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Bayesian foraging with only two patch types

Ola Olsson

Olsson, O. 2006. Bayesian foraging with only two patch types. �/ Oikos 112: 285�/297.

I model the optimal Bayesian foraging strategy in environments with only two patch
qualities. That is, all patches either belong to one rich type, or to one poor type. This
has been a situation created in several foraging experiments. In contrast, previous
theories of Bayesian foraging have dealt with prey distributions where patches may
belong to one out of a large range of qualities (binomial, Poisson and negative binomial
distributions). This study shows that two-patch systems have some unique properties.
One qualitative difference is that in many cases it will be possible for a Bayesian forager
to gain perfect information about patch quality. As soon as it has found more than the
number of prey items that should be available in a poor patch, it ‘‘knows’’ that it is in a
rich patch. The model generates at least three testable predictions. 1) The distribution
of giving-up densities, GUDs, should be bimodal in rich patches, when rich patches are
rare in the environment. This is because the optimal strategy is then devoted to using
the poor patches correctly, at the expense of missing a large fraction of the few rich
patches available. 2) There should be a negative relation between GUD and search time
in poor patches, when rich patches are much more valuable than poor. This is because
the forager gets good news about potential patch quality from finding some food. It
therefore accepts a lower instantaneous intake rate, making it more resistant against
runs of bad luck, decreasing the risk of discarding rich patches. 3) When the energy
gains required to remain in the patch are high (such as under high predation risk), the
overuse of poor patches and the underuse of rich increases. This is because less
information about patch quality is gained if leaving at high intake rates (after short
times). The predictions given by this model may provide a much needed and effective
conceptual framework for testing (both in the lab and the field) whether animals are
using Bayesian assessment.

O. Olsson, Dept of Animal Ecology, Lund Univ., Ecology Building, SE-223 62 Lund,
Sweden (ola.olsson@zooekol.lu.se).

Theoretical treatments of Bayesian foraging have mostly

focussed on prey distributions where the number of prey

present per patch may take any of a large (or infinite)

number of values (binomial, Poisson and negative

binomial distributions, here called smooth distributions;

Green 1980, 1984, 1987, 1988, Iwasa et al. 1981, Olsson

and Holmgren 1998, 2000, Olsson and Brown 2006),

although some studies have been general (Oaten 1977,

McNamara 1982, Green 2006).

Experimental studies have often focussed on a

contrast between a rich patch and a poor patch

(Lima 1984, Valone and Brown 1989, Valone 1992,

Meyer and Valone 1999, Vásquez et al. 2006). That is,

they have created a system with only two patch types

(or sub-types sensu Stephens and Krebs 1986). This

is what I here will call a two-patch system. Many

general aspects of Bayesian foraging behaviour that

are known from theoretical treatments of smooth

distributions are probably applicable to a two-patch

system. However, a two-patch system also has some

properties that are qualitatively different from smooth

distributions. For example, if there is one patch type

that always has 10 prey items, and another with 20

items, the forager has perfect information about

patch quality once it has taken 11 items or more. A

forager exploiting e.g. a Poisson or negative binomial
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distribution will never be able to gain perfect informa-

tion about patch quality.

At least since Iwasa’s et al. (1981) seminal paper, it is

well known that different smooth distributions give the

estimate of instantaneous intake rate (r) different proper-

ties (Olsson and Brown 2006). In a binomial distribution

r declines with the number of prey taken, and with search

time. In a Poisson distribution r declines with search time

but is independent of prey found. In a negative binomial

distribution r declines with search time and increases

with the number of prey found. Thus, in smooth

distributions, the behaviour of r depends on whether

the variance in prey density is less than, equal to, or

greater than the mean of the prey density distribution. It

is easy to generate two-patch distributions with the

variance less than, equal to, or greater than the mean,

but the properties of r in such distributions are not

known.

In this paper I will present a model of the optimal

Bayesian patch leaving rules when exploiting two-patch

systems. The model generates some important, and even

surprising, predictions that are quite different from those

generated by models for unimodal distributions. Two-

patch systems are sometimes found in nature when the

qualities of patches may be in two more or less distinct

states. However, the greatest value of this model is

probably that it suggests promising and convincing ways

for experimentally testing whether animals are capable of

using Bayesian strategies, or not.

Model

The model is an application of Green’s (2006) general

model. Here, I have made the extensions necessary to

make it apply to random search and a two-patch system.

I assume that the forager ‘‘knows’’ the prey density

distribution (the prior) in the environment and is capable

of Bayesian estimation of the patches it exploits. The

forager then only needs to keep track of search time

spent (t) in a patch and number of prey found (n) to

make the estimations necessary.

The ‘‘world’’ contains only two types of patches. A

poor (type 1) and a rich (type 2). I will denote the initial

prey density by N and use the index j to identify patch

types. Thus, initial prey densities are N1 and N2 and

N1B/N2.

