polymorphism was also fitted separately. 

Yijklm = YSi + Gj + Sk + Ll + a1 
.
 age + a2 

. 
milk                        (2) 

+ a3 
. 
pol + a4 

. 
dim + cowm + eijklm 

 

where Yijklm is the reproductive record of cow m, Gj is a fixed effect indicating whether the 

cow was included in an oestrus synchronization scheme (j = 0, 1), Sk is a fixed effect of 

season of first insemination k, Ll is a fixed effect indicating whether the cow was diagnosed 

with lameness at any time throughout lactation (l = 0, 1), a4 is the linear regression coefficient 

on days in milk at first insemination (dim), cowm is a random effect of cow m (including all 

known pedigree, representing the polygenic residual effect) and all other effects were as 

described in model 1. 

Following preliminary analyses, only factors with a significant (P < 0.05) effect on a 

reproductive trait were included in each analysis. Thus, the oestrus synchronization effect (G) 

was included in the analysis of conception rate traits only; season of first insemination (S) 



was included in the analysis of conception rate following first insemination (first and second 

lactation), number of inseminations per conception and interval from calving to conception 

and lameness (L) was included in the analysis of calving interval, reproductive problems and 

conception rate in the first 305 days of lactation. All other effects shown in model 2 were 

included in all analyses. The effect of 305-day milk yield was included to derive solutions for 

constant production level. 

In model 2, the regression of interest was on the polymorphism, which, as in model 1, was 

defined by the allelesubstitution effect and was adjusted for all other effects in the model. For 

comparison purposes, the effect of the three polymorphisms on 305-day lactation milk yield 

was also estimated with a model similar to model 2. Although only a subset of cows (319) 

was genotyped, records from all cows were included in the analyses. The pedigree 

relationship matrix was used to link these data to the effects of the polymorphisms. 

In the above models, each polymorphism was fitted separately in a series of sequential 

analyses. The null hypothesis was always that of no polymorphism effect on the trait of 

interest. Given the correlation among the traits studied here, truly independent tests were 

those of the three polymorphisms. A Bonferroni correction was implemented to account for 

multiple hypothesis testing with regard to these polymorphisms. 

 

Results 

Genotypic and allelic frequencies estimated for the three gene loci are presented in Table 3. 

Both the LEP and GHR loci were in Hardy–Weinberg equilibrium, but the DGAT1 locus was 

found to (P < 0.05) deviate significantly from this equilibrium. The effect of each gene locus 

on reproductive traits is shown in Table 4. Table 4 also shows the average effect of each of 

the three polymorphisms on body energy and blood metabolic traits measured during the 

whole first lactation as well as the same effect on traits measured in early lactation (first 4 

weeks) only. In all cases, these are the effects of substituting one allele for the other at the 

corresponding locus. 

Replacement of the lysine by the alanine variant at the DGAT1 locus was found to lead to an 

increase in NINS by 0.61 ± 0.22 (P < 0.05). This corresponds to 0.30 phenotypic standard 

deviations (SDp). The same substitution also led to a reduction in CONC_305 by 0.16 ± 0.05 

(0.33 SDp, P < 0.05) and an increase in REPRO_PROB by 0.13 ± 0.05 (0.26 SDp, P < 0.05) 

(Table 4). These effects remained significant after the Bonferroni correction. As far as body 

energy and blood metabolic traits during the entire first lactation are concerned, the same 

substitution led to an average lactation increase in BCS by 0.10 ± 0.03 (0.25 SDp, P < 0.05), 



in EC by 175.80 ± 61.05 MJ (0.20 SDp, P < 0.05) and in glucose blood levels by 1.67 ± 0.66 

mg/dl (0.09 SDp, P < 0.05); all effects were still significant after the Bonferroni correction. 