The probability to encounter a patch of type j is the

prior distribution, Prj. As there are only two patch types

Pr2�/1�/Pr1.

The posterior distribution is the probability that the

patch is of type 1 or 2, conditional on some sampling

information. It is found by applying Bayes theorem.

With this distribution, the posterior probability that the

patch is of type j, when n items have been found after

having spent t time steps searching, is then:

Poj�
xj

x1 � x2

(1)

where

xj�Prj

Nj

n

� �
qNj�n for 05n5Nj

xj�0 for n�Nj (2)

and

q�e�At (3)

where A is the searching efficiency.

The instantaneous intake rate (or equivalently the

current prey density, if A�/1) is then

rn;t�A(Po1(N1�n)�Po2(N2�n)) (4)

Equation 2 and 4 show, what was stated above, that the

forager’s estimate of patch quality gets perfect once n�/

N1, with this distribution.

As pointed out elsewhere (Green 1980, 1984, 1987,

1988, 2006, Olsson and Holmgren 1998, 1999, 2000,

Olsson and Brown 2006), a Bayesian forager should

not base its decision to leave the patch on the estimate

of instantaneous intake rate, or current prey density.

Instead, a patch should be left when the potential

intake rate (P) during the remainder of the patch visit

equals some target rate, C. This rate could be the long-

term intake rate (Green 2006), but that is not

necessary (Olsson and Holmgren 1998, Olsson and

Brown 2006).

The potential intake rate is the expectation of prey

capture during the rest of the stay in the patch, given that

the forager follows the optimal departure rule. It is hence

expressed as the ratio of the expected number of prey to

find, to the expected time to spend before the patch is

left (Green 1980, 1984, 1987, 1988, 2006, Olsson and

Holmgren 1998, 2000, Olsson and Brown 2006). Both

the expected number of prey, G, and the expected search

time, S, are found by dynamic programming, by assum-

ing that the patch must be left by some final time T. In

order to calculate P, we need some more numbers, which

are given by Eq. 5 through 8.

The probability of finding i items in the interval D, if

the patch has Nj�/n items when the interval starts, is:

P(i;Nj�n)�
Nj�n

i

� �
mikNj�n�i (5)

(Olsson and Holmgren 2000, Green 2006) where k�/

e�AD and m�/1�/k.

Finally, r is calculated as

r(i; t; n)�
X2

j�1

PojP(i;Nj�n) (6)

Green (2006) suggests that
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G(t; n)�
XN2�n

i�0

r(i; t; n)(i�G(t�D; n�i)) (7)

and

S(t; n)�D�
XN2�n

i�0

r(i; t; n)(S(t�D; n�i)) (8)

where i are the number of prey items to be found in the

next time step, D. In Eq. 7 and 8, Nmax (Green 2006) is

replaced by N2, as that is the maximum in this case.

The probability of finding i items in the next time step,

r(i,t,n), is conditional on that t time steps have been

spent searching, and n prey items have been found.

Then, the ratio P�/G/S is evaluated for each n and t,

and the forager should remain in the patch as long as

P�/C (McNamara 1982, Green 2006).

Results

I evaluated the model for several different two-patch

distributions, and critical levels of potential intake rate,

C. The purpose of the analysis is both to analyze

Bayesian foraging in two patch systems, which has not

been done before, and to generate testable predictions.

Testable predictions for a two-patch system may be

among the strongest tools to identify Bayesian foraging

in experimental settings. This is both because such

systems are elegantly simple, and because the predictions

generated are often quite distinct from those generated

by alternative models.

In a two-patch system mean prey density per patch is

Ñ�/Pr1N1�/Pr2N2. The variance in prey density is thus

s2�/Pr1(Ñ�/N1)2�/Pr2(Ñ�/N2)2.

There are two principal ways (set A and set B; Table 1)

of creating two-patch distributions with different var-

iance-to-mean ratios. Firstly, I create a set of distribu-

tions (set A) by keeping the values of the patches

constant (N1�/10, N2�/20), and vary Prj, so that the

variance is less than, equal to or larger than the mean.

In the second set (B), I fix the mean at Ñ�/15, and

Pr1�/Pr2�/.5. Then I let N1 and N2 vary such that I get

distributions with the variance less than, (almost) equal

to, and larger than the mean (here N2�/30�/N1).

The baseline case is the one joining the two sets, with

N1�/10, N2�/20, and Pr1�/Pr2�/.5. All parameter

combinations are shown in Table 1.

Instantaneous intake rates

In Fig. 1 I show how the estimated instantaneous intake

rate (or current prey density, as A�/1) depends on search

time and number of prey items found, in the different

two-patch distributions. There are two common features

for all these distributions that are worth noting. They

distinguish two-patch distributions from other distribu-

tions. Firstly, as mentioned above, once n is higher than

N1�/1, the estimate becomes independent of search

time, and only depends on the number of prey found.

Focus on the left column of Fig. 1 (simulations 1-4).

When n�/11, r�/9, when n�/12, r�/8 and so on. That is,

the forager has perfect information about patch quality

in this region. In the region where zero to ten items are

caught, and long search times have been spent, the

estimate is seemingly close to being perfect, too. If e.g. 10

items have been found after two time units, r is very close

to zero. However, the forager is fully prepared to change

its mind, should it find an 11th item. Then r jumps up to

nine (the likelihood of doing so, with that sampling

experience is however almost nil). This is the second

feature.

Table 1. The parameter values used in the 11 simulations. N is the number of prey initially in the patches, Pr is the frequency of poor
and rich patches respectively, and C is the critical potential intake rate when the forager should leave the patch. Set A all have the
same types of patches, but in varying frequencies (hence varying mean and variance). Set B all have the same mean, but varying
patch types (hence varying variance). Simulation 1 is a baseline case, which is common for both sets. Simulations 5 and 6 are the
baseline case, but with different C-values. In all simulations T�/2.5 and D�/0.01. A�/1.

Parameters

N Pr

Set Simulation poor rich poor rich C Mean Variance

A, B 1 10 20 0.50 0.50 7 15 25
A 2 10 20 0.05 0.95 7 19.5 4.75
A 3 10 20 0.95 0.05 7 10.5 4.75
A 4 10 20 0.87 0.13 7 11.3 11.3
A, B 5 10 20 0.50 0.50 2 15 25
A, B 6 10 20 0.50 0.50 12 15 25
B 7 1 29 0.50 0.50 7 15 196
B 8 5 25 0.50 0.50 7 15 100
B 9 11 19 0.50 0.50 7 15 16
B 10 12 18 0.50 0.50 7 15 9.0
B 11 13 17 0.50 0.50 7 15 4.0
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Fig. 1. The estimated instantaneous intake rate (rn,t) as a function of number of prey caught (n) and search time spent in the patch
(t). The forager arrives in the patch with n�/0 and t�/0, i.e. in the inner corner of the graphs. As it spends time and finds food, the
estimate of patch quality changes. The numbers in each panel refers to the number of the simulation. See Table 1 for parameter
values.
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Mostly, the estimate of patch quality declines for every

item found (the forager thinks there is less left, for each

item that is taken), but there are regions where r

increases in n (the forager thinks it has hit a rich patch).

For other distributions (binomial, Poisson, negative

binomial) r is always a monotonic function of n (Iwasa

et al. 1981). Two-patch systems are therefore qualita-

tively different to exploit from any other distribution, as

the estimate of patch quality may go either up or down

when more prey is found (Fig. 1).

As the estimate of patch quality may increase with

finding prey, the foraging benefit of information (FBI:

Olsson and Brown 2006) is positive when exploiting two-

patch systems. Then information is itself worth foraging

for, as the information might tell the forager that the patch

is richer than it presently estimates. Hence, it is crucial to

base patch departure on the potential, rather than ins-

tantaneous intake rate in such distributions (Green 1988,

Olsson and Holmgren 2000, Olsson and Brown 2006).

Basing the departure rule on instantaneous rate (which is

shown in Fig. 1) misses the promises for the future that are

contained in the sampling information gained.

There are interesting differences between the eight

distributions shown in Fig. 1. The distributions are

generated such that they have variances less than, equal

to, or greater than the mean values. These are properties

that they share with the binomial, Poisson, and negative

binomial distributions, respectively. In a binomial dis-

tribution, r decreases with n. This is also true in a two-

patch distribution with the variance less than the mean

(mimicking a binomial distribution), when the forager

has just arrived in the patch. Similarly, when variance

and mean are equal, r is initially independent of n, just as

in a Poisson distribution. When variance is greater than

the mean, r increases with n, as in a negative binomial

distribution. However, these similarities with the smooth

distributions hold only when the forager has just arrived

in the patch. After some more time spent, and/or prey

caught the r shifts into regions where it may either

increase or decrease with n.

Stopping points

The patch departure rule can be described by a set of [n,

t]-stopping points (Fig. 2, 3), and one or more lines with

i.

ii.

iii.