An associated reduction in lactation NEFA levels by 0.016 ± 0.007 mmol/l (0.07 SDp, 

P<0.05) was not significant after the correction (Table 4). The effect of the DGAT1 

polymorphism on early lactation (first 4 weeks), body energy and blood metabolic traits was 

quite similar to the effect on whole lactation, with the additional impact on CEEB (83.44 ± 

35.76 MJ; 0.11 SDp, P < 0.05, significant post-Bonferroni correction) (Table 4). The DGAT1 

polymorphism had no effect on body energy and blood metabolic traits measured on pregnant 

heifers.  Finally, replacement of the lysine by the alanine variant at the DGAT1 locus was 

found to lead to an increase in the 305-day lactation milk yield by 363.4 ± 152.8 kg (0.25 

SDp, P < 0.05). 

Replacement of a copy of the A allele by the B allele at the LEP locus appeared to have a 

marginal effect (P = 0.05) on METR, leading to an incidence increase by 0.08 ± 0.04 (0.26 

SDp). There was also a tendency for reduced CONC_ 1AI2, by 0.22 ± 0.12 (P < 0.10), but 

the effect did not attain statistical significance (Table 4). The LEP polymorphism effect on 

whole-lactation body energy or blood metabolic traits was not significantly different from 

zero (Table 4). There was an indication for an effect on early lactation body energy traits 

(Table 4), leading to a reduction in BCS (0.12 ± 0.05; 0.26 SDp, P < 0.05) and EC (230.60 ± 

102.10 MJ; 0.25 SDp, P < 0.05), although neither effect maintained its significance after the 

Bonferroni correction. Additionally, the B allele was found to be responsible for a significant 

increase in glucose levels measured on heifers 2 months before calving (8.97 mg/dl ± 3.97, P 

< 0.05), although the effect of the polymorphism on milk yield was not significantly different 

from zero. 

Finally, replacement of the phenylalanine variant by the tyrosine variant at the GHR locus led 

to an increase in NINS by 0.50 ± 0.25 (0.25 SDp, P < 0.05), a decrease in CONC_305 by 

0.16 ± 0.06 (0.33 SDp, P < 0.05) and an increase in REPRO_PROB by 0.16 ± 0.06 (0.33 

SDp, P < 0.05) (Table 4); the last two were still significant after the Bonferroni correction. 

Furthermore, this substitution was associated with an increase in whole-lactation CEEB by 

110.10 ± 46.28 MJ (0.10 SDp, P < 0.05, significant post- Bonferroni correction) and a 

decrease in whole-lactation NEFA by 0.014 ± 0.008 (P < 0.10) (Table 4) as well as an 

increase in CEEB measured in the first 4 weeks of lactation by 89.00 ± 43.99 MJ (P < 0.05) 

(Table 4); the latter, however, was not significant after the Bonferroni correction. No 

significant impact of this GHR polymorphism on milk yield or on any body energy and blood 

metabolic trait measured on pregnant heifers was observed. 



Discussion 

Allelic frequencies at the DGAT1 locus estimated in this study were similar to frequencies 

reported in other studies of different Holstein populations. For example, the frequency of the 

allele encoding lysine (K) was previously reported to be 0.54 (Kaupe et al. 2007), 0.59 

(Szyda & Komisarek 2007) and 0.60 (Spelman et al. 2002). However, there are substantial 

differences among genotypic frequencies reported in the literature. Kaupe et al. (2007) 

reported frequencies of KK, KA and AA to be 0.16, 0.51 and 0.33 respectively. These 

frequencies were 0.45, 0.26 and 0.27 in the study of Szyda & Komisarek (2007) and 0.38, 

0.43 and 0.18 in the study of Spelman et al. (2002). Genotypic frequencies observed in this 

study were not similar to any of these frequencies because AA animals were not found in our 

study. 

Allelic and genotypic frequencies reported in this study for the RFLP1 and p.Phe279Tyr 

polymorphisms at the LEP and GHR loci respectively were very similar to frequencies 

reported in previous studies (Liefers et al. 2002; Blott et al. 2003; Viitala et al. 2006). For 

example, Blott et al. (2003) reported genotypic frequencies for the GHR p.Phe279Tyr 

polymorphism to be 0.67, 0.31 and 0.02 for FF, FY and YY respectively. Liefers et al. (2002) 

reported that the frequencies for the LEP RFLP1 polymorphism were 0.813, 0.185 and 0.002 

for AA, AB and BB respectively. 