B

C

N1-C/A

N2-C/A

N1-C/A

N2-C/A

A

N1

N2

N2

N1

Fig. 2. Stopping points for Bayesian foragers exploiting two-
patch distributions with parameters given in Table 1. Panel (A)
shows the stopping points for simulation 1 with three specific
examples (i, ii, and iii) drawn. When a forager arrives in a new
patch its search time is zero, and it has found zero prey. Thus it
appears in the origin. As it searches it moves to the right in the
graph, and for every prey item it finds it moves one step
upwards. Its estimate of patch quality changes accordingly (Fig.
1). The forager shown by line i is quite successful and has found
N2�/C/A�/13 items after approximately 0.6 time units. It then
knows that the patch was initially rich (N2) and now has C/A�/

7 items left. Hence, it has reached its threshold and the patch
should be left, as indicated by the solid horizontal line at N2�/

C/A. The forager shown by the dotted line iii is much less
successful. It finds only three items in about 0.9 time units. With
this experience it is quite certain that the patch is of quality N1

and only C/A�/7 items are left. Hence, it is time to leave the
patch, as it has hit the horizontal line at N1�/C/A. The forager
shown by the dashed line ii has intermediate success. It finds 7
items in about 0.7 time units. Here the forager cannot be very
certain about the quality of the patch, it may be rich or poor,

but with the experience of the patch the odds are that it is poor
and should be abandoned. To the left of the stopping point the
potential intake rate is still above C, but to the right of the point
it is below. The strategy is to leave the patch at the stopping
point. Common for all the stopping points and the horizontal
lines is that here the potential intake rate, P�/C. In (A) and (B)
simulations 1-3 are shown. They differ with respect to environ-
mental abundance of rich and poor patches �/ simulation 2
being the richest environment. In (C) simulations 5 and 6 are
shown. They are both the same distribution as simulation 1, but
with different critical potential intake rates (C), that governs
patch departure.
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constant n. At each of these stopping points the

potential intake rate equals the same critical value, i.e.

G/S�/C.

As long the forager is below the lines or to the left of

the points, it should remain in the patch. Figure 2A

shows the baseline case with three examples, which are

described in more detail in the figure legend. The

uppermost line is where the forager has found N2�/C/

A prey items. It has perfect information, and ‘‘knows’’

that it is using a rich patch, and should leave when the

patch is depleted to a constant instantaneous quitting

harvest rate (Charnov 1976, Brown 1988). Forager i in

Fig. 2A leaves the patch because it has hit this line from

below.

At the lower line, where the forager has found N1�/C/

A, the patch is almost (but not quite) certainly poor.

Forager iii leaves the patch because it hits this line from

below. This region of the stopping rule is similar to that

for a binomial distribution (Green 1988).

When the forager has found a number of prey items

that is N1�/C/A5/n5/N1 (and has not yet passed to the

right of any stopping point) the forager should spend

more time in the patch the more prey it has found. This

is because finding prey here indicates that the patch may

be more valuable than initially thought, i.e. FBI is

positive (Fig. 1). Forager ii leaves the patch because it

hits one of the stopping points (at n�/7) from the left.

The general shape of the stopping rule is similar for

the different two-patch distributions in set A. It is shifted

to the right for more rewarding distributions (Fig. 2B),

and down when the critical intake rate to remain in the

patch (C) is high (Fig. 2C).

The stopping points (including the two horizontal

lines at N1�/C/A and N2�/C/A) delineates the region of

the [n, t]-space in which the forager should remain in the

patch. Of course, the forager can only ‘‘move’’ in the step

wise manner described by the examples i, ii and iii as

prey items come in integer values, and finding a prey

item is assumed to be instantaneous. Also, the lines N1�/

C/A and N2�/C/A goes on to infinity, so given that the

forager has found 0, 1 or 2 prey and is below line N1�/C/

A or has found 11 or 12 items and is below line N2�/C/A

it will eventually find enough prey to cross the line.

Before it does so, the patch is too rich to abandon.

When N2�/C/A5/N1 (simulations 6, 10, 11) the

forager will never reach perfect information, as it will

always leave before it has taken N1�/1 items. For the

other simulations, the optimal policy is to take more

prey from the rich patch than is available in the poor.

Thus, once N1�/1 items are taken the forager gets perfect

information about patch quality. When the forager does

not have a chance to reach perfect information it will

need to base the use of both patch types entirely on

sampling experience. This may lead to overuse of poor

patches, and underuse of rich (Fig. 6, 7, Valone and

Brown 1989, Meyer and Valone 1999).

A

B

C

D

Fig. 3. As in Fig. 2 for simulations 8 (A), 9 (B), 10 (C), and 11
(D).
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Simulations 1-5 and 9 contrasts with simulations 6, 7,

and 8 in the relative value of the poor patch type. In the

former group the poor type is richer than the threshold

level, i.e. N1�/C/A. Thus, every patch is valuable and

should, even with perfect information, be exploited for

some time. In the latter group poor patches have N1B/C/

A and so should ideally be skipped over. This can be

seen from the stopping rules in Fig. 2C (simulation 6)

and Fig. 3A. If no prey are found within some time

period the patch is abandoned. The ideal for a forager

with perfect information would be to abandon these

patches without searching them at all, but a Bayesian

forager can only identify them by sampling.

For simulation 6, the policy looks quite similar to that

for a negative binomial distribution, but with a ceiling at

the fixed n�/N2�/C/A. The maximum patch quality is

fixed at N2, rather than open ended as in the negative

binomial. Also, in a negative binomial distribution, the

stopping points form a concave, rather than convex

curve. A fact worth noting is that all the different

stopping rules have a similar shape in set A, and their

shapes do not depend on the variance-to-mean ratio.

However, for set B (when mean is fixed at 15, and both

patch types are equally common) the general shape of

the stopping rules does seem to depend on the variance

to mean ratio (Fig. 3). When the variance is 100 (N1�/5,

N2�/25), the stopping points have a positive slope. This

is also true for a range of the points in the baseline case

(Fig. 2A), which is part of set B with variance 25, and

when variance is 16 (Fig. 3B). When the variance is only

4 (Fig. 3D) the stopping points instead have a negative

slope, as when exploiting a binomial distribution. When

the variance is 9 (N1�/12, N2�/18; Fig. 3C) the relation

between n and t at the stopping points is somehow

sigmoid. To generate a two-patch distribution with the

variance equal to the mean, with Pr1�/Pr2 and Ñ�/15,

one would need N1�/11.12, and N2�/18.88. Of course,

the prey numbers have to be integers, so this distribution

is not possible. The two distributions with variance 9 and

16 are the ones closest to an equal variance-to-mean

ratio (Fig. 3B-C). That is, they most closely mimic that

property of a Poisson distribution. A Bayesian forager

exploiting a Poisson distribution should use a fixed time

strategy, but when they exploit a two-patch distribution

with s2:/Ñ this is not the case. The reason for this is

probably that a forager can always gain information

from a two-patch distribution. It cannot from a Poisson

distribution (Iwasa et al. 1981, Olsson and Brown 2006).

The break point between when the stopping points

form a positive and a negative curve thus does not seem

to occur precisely when s2�/Ñ. However, the exact shape

of the stopping points probably depends on the value of

C, in combination with the parameters of the distribu-

tion, and I do not intend to investigate this further in the

present study.

Quitting harvest rates

An optimal Bayesian forager should leave the patches

when the potential intake rate (G/S) equals some

constant critical value (here C). At these points the

forager will also estimate some instantaneous intake rate,

but this instantaneous rate needs not be the same in all

points (Olsson and Holmgren 1998). In fact as has been

shown by Olsson and Brown (2006) the patches should

be left when C�/H�/FBI, i.e. when the sum of the

instantaneous harvest rate (H) and the foraging benefit

of information equals the potential quitting harvest rate.

FBI might be zero or positive, but not negative, and H

will thus be equal to or smaller than C. In this model I

assume that the forager searches randomly, and hence

the number of prey left in a patch (the giving-up density,

GUD) is simply H/A.

When there is a large difference between the rich and

poor patch, the quitting harvest rates deviate consider-

ably from a constant value. In the most extreme

distribution, where the rich patch has five times more

prey items than the poor, the quitting harvest rate

decreases almost linearly with search time (the solid

line in Fig. 4A). These quitting harvest rates correspond

to the positively related stopping points, for that

distribution (Fig. 3A). It should be noted that most

rich patches will be left when n�/N2�/C/A, i.e. when

H�/C (the dashed line in Fig. 4A). In fact, for this

distribution, only about 10�5 of the rich patches should

fall on the solid line. All others will be left with a

constant giving-up density GUD�/C/A. However, all

the poor patches will be left at one of the stopping points

along the solid line in Fig. 4A. For these, GUD should

hence be strongly negatively related to search time.

For less extreme distributions (rich to poor ratio 2 or

slightly less) the relation between GUD and search time

will be less clear, and often not monotonic (Fig. 4). For

the distribution with rich-to-poor ratio two (Fig. 4B),

83% of the poor patches, and 10% of the rich patches,

will fall on the negative relation. Most of the remainder

of the patches will have GUDs equal to C/A. Thus, in

this case too, it should be possible to identify the

negative correlation between GUDs and search time.

For distributions with smaller differences between rich

and poor patches (rich to poor ratio 1.5 or less; Fig. 4C-

D) the optimal Bayesian strategy will effectively be one

with constant quitting harvest rates.

The explanations for these different patterns are the

same as in the smooth distributions (Olsson and Brown

2006). When the difference between rich and poor

patches is small all the information the forager gains

from finding a prey item is essentially negative. The

patch now likely contains less than it did before finding

the item (Iwasa et al. 1981). Hence, there is no FBI.

When rich patches are much more valuable than poor,

finding an item will often increase the estimate of patch

OIKOS 112:2 (2006) 291



quality. There is good news to be had, and FBI is

positive.