The alanine (A) variant of the DGAT1 p.Lys232Ala polymorphism, the B allele of the LEP 

RFLP1 polymorphism and tyrosine (Y) variant of the GHR p.Phe279Tyr polymorphism were 

reported in previous studies to be responsible for significant increases in milk production 

(Grisart et al. 2002; Liefers et al. 2002; Blott et al. 2003). The same significant effect of the 

DGAT1 polymorphism on milk yield was also found in this study, although the effect of the 

other two loci was not significant. Furthermore, in this study, all the above alleles were found 

to have an adverse effect on various reproductive traits. Specifically, the alleles encoding 

alanine and tyrosine at the DGAT1 and GHR loci respectively were associated with more 

inseminations needed per conception, reduced conception rate during lactation and increased 

incidence of reproductive problems, whereas the B allele at the LEP gene was linked to 

marginally increased metritis frequency. Especially with regard to DGAT1, the effect on 

reproductive traits was similar in size to the effect on milk production, which amounted to 

0.25 phenotypic standard deviations. 

There is very little published literature on the direct association of the three polymorphisms 

studied here with reproductive traits. Kaupe et al. (2007) reported a negative effect of the 

lysine (K) variant (DGAT1 p.Lys232Ala polymorphism) on maternal non-return rate, while 



Liefers et al. (2002) found no significant effect of the LEP B allele (RFLP1 polymorphism) 

on commencement of luteal activity assessed by increased blood progesterone levels. None of 

these two traits per se was addressed in this study. The closest trait to the above analysed here 

was conception rate at first insemination, on which neither the DGAT1 polymorphism nor the 

LEP polymorphism appeared to have a significant effect. Although our results broadly 

corroborate those of Liefers et al. (2002), we acknowledge differences in the methodology 

and animal populations used as well as in the definitions of traits in the three studies. For 

example, Kaupe et al. (2007) used a granddaughter design where grandsires and sires were 

genotyped, but phenotypic observations were made on their granddaughters and daughters, 

whereas in our study, both genotypic and phenotypic information was recorded in the same 

animals. Furthermore, Liefers et al. (2002) assessed cow fertility as manifested by the 

commencement of luteal activity, whereas this study considered both interval and conception 

traits. There is certainly scope for further research on the relationship between these 

polymorphisms and reproduction before the former are used for the genetic improvement in 

dairy cow productivity with gene-assisted selection. 

Studies regarding the effect of the three polymorphisms on body energy or blood metabolic 

traits are largely missing from the international literature. Results from this study indicate that 

all of these polymorphisms can significantly affect certain body energy or blood metabolic 

traits. The B allele of the LEP RFLP1 polymorphism that was found in a previous study to 

increase milk production and feed intake (Liefers et al. 2002) was associated here with 

compromised body condition and decreased EC during the first weeks of lactation. Given the 

unfavourable relationship between production levels and energy balance, this was an 

expected result. On the other hand, the alanine variant of the DGAT1 p.Lys232Ala 

polymorphism and the tyrosine variant of the GHR p.Phe279Tyr polymorphism that were 

reported to be associated with increased milk production in previous studies (Grisart et al. 

2002; Blott et al. 2003) were found in this study to have a favourable effect on effective 

energy balance accumulating over the entire lactation. This result may oppose the established 

antagonistic correlation between milk production and body energy. However, it should be 

noted that both are quantitative traits whose expression is controlled by the action of and 

interaction among many gene loci. Hence, there is always the possibility of a single gene with 

a favourable effect on both traits. 

Because body energy and blood metabolic traits have not been studied in this context before, 

validation of our results by independent studies would be beneficial. It is important, at this 

point, to emphasize the fact that all effects on the studied traits were estimated at constant 



milk yield. Therefore, the true impact of the three polymorphisms on the traits in question 

was assessed. As body energy and reproduction are genetically related to production, 

estimated effects would have been different, especially for the DGAT1 polymorphism, 

without correction for milk yield. 