These are properties of the two-patch distributions

that are similar to the binomial (no FBI) and negative

binomial distributions (positive FBI: Olsson and Brown

2006). However, there is also one striking difference. In a

negative binomial distribution the quitting harvest rate

increases with search time (Olsson and Holmgren 1998),

i.e. FBI decreases. This is mostly because when newly

arrived in a patch sampling information is valuable, and

therefore a low instantaneous intake rate is accepted to

gain information about patch quality (Olsson and

Holmgren 1998, Dall et al. 2005, Olsson and Brown

2006). By contrast, in a two-patch distribution, the

forager generally accepts a lower instantaneous intake

rate, the more prey it has found. I suggest that is because

it is getting closer to the information state where it will

switch estimate of patch quality, from likely poor to

surely rich (Fig. 1). A forager exploiting a negative

binomial distribution gets a more robust estimate with

the number of prey found. Such a forager that has

already spent a long time in a patch, and hence found

many prey, will not be much impressed by yet one item.

One that has exploited a patch in a two-patch system for

a long time will dramatically change its estimate of patch

quality if it finds one more item (Fig. 1).

Giving-up densities

GUDs can be very useful for evaluating patch leaving

strategies in general, including Bayesian foraging (Brown

1988, Valone and Brown 1989, Meyer and Valone 1999,

Olsson et al. 1999, van Gils et al. 2003, Vásquez et al.

2006). The frequency distributions of GUDs left in rich

and poor patches depend heavily on the proportion of

rich and poor patches in the environment (Fig. 5).

When the poor patch is the more common (Fig. 5C)

the leaving policy is adjusted to exploit poor patches

effectively. This is done by shifting the stopping points to

the left (Fig. 2B, line 3). The forager adopts a rather

hasty policy, leaving most patches when hitting the lower

horizontal lines in the stopping points. Poor patches will

be rather correctly utilized, but rich patches will be

heavily under-used. The distribution of GUDs is

strongly weighted to the region close to the C/A-line,

for poor patches. For rich patches GUDs are bimodal.

The difference in use between the two patch types is

shown also by Fig. 7. It presents the proportion of prey

harvested from the rich patch, as a function of the

A

B

C

D

Fig. 4

Fig. 4. Predicted relations between total search time spent in a
patch and the instantaneous quitting harvest rate, at which it is
left. The simulations shown are 8 (A), 1 (B), 10 (C) and 11 (D).
The dashed horizontal line corresponds to the respective upper
horizontal lines in Fig. 2 and 3, i.e. when n�/N2�/C/A. The
solid lines and curves correspond to the stopping points, and
lower horizontal lines in Fig. 2 and 3.
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proportion harvested from the poor. The figure also

indicates the situation when GUD�/C/A, which is what

a perfectly informed forager would do, and the 1:1 line,

where a perfectly ignorant forager’s points would be. A

perfectly informed forager would leave all patches at a

constant quitting harvest rate, and consequently at a

constant GUD (Brown 1988). Therefore, the predictions

for a perfectly informed forager would generally be that

the difference between GUDs in rich and poor patches is

larger than for a Bayesian forager. That is, their points

should appear further from the 1:1 line. As a contrast,

the completely ignorant forager spends the same amount

of time in all patches, and therefore leaves rich and poor

patches after having harvested the same proportion from

each. A forager with a fixed number strategy would have

its points along a line rooted in the origin with slope N1/

N2 in Fig. 7, i.e. always quite far below the 1:1 line.

A forager exploiting a two patch system with pre-

dominantly rich patches adopts a policy that much

ignores the poor ones (Fig. 5B, Fig. 7 point 2). The

Fig. 5. Frequency distributions
of GUDs of poor and rich
patches. The width of the
horizontal bars indicate the
relative frequency of patches
predicted for a certain GUD.
The dots indicate the average
GUD. The panels are for
simulations 1 through 6 (panels
A through F).

A

B

C

D

E

F
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consequence is that rich patches are well used, but poor

patches are over-used. Rich patches have GUDs very

close to C/A, but poor patches have a wide distribution

of GUDs.

The frequency distribution of GUDs also depends on

the critical intake rate C chosen by the forager (compare

Fig. 5A with 5E and 5F). With a low C all patches are

harvested almost to exhaustion. The forager will then

have very good information about patch quality, and use

both rich and poor patches almost like a perfectly

informed forager (Fig. 7 point 5). Most patches will

have GUD:/C/A. When C is high (Fig. 5F) all patches

must be left soon, to try to gain the high rate (C). In fact,

a perfectly informed forager would leave poor patches

without searching them at all (Fig. 7 point 6). The

resulting frequency distribution of GUDs has a very high

variance, and neither poor nor rich patches are very well

used.

In fact, in Fig. 5F, C is so high that the forager will

never gain perfect information (N2�/C/AB/N1; Fig. 1B).

In such cases a higher proportion of prey are harvested

from the poor patch, than from the rich. This is shown

by the point appearing below the 1:1 line in Fig. 7 (point

6). Also in simulations 10 and 11, N2�/C/AB/N1.

However, here C/A is clearly lower than N1, but instead

the difference in quality between the rich and the poor

patch is small. Again, the points appear below the 1:1

line in Fig. 7, but in these cases not so far from where a

perfectly informed forager would put them.

Figures 3 and 6 show the set of cases (B) where the

frequencies of rich and poor patches are equal, and rich

and poor patches are symmetrically distributed around

15. When the difference between rich and poor patches is

large (Fig. 3A, 6A-B), a moderate sampling effort will

give the forager a very reliable (or even perfect) estimate

of patch quality. The optimal policy allows it to use the

rich patches very close to perfectly. It does so by

accepting quite low instantaneous intake rates early on

during the stay in the patch. That way it is guaranteed to

correctly identify virtually every rich patch. But it also

means that the forager will often take several prey items

from the poor patches, even though the ‘‘prescient ideal’’

Fig. 6. As in Fig. 5, but for
simulations 7 through 11
(panels A through E).

A

B

C

D

E
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would leave all poor patches instantly (as N1B/C/A in

this distribution). Thus, the price for finding the rich

patches is a quite heavy overuse of the poor patches.

Figure 6A gives a very useful prediction that can be

used in experiments. In this case (simulation 7) the poor

patch only contains 1 item, and the rich 29, and the

quitting harvest threshold C�/7. The optimal policy is to

leave the patch after 0.12 time units if no prey have been

found or after 0.25 time units if only one has been found

by then. If more than one item has been found before

that time, the patch is searched until 23 items have been

found. With such a policy most poor patches are left

without harvesting any items, and most rich patches are

left with a GUD of 7. However, the signature that reveals

a Bayesian forager is in how many poor patches are left

after having taken the single available item, or how many

rich patches are left without taking any. The expectation

from the current model is that in approximately 11% of

the poor patches the prey item should be removed, and

in approximately 3% of the rich patches no items should

be taken.

When the difference between rich and poor patches is

small (Fig. 3C�/D, Fig. 6D�/E), the rich patches will

often be underused. The reasons are threefold. It is more

difficult to discriminate between similar patches. It pays

less to discriminate between them. The forager never

acquires near perfect information unless N2�/N1�/C/A.

Discussion

There have been several empirical studies demonstrating

that animals are capable of Bayesian updating (reviewed

by Valone 2006). However, a species evolved to use

Bayesian foraging in one context (e.g. patches with prey

in a negative binomial distribution: Olsson et al. 1999,

van Gils et al. 2003), is not necessarily capable of using

the optimal Bayesian rules for a different context, such

as a two-patch system. However, Vásquez et al. (2006)

provides a nice demonstration that two-patch systems

seem to be well handled by real animals, even if their

natural patches are of different kinds.

Strict two-patch systems may not be common in

nature. It may be more common to find cases where

two patch types differ in their mean rewards, but where

there is a variation around each mean. If the two

distributions do not overlap much, the general predic-

tions and conclusions from this study should still hold.

The great advantage of two-patch systems is obviously

that they are easy to use in an experimental context.

Creating an experimental environment with a realistic

negative binomial distribution is a tremendous endeavor

that has been completed only once (van Gils et al. 2003).

The difficulty lies in the mere number of patches that the

experimenter needs to provide more or less simulta-

neously. Two-patch systems are much easier to create,

with a minimum of only two patches (Meyer and Valone

1999, Vásquez et al. 2006).

It is worth pointing out, that I have modeled

distributions of two different kinds (set A and B, see

beginning of Results for explanation), and as far as I

know only set B has been used in experiments. Set B,

where Pr1�/ Pr2�/.5, is ideal for experiments with pair

wise patches. A pair of close patches in the same

microhabitat allows the assumption that both patches

should have been treated identically, if they had the same

food abundance. This makes e.g. GUD analyses straight-

forward (Valone and Brown 1989, Valone 1991, Meyer

and Valone 1999, Vásquez et al. 2006). The alternative

way of creating a two-patch system with Pr1"/Pr2 (set A)

may make pairs of patches less useful. Also, it may

require a higher number of patches. If the frequencies of

the patches are, say, 0.1 and 0.9 respectively, then at least

10 patches are needed, and so on. However, using set A

may sometimes increase the flexibility of two-patch

systems, and also generates certain specific predictions.

I have previously (Olsson and Holmgren 1998, 2000)

criticized the usage of the terms overuse and underuse.

In this paper I have been using them frequently. The

reconciliation lies in the possibility to find the ‘‘template

usage’’ to which the Bayesian usage should be compared.