In conclusion, results from this study indicate that three polymorphisms at the DGAT1 and 

GHR gene loci may significantly affect certain body energy, blood metabolic and 

reproduction traits of dairy cows. The LEP gene was found to affect body energy traits, while 

it was also linked to marginally increased metritis frequency. These results open up 

possibilities for cow breeding and improvement in geneassisted selection. 
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Legends 

 

Tab.1 - Descriptive statistics for body condition score (BCS), energy content (EC), 

cumulative effective energy balance (CEEB), blood serum levels of glucose, β-

hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA) measured throughout first 

lactation and descriptive statistics of body energy (BCSh, ECh) and blood metabolic traits 

(glucoseh, BHBAh, NEFAh) measured on heifers before calving. 

 

Tab.2 - Descriptive statistics for the number of inseminations per conception (NINS), number 

of inseminations per conception for cows diagnosed pregnant in the first 305 days of first 

lactation (NINS_305), interval from calving to conception for cows diagnosed pregnant in the 

first 305 days of first lactation (CAL_CONC_305), interval between first and second calving 

(CI), conception rate following first insemination of first lactation (CONC_1AI1), conception 

rate in the first 305 days of first lactation (CONC_305), presence of metritis (METR), 

presence of reproductive problems (REPRO_PROB) and conception rate following first 

insemination of second lactation (CONC_1AI2). 

 

Tab.3 - Genotypic and allelic frequencies (%) in the three studied gene loci. 

 

Tab.4 - Allele-substitution effect (a) on reproductive traits, on body energy and blood 

metabolic traits measured throughout first lactation and on body energy and blood metabolic 

traits measured during the first 4 weeks of first lactation. 

 

 

 

 

 

 

 

 

 

 

 

 



Tab.1 

Trait (units of 

measurement) 

Records (n) Cows/heifers 

(n) 

Mean SD Minimum Maximum 

BCS (1–5) 8094 497 2.47 0.44 1.25 5.00 

EC (MJ) 8087 497 4464.64 946.99 2328.90 9928.17 

CEEB (MJ) 8087 497 -423.79 973.83 -3690.27 5984.08 

Glucose 

(mg/dl) 

6015 365 74.32 19.67 12.00 190.00 

BHBA 

(mmol/l) 

6015 365 0.79 0.28 0.19 4.42 

NEFA 

(mmol/l) 

6015 365 0.32 0.30 0.02 4.00 

BCSh (1–5) 192 192 3.24 0.47 2.25 5.00 

ECh (MJ) 143 143 5559.21 951.22 3751.59 7719.63 

Glucoseh 

(mg/dl) 

174 174 70.60 19.80 20.00 122.00 

BHBAh 

(mmol/l) 

175 175 0.55 0.19 0.24 1.57 

NEFAh 

(mmol/l) 

142 142 0.49 0.41 0.05 2.50 

 

 

Tab.2 

Trait (units of 

measurement) 

No.of cows Mean SD Minimum Maximum 

NINS 315 2.97 1.82 1 11 

NINS_305 233 2.27 1.15 1 7 

CAL_CONC_305 

(days) 

233 179.16 72.49 28 305 

CI (days) 247 498.04 111.00 308 897 

CONC_1AI1 

(0/1) 

375 0.19    

CONC_305 (0/1) 339 0.66    

METR (0/1) 497 0.09    

REPRO_PROB 

(0/1) 

359 0.41    

CONC_1AI2 

(0/1) 

109 0.29    

 

 

 



Tab.3 

 
  Variant

1
   Genotypic 

frequency 

 Allelic 

frequency 

 

Gene 

locus 

Polymorphism 0 + 00 0+ ++ 0 + 

DGAT1 P.Lys232Ala K A 0.24 0.76 0.00 0.62 0.38 

Leptin RFLP1 A B 0.78 0.22 0.00 0.89 0.11 

Growth 

hormone 

receptor 

p.Phe279Tyr F Y 0.75 0.24 0.01 0.87 0.13 

 

 

K, lysine variant; A, alanine variant; F, phenylalanine variant; Y, tyrosine variant. 

A, B alleles as described by Liefers et al. (2002). 

1
 Amino acids encoded by DGAT1 alleles are lysine (K) and alanine (A). Variants for leptin 

(A and B) are as described by Liefers et al. (2002). Amino acids encoded by growth hormone 

receptor alleles are phenylalanine (F) and tyrosine (Y). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tab.4 

 
Reproductive traits 

 
  DGAT1 

(substitution 

of A for K) 

  Leptin 

(substitution 

of B for A) 

  Growth 

hormone 

receptor 

(substitution 

of Y for F) 

 

Trait1 b SE p-

value 

b SE P-

value 

b SE p-

value 

NINS 0.61 0.22 0.012,3 -0.24 0.28 0.39 0.50 0.25 0.042 

NINS_305 -0.15 0.15 0.31 -0.20 0.18 0.26 0.04 0.18 0.84 

CALV_CONC_305 3.81 9.65 0.69 -11.00 11.96 0.36 2.19 12.00 0.86 

CI 21.09 14.68 0.15 9.60 17.79 0.59 17.80 17.32 0.30 

CONC_1AI1 -0.03 0.04 0.52 0.05 0.05 0.32 -0.02 0.05 0.68 

CONC_305 -0.16 0.05 0.002,3 0.01 0.07 0.94 -0.16 0.06 0.012,3 

REPRO_PROB 0.13 0.05 0.012,3 0.05 0.07 0.48 0.16 0.06 0.012,3 

METRITIS -0.01 0.03 0.68 0.08 0.04 0.05 0.00 0.03 0.93 

CONC_1AI2 -0.04 0.10 0.72 -0.22 0.12 0.06 0.00 0.11 0.98 

 
Body energy and blood metabolic traits measured throughout first lactation 

 
  DGAT1 

(substitution 

of A for K) 

  Leptin 

(substitution 

of B for A) 

  Growth 

hormone 

receptor 

(substitution 

of Y for F) 

 

Trait1 b SE p-

value 

b SE P-

value 

b SE p-

value 

BCS 0.10 0.03 0.002,3 -0.03 0.04 0.43 0.04 0.04 0.29 

EC 175.80 61.05 0.002,3 -49.31 86.54 0.57 78.49 75.91 0.30 

CEEB 33.21 37.78 0.38 1.69 52.71 0.97 110.10 46.28 0.022,3 

GLU 1.67 0.66 0.012,3 0.16 0.85 0.85 -0.15 0.76 0.85 

BHBA -0.010      0.010 0.35 0.021 0.013 0.11 0.012 0.012 0.32 

NEFA -0.016 0.007 0.022 -0.006 0.008 0.45 -0.014 0.008 0.07 

 
Body energy and blood metabolic traits measured during the first 4 weeks of first lactation 

 
  DGAT1 

(substitution 

of A for K) 

  Leptin 

(substitution 

of B for A) 

  Growth 

hormone 

receptor 

(substitution 

of Y for F) 

 

Trait1 b SE p-

value 

b SE P-

value 

b SE p-

value 

BCS 0.08 0.03 0.022,3 -0.12 0.05 0.022 -0.03 0.04 0.50 

EC 111.90 72.86 0,12 -230.6 102.10 0.022 -13.73 90.60 0.88 

CEEB 83.44 35.76 0.022,3 -10.73 49.37 0.83 89.00 43.99 0.042 

GLU 1.75 1.22 0.15 0.02 1.68 0.99 0.70 1.50 0.64 

BHBA -0.021       0.029 0.47 -0.013 0.040 0.75 -0.020 0.036 0.57 

NEFA -0.091 0.030 0.002,3 -0.025 0.042 0.56 -0.056 0.038 0.14 

 
1
 Trait definitions are in Table 2. 

2
 Significant (P < 0.05). 

3
 Significant after Bonferroni correction. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 