When dealing with the smooth distributions, and e.g. a

rate maximizing policy, this is not straightforward. It

may even be confusing and misleading. When dealing

with a two-patch distribution and a fixed critical

7

8

9
10

11

Fig. 7. The proportion of prey taken from rich (vertical axis)
and poor (horizontal axis) patches. The open circles indicate the
result of the optimal Bayesian strategies. The black dots indicate
the prediction for a prescient forager, exploiting the same
environment. These points are connected by lines. The diagonal
line (1:1) indicates the situation where equal proportions are
harvested from both rich and poor patches, i.e. the predicted
outcome of fixed time foraging. The open circles appearing
above the 1:1 line are for cases when Bayesian foragers gain
perfect information before departure.
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potential rate, it is much more straightforward and the

terms may be useful (Valone and Brown 1989, Meyer

and Valone 1999).

Testable predictions

The model generates at least three interesting qualitative

predictions, which should be possible to test in experi-

ments.

The bimodal distribution of GUDs of rich patches in

Fig. 5C and 5D, is predicted only under a Bayesian

policy, as described above. It occurs mainly, at least is

strongest, in cases when rich patches are rare, i.e. Pr2B/

0.5. Neither a prescient (perfectly informed) forager, nor

a fixed-time (ignorant) forager would exploit patches like

this. The prescient would ideally leave all patches when

GUD�/C/A, i.e. generate zero variance in GUD. Some

random error around this expectation should probably

be tolerated in an empirical study, but that should not

generate a bimodal distribution. A fixed time forager is

predicted to generate a smooth, unimodal distribution of

GUDs, with the proportion of prey taken in the rich

patch equal to that of the poor. This can be seen by

substituting D in Eq. 5 with any fixed time to spend in all

patches. Both the prescient and the fixed-time forager

should generate the same frequency distribution of

GUDs, regardless of the frequency of rich patches in

the environment. That is, their distributions of GUDs

should only depend on C.

Another prediction is that the ability to gain perfect

information depends on the rate that the foragers

demand to remain in the patch, C. When C is high

information about patch quality is always incomplete

(simulation 6). This critical rate may be higher e.g. in

micro-habitats with higher predation risk, or when the

missed opportunity cost of foraging is high (Brown 1988,

Brown and Alkon 1990, Olsson et al. 2000). Thus, the

overuse of poor patches and underuse of rich patches is

expected to be stronger in situations when the forager

must gain much energy to remain in a patch (Schmidt

and Brown 1996, Meyer and Valone 1999). The propor-

tion of prey harvested in the rich patches should be

lower in a risky habitat, than in a safe (compare points 1,

5, and 6 in Fig. 7), for a Bayesian forager. This is directly

testable by providing pairs of rich and poor patches

simultaneously in high and low risk microhabitats.

Meyer and Valone (1999) present data that seems to

agree with this prediction. However, in their study C is

perhaps not constant across alternatives, as they com-

pare different periods in time.

Let us return to simulation 7, in which 11% of the

poor patches had its single prey item removed. If

predation risk, or some other foraging cost decreased

then the proportion of empty poor patches would

increase. If C was as low as one, then this proportion

would be as high as 30%. In contrast, practically no rich

patches would be left un-harvested.

Finally, the negative relation between search time and

GUD (Fig. 4) is only predicted for Bayesian foragers

exploiting a two-patch distribution, and for fixed-

number foragers. Obviously, a fixed number forager

should leave all patches of a given initial quality with

the same GUD. A Bayesian forager should not, unless

the quitting potential, C, is very low. Importantly, a

fixed number strategy should not be expected in a two-

patch system, as it is not optimal under any reasonable

assumptions. Only a forager capable of counting

accurately, but not keeping track of search time should

use such a strategy. Thus, only if one wants to ponder

over the curious actions of stupid animals (Milne 1926,

Adler and Kotar 1999) need such a strategy be

considered.

The negative relation between GUD and search time

should be most pronounced when the difference between

the rich and poor patch is large. The non-linear relation

predicted for intermediate rich-to-poor ratios, will likely

often appear as a weak negative relation. In both these

cases all, or most, of the rich patches, and some of the

poor patches, will be left with the GUDs along the

horizontal line in Fig. 4. In two-patch systems with low

rich-to-poor ratios, GUDs are expected to be effectively

independent of search times.

Collecting data on search times, in addition to the

GUD data, may be very useful, also in a two-patch

system (Olsson et al. 1999, Olsson and Holmgren 1999,

van Gils et al. 2003). In a foraging experiment e.g. video

analysis of search times may require some additional

effort, which may sometimes not be feasible (Vásquez

et al. 2006). As an alternative to such labor-intensive

methods, it is possible to use transponder systems

(Olsson et al. 2001, 2002). However, this requires that

patches be predominantly used for foraging, and not for

other activities.

I hope that the predictions generated in this study will

inspire new experiments, which may improve our under-

standing of animals’ information use.
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